diff --git a/main.ipynb b/main.ipynb
index 1f2c51f..000cebb 100644
--- a/main.ipynb
+++ b/main.ipynb
@@ -70,101 +70,27 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 24.218 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 23.154 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 24.347 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 24.411 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 24.411 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 295 | \n",
- " 46.357 | \n",
- "
\n",
- " \n",
- " 296 | \n",
- " 46.551 | \n",
- "
\n",
- " \n",
- " 297 | \n",
- " 46.519 | \n",
- "
\n",
- " \n",
- " 298 | \n",
- " 46.551 | \n",
- "
\n",
- " \n",
- " 299 | \n",
- " 46.583 | \n",
- "
\n",
- " \n",
- "
\n",
- "
300 rows × 1 columns
\n",
- "
"
- ],
"text/plain": [
- " 0\n",
- "0 24.218\n",
- "1 23.154\n",
- "2 24.347\n",
- "3 24.411\n",
- "4 24.411\n",
- ".. ...\n",
- "295 46.357\n",
- "296 46.551\n",
- "297 46.519\n",
- "298 46.551\n",
- "299 46.583\n",
- "\n",
- "[300 rows x 1 columns]"
+ "0 24.218\n",
+ "1 23.154\n",
+ "2 24.347\n",
+ "3 24.411\n",
+ "4 24.411\n",
+ " ... \n",
+ "295 46.357\n",
+ "296 46.551\n",
+ "297 46.519\n",
+ "298 46.551\n",
+ "299 46.583\n",
+ "Name: 0, Length: 300, dtype: float64"
]
},
- "execution_count": 1,
+ "execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
@@ -172,27 +98,474 @@
"source": [
"import pandas as pd\n",
"df = pd.read_csv('data.csv')\n",
- "df"
+ "y = df['0']\n",
+ "y"
]
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 4,
"metadata": {},
"outputs": [
{
- "ename": "NameError",
- "evalue": "name 'df' is not defined",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
- "Cell \u001b[0;32mIn[1], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[43mdf\u001b[49m)\n",
- "\u001b[0;31mNameError\u001b[0m: name 'df' is not defined"
- ]
+ "data": {
+ "text/plain": [
+ "[]"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2hElEQVR4nO3de3TU9Z3/8dfMlEQxJMg1YRMCQla0iL8tRZx6luVAMKL2p+Xyw2pP1aZc2uBBbkKsW4u/1iChIrtbWKE52tMDRvFIXd0Kq1zizxLYGGVBXTkJB4RZbq49JBBKwOT7++O7M5lJ5p6Z79yej3NywlyYfPg6MC8/n/fn/bEZhmEIAADAIvZEDwAAAGQWwgcAALAU4QMAAFiK8AEAACxF+AAAAJYifAAAAEsRPgAAgKUIHwAAwFLfSPQAuuvs7NSpU6fUr18/2Wy2RA8HAACEwTAMXbhwQcOGDZPdHnxuI+nCx6lTp1RUVJToYQAAgCicPHlShYWFQZ+TdOGjX79+kszB5+bmJng0AAAgHK2trSoqKvJ8jgeTdOHDvdSSm5tL+AAAIMWEUzJBwSkAALAU4QMAAFiK8AEAACxF+AAAAJYifAAAAEsRPgAAgKUIHwAAwFKEDwAAYCnCBwAAsBThAwAAWIrwAQBAJnG5pD17zO8JknRnuwAAgBhxuaSmJiknRzp2TNq9W9q8WerslOx2adMmqbzc8mERPgAASEc1NdK8eWbQ8KezU5o/XyorkwoLLR0ayy4AAKQblyt48HDr6JCam60ZkxdmPgAASDUul7Rvn/nr73zH/N7UJJWUmLMY69