From 871cf4d444b3c83be334128fd3256cace46775b4 Mon Sep 17 00:00:00 2001 From: Gerardo Marx Date: Sun, 14 Apr 2024 21:04:26 -0600 Subject: [PATCH] Files Ok --- Readme.md | 1345 +++++++++++++++++++ data-gattering.ipynb | 404 ++++++ data-gattering_files/data-gattering_3_0.png | Bin 0 -> 14103 bytes data.csv | 301 +++++ main.ipynb | 1204 +++++++++++++++++ main_files/main_11_0.png | Bin 0 -> 22583 bytes main_files/main_14_0.png | Bin 0 -> 20321 bytes main_files/main_21_1.png | Bin 0 -> 36215 bytes main_files/main_22_1.png | Bin 0 -> 20162 bytes main_files/main_23_0.png | Bin 0 -> 32391 bytes 10 files changed, 3254 insertions(+) create mode 100644 Readme.md create mode 100644 data-gattering.ipynb create mode 100644 data-gattering_files/data-gattering_3_0.png create mode 100644 data.csv create mode 100644 main.ipynb create mode 100644 main_files/main_11_0.png create mode 100644 main_files/main_14_0.png create mode 100644 main_files/main_21_1.png create mode 100644 main_files/main_22_1.png create mode 100644 main_files/main_23_0.png diff --git a/Readme.md b/Readme.md new file mode 100644 index 0000000..91657a1 --- /dev/null +++ b/Readme.md @@ -0,0 +1,1345 @@ +# Data Gattering +```python +import time +import numpy as np +import tclab +``` + + +```python + +``` + + +```python +n = 300 +t = np.linspace(0,n-1,n) +T1 = np.empty_like(t) +with tclab.TCLab() as lab: + lab.Q1(40) + for i in range(n): + T1[i] = lab.T1 + print(T1[i]) + time.sleep(1) +``` + + TCLab version 1.0.0 + Arduino Leonardo connected on port /dev/cu.usbmodem