eHDh6S5HBIo0fHb5wBED4AAEhm7roNd7CoqZHmzpUMo+s5Npt522aTHnxQ2rIl9Os6HNKLL1q+5CKx7AIAQPJau1YqLpamTDG//+xnPYOH1HXbMEIHD5tNWrZMOn48IcWmEjMfAAAkB+8ZDkn65S/NmQm3zk7p2Weje22bTdqwQRo4UHI6EzLb4Y3wAQCAlbpvf5WkQ4ekqqrw6jQilcAttYEQPgAAsEqo7a+xZrdL+/dLEyZY8/PCRM0HAABWCHf7a7hsNukHPzALR923vblnPJIseEjMfAAAELnuO1C612t0X1YZOVL6f/8vtjMeS5dK1dXmck1zc9eW2fp683sS1HYEYjOM7iWzidXa2qq8vDy1tLQoNzc30cMBAMCX99KJzSZNny7t2NEVLNzbXmPlBz+Qtm71DS52u/TFF0kVLiL5/GbZBQCAcHVfOjEM6Y9/9A0GvQkeNlvX8ondLq1ZI/3+9+byiXt5xeEwbydR8IgUyy4AAISrqSk2Syc2m/Qv/yL95S/m7REjpLa2rqUT9zKKO2CUl5tnsHS/P0URPgAAkHrWcXS/T5I+/zw2P8swzJqQe+/1/7i/cFFYmPKhw43wAQDA2rXSihVddRxLl0pDh/reF8s6jgSdqZIsCB8AgMzlcvXsJGoYZhjxFk7wcNdqGIZZr7FypfS//pd533/8R1cTsQSeqZIsCB8AgMzk74C2SK1bJ91xR/B6DUmaPVtasCBtajZ6q1e7XVavXi2bzabHH3/cc9/kyZNls9l8vhYsWNDbcQIAEB2XS9qzx/zufd+8eb0LHg6HNGuW2cRr8uSumgz3r7sL9liGiTp8NDQ06MUXX9S4ceN6PDZ37lydPn3a87VmzZpeDRIAgLB0Dxo1Nb6nwtbUmPf3dteK3Z7xSye9EVX4uHjxoh566CFt3rxZ119/fY/H+/btq/z8fM8XzcIAAHHn7/h5754cnZ3mbZdL+vDD6H6GzSZt3Gg2+Eqig9pSTVTho6KiQvfcc49KS0v9Pr5lyxYNGjRIY8eOVWVlpS5duhTwtdrb29Xa2urzBQBARKqrpeXLfYPGs8/2nN3o7DQLTFeu7PkaCxZIJ0+ar2UP8PFoGNKYMcx49FLEBae1tbX66KOP1NDQ4PfxBx98UMXFxRo2bJgOHTqkFStW6MiRI3rjjTf8Pr+qqkqrVq2KdBgAgEwTqA/HW29JTzwR/uts3ux/yWXOHPN1ly2THnjAPCPlgQd8n5vhW2RjJaLwcfLkSS1atEjvvvuurrnmGr/PmTdvnufXt9xyiwoKCjR16lQdPXpUo0aN6vH8yspKLVmyxHO7tbVVRUVFkQwLAJDuuvfhcH/WbNoUedFoZ6c5sxEsVBQWmjtUWlul+fOljg62yMZQRAfL/eEPf9D3vvc9Odz95SV1dHTIZrPJbrervb3d5zFJamtrU05Ojnbs2KGysrKQP4OD5QAAPqqrI5vZCMXhkFavNpdevENFoBoOl4stsmGI5PM7opmPqVOn6vDhwz73PfrooxozZoxWrFjRI3hI0sGDByVJBQUFkfwoAECmc7mkffvMGY9I2GzSzJnS9u1muHAf1ubd4Ku83FxSCSdUpFFb82QRUfjo16+fxo4d63Pfddddp4EDB2rs2LE6evSotm7dqrvvvlsDBw7UoUOHtHjxYk2aNMnvllwAQAZz13Dk5EgXL3bVcrhc0vr10vPPR74d1m6X9u83e294z1hIPYMGoSJhYtrhNCsrS++9955eeOEFtbW1qaioSDNnztRTTz0Vyx8DAEh13jUcbjabNH269M470TX/stvNGpAJE8zb3cOFO9js2eNbtArLRVTzYQVqPgAgjfk7SyUS3Q94cxefTp0qOZ3BA0VNTVffD3dQoVdHzETy+U34AABYozdnqdjtUm2tGTAkcxusFDpwuLlcZuOx7jtcjh9nBiRG4lZwCgBAWLr35OjNWSruItHZs7vu8/51OPy1U+/oMOtACB+WI3wAAGLDHTgaG3v25BgyJLqzVBYsMNuk9zYglJSE7u0ByxA+AAC9511P4c0wgtd32O3SXXdJO3b4/l673ezFsXx5bMZXWGjWeNAwLClQ8wEA6B1/9RTh8J7VcG+Lve46qa0tfg29XC6zXsQwpO98h/ARQ9R8AADip3s9R7TH07vPUpEC99zwd55Lb+zcyY6XJBDVqbYAgAzlfWz98OHm7MXnnwc+BTaQcOotamq6flZxsXm7N9xFr94n386fb94PSzHzAQAIT/czVkLVcwQSTr1FoKBQVhb9DAg7XpIG4QMAEFpDQ+RnrDgcUlWVNGKEeXvEiPDrOeIRFNjxkjQIHwAAk7/eHE1N0q5d0rPPRtajY906adas5AoK7HhJGoQPAIDvVln3GSvdt7+Gy+HoXfCQ4hcUysvNpZtwTrNF3LDVFgAyXUODdPvt0QWN7ryPrI8F75NpCQpJja22AIDwRHPeis0mHTggFRR0nbESST1HJDj2Pi0RPgAg3blrN3JypGPHzPu+8x3zezTnraxZ03VsfaRnrAAifABAegvU9lySvv3tyJZa3C3Ply2L3fiQkQgfAJCuuvfK6O7DD0O/ht0urVwpTZtG3QVihvABAOlq/frIi0jnz5ceeCD+Z6wgoxE+ACCVeddzXLxo9seQpLfeMluhR8Jul556irCBuCN8AECqWrvW7DrqPbths0VeQCrRcAuW4mA5AEhF1dXS8uU9l1WCBQ+bTdq40TwMzuEw77PbzQLS48c53RWWockYAKQal8s8UTaSf767Hx9P8y7EGE3GACBVeZ+vIvmeteJ+/LXXIg8e+/d39eaQaN6FhCJ8AECy8K7hsNnM+wzD/PW8eebtzZsj782xaZNv8AASjPABAMmgulp64omu294zG4ZhFoMG4h1UvO/bsEG6915mOJB0KDgFgERzucwZj2i4z1nZvLmriNThMG8vWJC5wcPlkvbsMb8j6TDzAQBWcLmkffvMX48c2XXGysiRZk+OaGv/DcNsBsZR8V28W8p3L7RFUmC3CwDEWzQnx4bL4TC3yWZy2PDmcknFxb51MVwjS0Ty+c2yCwDEU0ND7IOHu8aDxmA9NTX1LMjt6DBnhJA0WHYBgFhzb5dtbDSLSCMNHt27lNrt0m9+Iw0cKDmd5n0sr/hXUmJer+4zH6NHJ25M6IHwAQCx4A4cu3ZJVVWRH+jm5nCYx9avXGn+H7t7dqN7zQKhw7/CQrPGY/583+vH9Uoq1HwAQG95Fzj2hndxJB1Ie4frZ7lIPr8JHwDQG/4KHANx994YP94sgJSkESO6fu108kGJlEV7dQCIh+6tz/ftk37/+/BnPJYuNXtvSL4dR+k+igxD+ACAcHgvrURzbL3dLi1aFJ+xASmGrbYAEIrL5VvTEU7wsNl8t8Ru2sSSCvA/mPkAgFD89Y4IxGaTXn2VLbFAEIQPAAjFX+8If9zbOmfP7rqP0AH0wLILALgFO4xs7tzAv89mk5YtM3etcIYIEBIzHwAgSWvXmifLugtK582TpkyRDh0K3jTs6aelH/+YGQ4gAvT5AIDqarMNeqQ4sAzwoM8HAITD5TKPs482eNC2G4gK4QNAZonFoW/u3SwEDyAqhA8AmSMWZ7CsWeO7mwVAxNjtAiAzNDT0LnjY7WbwWLYstuMCMhAzHwDSl/cx988+G3qJxW6X9u+XCgqk+nrzvhEjpLY2GoUBMUT4AJBevANHsC2y3bmPs3cf8sbSChA3hA8A6SOamg73Mff33svMBmARaj4ApIfuh7+FyzCkMWMIHoCFmPkAkJrcyys5OdKxY9Lvfx9dManDYdZzALAM4QNA6ol2y6zdLs2YIW3fLnV00CgMSJBeLbusXr1aNptNjz/+uOe+y5cvq6KiQgMHDlROTo5mzpyps2fP9nacAGCKdHnFbpeefNI8MO6LL6Rt28yW6Hv2cBAckCBRz3w0NDToxRdf1Lhx43zuX7x4sf71X/9V27ZtU15enhYuXKgZM2boT3/6U68HCyDDuVzSa6+FFzyCdSItLGS2A0igqMLHxYsX9dBDD2nz5s365S9/6bm/paVFNTU12rp1q6ZMmSJJeumll3TTTTdp//79uv3222MzagCZI5qts+7lFLbLAkkpqmWXiooK3XPPPSotLfW5v7GxUVevXvW5f8yYMRo+fLjq3Q17umlvb1dra6vPF4AM53KZyyJPPSUVF5tH2//qV6GDh81mdiBlOQVIahHPfNTW1uqjjz5SQ0NDj8fOnDmjrKws9e/f3+f+oUOH6syZM35fr6qqSqtWrYp0GADSVTTFpE8/LX3zmxz2BqSIiGY+Tp48qUWLFmnLli265pprYjKAyspKtbS0eL5OnjwZk9cFkIKi6dXhcEg//rG5xELwAFJCRDMfjY2NOnfunL71rW957uvo6ND777+vf/qnf9LOnTt15coVnT9/3mf24+zZs8rPz/f7mtnZ2crOzo5u9ADSg8sl7dsXea8OtsoCKSmi8DF16lQdPnzY575HH31UY8aM0YoVK1RUVKQ+ffpo165dmjlzpiTpyJEjOnHihJxOZ+xGDSC1uYtIS0qknTuluXNDH/rmZrdLK1dK06Zx2BuQoiIKH/369dPYsWN97rvuuus0cOBAz/3l5eVasmSJBgwYoNzcXD322GNyOp3sdAFg8q7psNnCCx0EDiCtxLzD6bp162S32zVz5ky1t7errKxMGzZsiPWPAZCKutd0hAoewXp1AEhZNsMId67TGq2trcrLy1NLS4tyc3MTPRwAveG9vCKZDcKWLg3v97rrOdgyC6SESD6/OdsFQHx03zIbaInFZjO/ux+z2cyAsmgRsx1AmiJ8AIg9f1tmA02yrlkjPfCA5G5EyBILkPYIHwBir6kp/C2zDof5nVboQMYgfADoHXePDkkaOVI6dkz66itzh0o4AWTJErMl+qZN1HcAGYLwASB6NTWR9egIpLNTmj9fKitjyQXIAFEdLAcAcrkiDx52u/Tkk9Lzz/d8rKNDam6O3fgAJC3CB4DoNDVFFjzWrZO++MI8nXb2bDOIeHM4zAZiANIe4QNA+NxH3btcZu8O9zbZUBwOadasriWVwkKzxsNdbMoZLUBGIXwACE9NjVRcLE2ZYn7fuVPavDl0AAkULMrLpePHzTBz/DjFpkAGocMpgNBcLjNweO9ecTjM0CB19egYMaLrvhEjpLY2zmIBMgQdTgHEjstltkXvvm3WXSA6ebJvj44JEywdHoDUQ/gAENjatdKKFf77dVAgCiBKhA8A/lVXS088Efjx1atZTgEQFQpOAfTkcpkzHsF8+9vWjAVA2iF8APDlrvEIVovOkguAXmDZBUCXmpqep9F2R08OAL1E+AAymctldirNyTEPhAsUPOx2aeVKado0ts4C6DXCB5CpwpnlkMy26N7dSQGgl6j5ADKRyxVe8OjeFh0AYoCZDyCTuJdZvvwyvOBBbQeAOCB8AJmi+zKLzRZ8R8srr/h2LgWAGGHZBcgE/pZZQm2ldTrjPy4AGYnwAWSCpqbQyyz2//nngOUWAHHGsguQCXJyQi+z1NZKgwezlRZA3BE+gHTiLigtKTFvNzVJu3ZJVVXhLbMQOgBYgPABpItIC0rd/C2zeIcYAgmAGCN8AOkg0oLSdeukO+6Q2tp6LrN4hxi7Xdq0SSovj9/YAWQcm2GE879G1mltbVVeXp5aWlqUm5ub6OEAyc3lkvbtk37/e+ntt8P7PXa79MUX/mc0XC6puNg3xDgc0vHjzIAACCqSz29mPoBUVVMjzZ0b3tKKt+eeCxwk/O2K6eiQmpsJHwBihq22QCpyuSIPHna7tGaNtGxZ4OeUlHRtuXVzOMylGQCIEcIHkIqamsILHna79OST0p495lLL8uXBn19YaNZ4OBzmbXp+AIgDll2AVONySZ9/Hvhxh8PcWjthQnQ9O8rLpbIyc6mFnh8A4oDwAaQKl0tav1769a/9z3rYbNLSpdKiRb0PDIWFhA4AcUP4AFLB2rXSE08EDh0bNkj33ktgAJASqPkAkl11tVmrEajGwzCkMWMIHgBSBuEDSGYul7RiRfDnsBsFQIohfADJbN++4Lta7HZ2owBIOdR8AMnGfa5KY6NZ5+HPD34g/e//zWFwAFIS4QNIJt0Ph+vObpdWrw7drwMAkhjhA0gW/g6H6662Vpo927oxAUAcUPMBJAOXS3rtteDBw+Ewl1kAIMUx8wEkindtx4oVoYMHhaUA0gThA0iEULUdUu/bpANAkiJ8AFYLp7Zj3Tpp1iwCB4C0RM0HYKVwazsIHgDSGDMfgFXCXWqhtgNAmiN8APHkLirNyQkePH72M6m0lNoOABmB8AHESzgzHW6lpdLkyXEfEgAkA2o+gHhoaAg/eAQ6GM7lkvbsMb8DQBohfACxVlMjTZwYfvDwV+NRUyMVF0tTppjfa2riM1YASICIwsfGjRs1btw45ebmKjc3V06nU++8847n8cmTJ8tms/l8LViwIOaDBpKWexttsJNoJclmM3e9HD8ulZf7fw13eOnslObPZwYEQNqIqOajsLBQq1evVklJiQzD0O9+9zvdd999+vjjj/XNb35TkjR37lw988wznt/Tt2/f2I4YSFbhbKN1Mwxp8GD/xaVNTT1fo6NDam6mGBVAWogofHz3u9/1uf2rX/1KGzdu1P79+z3ho2/fvsrPz4/dCIFUsHZt6Bbp3gLVeUhSSYl5eq33awV7PgCkmKhrPjo6OlRbW6u2tjY5vQ672rJliwYNGqSxY8eqsrJSly5dCvo67e3tam1t9fkCUkp1tXnEfbBttMuWmQFCCt3Lo7BQ2rQp/OcDQIqxGUaoxWlfhw8fltPp1OXLl5WTk6OtW7fq7rvvliRt2rRJxcXFGjZsmA4dOqQVK1botttu0xtvvBHw9X7xi19o1apVPe5vaWlRbm5uhH8cwALu3h0lJebt4cOD13js2WNuo3W5zKWTcHt5RPp8AEig1tZW5eXlhfX5HXH4uHLlik6cOKGWlha9/vrr+u1vf6u6ujrdfPPNPZ67e/duTZ06Vc3NzRo1apTf12tvb1d7e7vP4IuKiggfSE7eyys2m3TPPdLbbwd+vsNhFpUSHgCkubiGj+5KS0s1atQovfjiiz0ea2trU05Ojnbs2KGysrKwXi+SwQOWqq6Wnngi/Oe7l0u672YBgDQUyed3rzucdnZ2+sxceDt48KAkqaCgoLc/Bkgsl8uc8QjFbpdWrpSmTWO5BAACiCh8VFZWavr06Ro+fLguXLigrVu3au/evdq5c6eOHj3qqf8YOHCgDh06pMWLF2vSpEkaN25cvMYPxJ/LZRaAhjNJWFsrzZ4d/zEBQAqLKHycO3dOP/zhD3X69Gnl5eVp3Lhx2rlzp6ZNm6aTJ0/qvffe0wsvvKC2tjYVFRVp5syZeuqpp+I1diD+amqkuXPDCx4Oh+S18wsA4F+vaz5ijZoPJI2GBrNNur+/Ijab7/12uzk7Qn0HgAxlac0HkJZCzXi8+qo5y1Ffb952OqnvAIAwET4Aby6XtG9f8PNZ3MsrhYXUdwBAFAgfgGSGjvXrpeefD94i3W6n2ygA9BLhAwinqNRmkzZskO69l+ABAL1E+EBmcx9fH6rueulSacECa8YEAGku6oPlgJTnckmvvRb6JFq7XVq0yJoxAUAGYOYDmcn7jJZgOFEWAGKO8IHME+qMlgULpB/9SGpro0U6AMQB4QOZJZwzWubMkSZMsGY8AJCBqPlAZtm3L3hxqcNhznYAAOKGmQ+kP5dLamqSdu2Snn028POo7wAASxA+kN5qasyttIEKS+12aeVKado06jsAwCKED6Qvdw+PYDtaamtpkQ4AFqPmA+mrqSl0q3Sn07rxAAAkET6Qrlwu6csvzYARyHPPscwCAAlA+ED6WbtWKi42t8z6m/mw26U1a6Rly6wfW7pwuaQ9e8zvABAhwgfSh8tlNghbvtx/6LDZzHbqX3xhPgfRqakxw92UKeb3mppEjwhAiiF8ID3U1EjDh5tbZQMxDGnwYJZaeqN7EW9npzR/PjMgACJC+EBqcx8OF87JtDQQ6z1/RbwdHVJzc2LGAyAlsdUWqStUDw9vNBCLjZISs2bG+5oT6gBEiJkPpKZwenjY7dKTT5qFkcePS+Xllg0vbRUWSps2mYFDItQBiAozH0gt7lbpX34ZPHj8n/8j/frXfCjGQ3m5VFZmLrXQFRZAFAgfSB3dl1lsNv91HnY7wSPeCgu5vgCixrILUoO/ZRZ/wcPhMJcF+GAEgKTFzAdSQ6hW6Tab9OqrZrt0ggcAJDVmPpAaSkrMgBEIPTwAIGUQPpD8XC5p3z7pwQcDP4ftngCQMlh2QfJyuaT1683iUe/6ju6Fpmz3BICUQvhAcqqpkebO9V9U6q7vGDFCamtjuycApBjCB5KPe2dLoHbpnZ1mfceECdaOCwAQE9R8ILm4z2oJtrOF+g4ASGnMfCB5hHNWi91OfQcApDjCB5JDsLNa7Haz/mPqVPp4AEAaIHwg8YIttTz9tPTjHxM4ACCNUPOBxKqpkYqLpaVL/T/+f/+vtHOntWMCAMQV4QOJE2ypxa2zU5o/33wuACAtED6QOOvXBw8ebh0d5vHtAIC0QPhAYrhcZufScLC1FgDSCuEDibFvX+AmYjabucNFonU6AKQhdrvAemvXSk880fN+d9t0p9O83dxM63QASEOED1irutp/8HDPcMye3XUfoQMA0hLhA9ZwucyllhUr/D/+yiu+wQMAkLYIH4i/UG3T7faupRYAQNqj4BTx1dAQupfHc8+xxAIAGYTwgfhZu1aaODH4jMeaNdKyZdaOCwCQUCy7ID4CFZZ6q62lzgMAMhAzH4i9hobAhaVuDgd1HgCQoQgfiK2aGnOpJVADMYnGYQCQ4Vh2Qey4D4oLFDx+9jOptJTGYQCQ4QgfiJ2mJv/FpTabuaNl+XLrxwQASDoRLbts3LhR48aNU25urnJzc+V0OvXOO+94Hr98+bIqKio0cOBA5eTkaObMmTp79mzMB40k5HJJX37ZdSaLm90uHThA8AAAeEQUPgoLC7V69Wo1Njbqww8/1JQpU3Tffffp008/lSQtXrxYb731lrZt26a6ujqdOnVKM2bMiMvAkURqaqTiYmnOHN+ZD7td2rRJmjAhcWMDACQdm2EEqwwMbcCAAaqurtasWbM0ePBgbd26VbNmzZIkff7557rppptUX1+v22+/PazXa21tVV5enlpaWpSbm9ubocEKLpcZPPwtt9jt0hdfUN8BABkgks/vqHe7dHR0qLa2Vm1tbXI6nWpsbNTVq1dVWlrqec6YMWM0fPhw1dfXB3yd9vZ2tba2+nwhhQSq85DM+5ubrR0PACDpRVxwevjwYTmdTl2+fFk5OTnavn27br75Zh08eFBZWVnq37+/z/OHDh2qM2fOBHy9qqoqrVq1KuKBI8HcB8X9y78Efo7DYe5sAQDAS8Th48Ybb9TBgwfV0tKi119/XQ8//LDq6uqiHkBlZaWWLFniud3a2qqioqKoXw8WqKmR5s6llwcAICoRh4+srCyN/p//mx0/frwaGhq0fv16zZkzR1euXNH58+d9Zj/Onj2r/Pz8gK+XnZ2t7OzsyEcO67lnO0IFj3XrpFmzCB4AAL963eG0s7NT7e3tGj9+vPr06aNdu3Z5Hjty5IhOnDghJ220U5/3jpZQMx4EDwBAEBHNfFRWVmr69OkaPny4Lly4oK1bt2rv3r3auXOn8vLyVF5eriVLlmjAgAHKzc3VY489JqfTGfZOFyQpd+fSQIWlbiy1AADCEFH4OHfunH74wx/q9OnTysvL07hx47Rz505NmzZNkrRu3TrZ7XbNnDlT7e3tKisr04YNG+IycFho377gwcNmk5YulRYtIngAAELqdZ+PWKPPR5IJVVz69NPSj39M6ACADBfJ5zdnu8A/d3FpsIPiHA6CBwAgYoQP9FRTE7rGg/oOAECUCB/wFaq41G6Xamslp5PgAQCICuEDvoK1S5ekJUuk2bOtGw8AIO30us8H0kxJiTm74Y/dbu5oAQCgFwgf6OJySevX+y8wdTikTZtYagEA9BrLLjCtXSs98UTP4GGzSa++So0HACBmmPmAVF0tLV/uf8bDMKTBgwkeAICYIXxkuoYGacWKwI87HNL/HCQIAEAsED4y2dq10sSJwZuI0csDABBjhI9MFWypRZIWLJCOH5fKyy0dFgAg/VFwmmncbdMDLbXYbNJzz5nBBACAOCB8ZJJQbdNtNunAAWnCBGvHBQDIKCy7ZIpQbdMlac0aggcAIO4IH5kiWNt0u90MHsuWWTsmAEBGYtklU+TkmMsq/gpMa2s5rwUAYBlmPjLB2rXS7bcHbpvudFo/JgBAxiJ8pDOXy9wyu3y5/yUX+ngAABKAZZd0VVMjzZ0buI/HunXSrFkEDwCA5Qgf6cbdx2PevMDBw24neAAAEobwkU5C9fFwe+45ggcAIGGo+UgX4fTxYEstACAJMPORLkL18ViyRFq0iBmPZOdymf8tS0r4bwUgbRE+0kVJiRkyvAOI3W728HA6+SBLBd7LZna7tGkTB/sBSEssu6QDl0tav963wNT94TV7NsEjFXRfNuvslObPN+8HgDRD+Eh1NTXS8OFmIzHv8GEYUr9+fHilCn/LZh0dUnNzYsYDAHFE+Ehl7v9b9rel1jCkOXOk4mIzoCC5uZfNvDkc0ujRiRkPAMQR4SOVuFzSnj3md5dLWro09LZapu9TQ2GhuUzmcJi36T4LII1RcJoqwu3h4Y97+p4PsuRWXi6VlZn/rUaP5r8XgLTFzEcqCKeHh9u99zJ9n8oKC6XJkwkeANIa4SMVBOvh4c1ulzZuZPo+1XgvpwFABiB8pAJ/xYjdORxm6CgsNKfvjx83P9COH6dXRDKrqTGLgqdMoTgYQMYgfKSCnTsDHxInSQsW9AwZTN8nP3p7AMhQhI9kF2w7rfuslo0bCRmpiN4eADIUu12SXaB6j3XrpFmzCB2pzF9LfIqDAWQAZj6SXaDmUwSP1EdvDwAZipmPZOI+0TQnR7p4setk002bzFqAjg4+oNINvT0AZCDCR7Lw10TM+2RTPqDSV2Eh/00BZBSbYQTbRmG91tZW5eXlqaWlRbm5uYkejjVcLnObpb/aDofD3MnChxMAIIlF8vlNzUciuZtL7dsXuIlYR4dUX2/tuIBw0BwNQJQIH4ni3VxqzhzJZgv83AceoPkUkgvN0QD0AssuiRBomcVmC9xMjOUXJAt/71/en0DGY9kl2QU7q+W116QNG3reT/MpJAuaowHoJcKHVdzr4w0N0pdf+l9mMQxp8GDpu9/lZFokr0C9Z3h/AggT4cMK3uvjt91m1nj4W15x/wNO8ykkM96fAHqJmo94C7aNVuqq83D/A+59OJzLRW8PJC/enwC8RPL5TZOxeAtW3+H22muS09nzH3CaTyGZ8f4EECWWXeLN3/q4N3edB/+IAwAyBOEjntxntVRWBg4gFOoBADIMyy7xsnattGKF75KLzSZNny7t2GHeT6EeACADRTTzUVVVpQkTJqhfv34aMmSI7r//fh05csTnOZMnT5bNZvP5WrBgQUwHnfSqq6Xly3vWehiGtHOntH+/ue32+HHfAlN/aGENAEgzEc181NXVqaKiQhMmTNDXX3+tJ598Unfeeac+++wzXXfddZ7nzZ07V88884zndt++fWM34mTjcplns0jSd74jnT5tzngE0tEhtbVJkyeHfm3vk269T7gFACCFRRQ+duzY4XP75Zdf1pAhQ9TY2KhJkyZ57u/bt6/y8/NjM8JkVlMjzZ0buCW6P+HWeLhcXcFDMr/Pny+VlbFMAwBIab0qOG1paZEkDRgwwOf+LVu2aNCgQRo7dqwqKyt16dKl3vyY5ORyRRc8wq3xoIU1ACBNRV1w2tnZqccff1x33HGHxo4d67n/wQcfVHFxsYYNG6ZDhw5pxYoVOnLkiN544w2/r9Pe3q729nbP7dbW1miHZK2mpvCCh81m7naZNi2yZkzuLbrdD+9iZwwAIMVFHT4qKir0ySef6IMPPvC5f968eZ5f33LLLSooKNDUqVN19OhRjRo1qsfrVFVVadWqVdEOI3FKSoKfQiuZjx84IE2YEPnru1tYz59vzniwMwYAkCaiaq++cOFCvfnmm3r//fc1cuTIoM9ta2tTTk6OduzYobKysh6P+5v5KCoqSs726u6+HTk50rFj0u7dZkAIdAmrq6Vly3r/M2lhDQBIcnFrr24Yhh577DFt375de/fuDRk8JOngwYOSpIKCAr+PZ2dnKzs7O5JhJIb3zpPu5s83Zzk2bzZnKex2afXq3gcPiRbWAIC0E9HMx09/+lNt3bpVb775pm688UbP/Xl5ebr22mt19OhRbd26VXfffbcGDhyoQ4cOafHixSosLFRdXV1YPyMpD5YLdTicw2H27JCYpQAAZKS4zXxs3LhRktlIzNtLL72kRx55RFlZWXrvvff0wgsvqK2tTUVFRZo5c6aeeuqpyP4EVvFeRrl40azj8Bca1q8PfjicexfK5MmEDgAAQoh42SWYoqKisGc4Ei5Q+/PKSunWW83bI0eatR2//nXw12IXCgAAYcuss13cMx27dkm/+lXPxw1DevbZyF7TbmcXCgAAEcic8BGsYDRSNpu0YYM0cKDkdBI8AACIQGaEj+6tynvD3W+DM1YAAIhKZoQPf63KI2W3S7W1zHQAANBLvTrbJWW4W5X7Y7dLd98d+HH3c1avlmbPJngAANBLmTHz4a9VeVWV2fbc3ZPD3Un0uuu6enb8x3+Yz+vslFaulAYMYLkFAIBeiqq9ejzFtclYJK3K/TUWczcTY/YDAAAfcWsylvIiaVUe7Eh7wgcAAFHLjJqPaPirE6GZGAAAvUb4CMRdJ+JwmLc50h4AgJjIrGWXSJWXS2VlHBYHAEAMET5C4Uh7AABiimUXAABgqcwLHy6XtGeP+R0AAFgus8JHTY3Zu2PKFPN7TU2iRwQAQMbJnPDR/XC5zk6z4ykzIAAAWCpzwkewpmEAAMAymRM+aBoGAEBSyJzwQdMwAACSQmb1+aBpGAAACZdZ4UOiaRgAAAmWOcsuAAAgKRA+AACApQgfAADAUoQPAABgKcIHAACwFOEDAABYivABAAAsRfgAAACWInwAAABLET4AAIClCB8AAMBShA8AAGApwgcAALAU4QMAAFiK8AEAACxF+AAAAJYifAAAAEsRPgAAgKUIHwAAwFKEDwAAYCnCBwAAsBThAwAAWIrwAQAALEX4AAAAliJ8AAAASxE+AACApQgfAADAUoQPAABgKcIHAACwFOEDAABYKqLwUVVVpQkTJqhfv34aMmSI7r//fh05csTnOZcvX1ZFRYUGDhyonJwczZw5U2fPno3poAEAQOqKKHzU1dWpoqJC+/fv17vvvqurV6/qzjvvVFtbm+c5ixcv1ltvvaVt27aprq5Op06d0owZM2I+cAAAkJpshmEY0f7mL7/8UkOGDFFdXZ0mTZqklpYWDR48WFu3btWsWbMkSZ9//rluuukm1dfX6/bbbw/5mq2trcrLy1NLS4tyc3OjHRoAALBQJJ/fvar5aGlpkSQNGDBAktTY2KirV6+qtLTU85wxY8Zo+PDhqq+v9/sa7e3tam1t9fkCAADpK+rw0dnZqccff1x33HGHxo4dK0k6c+aMsrKy1L9/f5/nDh06VGfOnPH7OlVVVcrLy/N8FRUVRTskAACQAqIOHxUVFfrkk09UW1vbqwFUVlaqpaXF83Xy5MlevR4AAEhu34jmNy1cuFBvv/223n//fRUWFnruz8/P15UrV3T+/Hmf2Y+zZ88qPz/f72tlZ2crOzs7mmEAAIAUFNHMh2EYWrhwobZv367du3dr5MiRPo+PHz9effr00a5duzz3HTlyRCdOnJDT6YzNiAEAQEqLaOajoqJCW7du1Ztvvql+/fp56jjy8vJ07bXXKi8vT+Xl5VqyZIkGDBig3NxcPfbYY3I6nWHtdAEAAOkvoq22NpvN7/0vvfSSHnnkEUlmk7GlS5fqlVdeUXt7u8rKyrRhw4aAyy7dsdUWAIDUE8nnd6/6fMQD4QMAgNRjWZ8PxJDLJe3ZY34HACCNET6SQU2NVFwsTZlifq+pSfSIAACIG8JHorlc0rx5UmenebuzU5o/nxkQAEDaInwkWlNTV/Bw6+iQmpsTMx4AAOKM8JFoJSWSvdt/BodDGj06MeMBACDOCB+JVlgobdpkBg7J/P7ii+b9AACkoajaqyPGysulsjJzqWX0aIIHACCtET6SRWEhoQMAkBFYdgEAAJYifAAAAEsRPgAAgKUIHwAAwFKEDwAAYCnCBwAAsBThAwAAWIrwAQAALEX4AAAAliJ8AAAASxE+AACApZLubBfDMCRJra2tCR4JAAAIl/tz2/05HkzShY8LFy5IkoqKihI8EgAAEKkLFy4oLy8v6HNsRjgRxUKdnZ06deqU+vXrJ5vNFtPXbm1tVVFRkU6ePKnc3NyYvna64VpFhusVPq5V+LhWkeF6hS8e18owDF24cEHDhg2T3R68qiPpZj7sdrsK43y0fG5uLm/MMHGtIsP1Ch/XKnxcq8hwvcIX62sVasbDjYJTAABgKcIHAACwVEaFj+zsbD399NPKzs5O9FCSHtcqMlyv8HGtwse1igzXK3yJvlZJV3AKAADSW0bNfAAAgMQjfAAAAEsRPgAAgKUIHwAAwFIZEz5+85vfaMSIEbrmmms0ceJE/fu//3uih5Rwv/jFL2Sz2Xy+xowZ43n88uXLqqio0MCBA5WTk6OZM2fq7NmzCRyxtd5//31997vf1bBhw2Sz2fSHP/zB53HDMPTzn/9cBQUFuvbaa1VaWqqmpiaf5/z5z3/WQw89pNzcXPXv31/l5eW6ePGihX8Ka4S6Vo888kiP99pdd93l85xMuVZVVVWaMGGC+vXrpyFDhuj+++/XkSNHfJ4Tzt+9EydO6J577lHfvn01ZMgQLV++XF9//bWVfxRLhHO9Jk+e3OP9tWDBAp/nZML12rhxo8aNG+dpHOZ0OvXOO+94Hk+m91VGhI9XX31VS5Ys0dNPP62PPvpIt956q8rKynTu3LlEDy3hvvnNb+r06dOerw8++MDz2OLFi/XWW29p27Ztqqur06lTpzRjxowEjtZabW1tuvXWW/Wb3/zG7+Nr1qzRP/zDP+if//mfdeDAAV133XUqKyvT5cuXPc956KGH9Omnn+rdd9/V22+/rffff1/z5s2z6o9gmVDXSpLuuusun/faK6+84vN4plyruro6VVRUaP/+/Xr33Xd19epV3XnnnWpra/M8J9TfvY6ODt1zzz26cuWK9u3bp9/97nd6+eWX9fOf/zwRf6S4Cud6SdLcuXN93l9r1qzxPJYp16uwsFCrV69WY2OjPvzwQ02ZMkX33XefPv30U0lJ9r4yMsBtt91mVFRUeG53dHQYw4YNM6qqqhI4qsR7+umnjVtvvdXvY+fPnzf69OljbNu2zXPff/7nfxqSjPr6eotGmDwkGdu3b/fc7uzsNPLz843q6mrPfefPnzeys7ONV155xTAMw/jss88MSUZDQ4PnOe+8845hs9mM//qv/7Js7Fbrfq0MwzAefvhh47777gv4ezL1WhmGYZw7d86QZNTV1RmGEd7fvT/+8Y+G3W43zpw543nOxo0bjdzcXKO9vd3aP4DFul8vwzCMv/u7vzMWLVoU8Pdk8vW6/vrrjd/+9rdJ975K+5mPK1euqLGxUaWlpZ777Ha7SktLVV9fn8CRJYempiYNGzZMN9xwgx566CGdOHFCktTY2KirV6/6XLcxY8Zo+PDhXDdJx44d05kzZ3yuT15eniZOnOi5PvX19erfv7++/e1ve55TWloqu92uAwcOWD7mRNu7d6+GDBmiG2+8UT/5yU/01VdfeR7L5GvV0tIiSRowYICk8P7u1dfX65ZbbtHQoUM9zykrK1Nra6vn/3LTVffr5bZlyxYNGjRIY8eOVWVlpS5duuR5LBOvV0dHh2pra9XW1ian05l076ukO1gu1v77v/9bHR0dPhdTkoYOHarPP/88QaNKDhMnTtTLL7+sG2+8UadPn9aqVav0t3/7t/rkk0905swZZWVlqX///j6/Z+jQoTpz5kxiBpxE3NfA3/vK/diZM2c0ZMgQn8e/8Y1vaMCAARl3De+66y7NmDFDI0eO1NGjR/Xkk09q+vTpqq+vl8PhyNhr1dnZqccff1x33HGHxo4dK0lh/d07c+aM3/ee+7F05e96SdKDDz6o4uJiDRs2TIcOHdKKFSt05MgRvfHGG5Iy63odPnxYTqdTly9fVk5OjrZv366bb75ZBw8eTKr3VdqHDwQ2ffp0z6/HjRuniRMnqri4WK+99pquvfbaBI4M6eaBBx7w/PqWW27RuHHjNGrUKO3du1dTp05N4MgSq6KiQp988olPrRUCC3S9vGuDbrnlFhUUFGjq1Kk6evSoRo0aZfUwE+rGG2/UwYMH1dLSotdff10PP/yw6urqEj2sHtJ+2WXQoEFyOBw9KnrPnj2r/Pz8BI0qOfXv319//dd/rebmZuXn5+vKlSs6f/68z3O4bib3NQj2vsrPz+9R1Pz111/rz3/+c8ZfwxtuuEGDBg1Sc3OzpMy8VgsXLtTbb7+tPXv2qLCw0HN/OH/38vPz/b733I+lo0DXy5+JEydKks/7K1OuV1ZWlkaPHq3x48erqqpKt956q9avX59076u0Dx9ZWVkaP368du3a5bmvs7NTu3btktPpTODIks/Fixd19OhRFRQUaPz48erTp4/PdTty5IhOnDjBdZM0cuRI5efn+1yf1tZWHThwwHN9nE6nzp8/r8bGRs9zdu/erc7OTs8/jpnK5XLpq6++UkFBgaTMulaGYWjhwoXavn27du/erZEjR/o8Hs7fPafTqcOHD/sEtnfffVe5ubm6+eabrfmDWCTU9fLn4MGDkuTz/sqU69VdZ2en2tvbk+99FdPy1SRVW1trZGdnGy+//LLx2WefGfPmzTP69+/vU9GbiZYuXWrs3bvXOHbsmPGnP/3JKC0tNQYNGmScO3fOMAzDWLBggTF8+HBj9+7dxocffmg4nU7D6XQmeNTWuXDhgvHxxx8bH3/8sSHJeP75542PP/7Y+OKLLwzDMIzVq1cb/fv3N958803j0KFDxn333WeMHDnS+Mtf/uJ5jbvuusv4m7/5G+PAgQPGBx98YJSUlBjf//73E/VHiptg1+rChQvGsmXLjPr6euPYsWPGe++9Z3zrW98ySkpKjMuXL3teI1Ou1U9+8hMjLy/P2Lt3r3H69GnP16VLlzzPCfV37+uvvzbGjh1r3HnnncbBgweNHTt2GIMHDzYqKysT8UeKq1DXq7m52XjmmWeMDz/80Dh27Jjx5ptvGjfccIMxadIkz2tkyvVauXKlUVdXZxw7dsw4dOiQsXLlSsNmsxn/9m//ZhhGcr2vMiJ8GIZh/OM//qMxfPhwIysry7jtttuM/fv3J3pICTdnzhyjoKDAyMrKMv7qr/7KmDNnjtHc3Ox5/C9/+Yvx05/+1Lj++uuNvn37Gt/73veM06dPJ3DE1tqzZ48hqcfXww8/bBiGud327//+742hQ4ca2dnZxtSpU40jR474vMZXX31lfP/73zdycnKM3Nxc49FHHzUuXLiQgD9NfAW7VpcuXTLuvPNOY/DgwUafPn2M4uJiY+7cuT3Cf6ZcK3/XSZLx0ksveZ4Tzt+948ePG9OnTzeuvfZaY9CgQcbSpUuNq1evWvynib9Q1+vEiRPGpEmTjAEDBhjZ2dnG6NGjjeXLlxstLS0+r5MJ1+tHP/qRUVxcbGRlZRmDBw82pk6d6gkehpFc7yubYRhGbOdSAAAAAkv7mg8AAJBcCB8AAMBShA8AAGApwgcAALAU4QMAAFiK8AEAACxF+AAAAJYifAAAAEsRPgAAgKUIHwAAwFKEDwAAYCnCBwAAsNT/BxEkYP6IohYhAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "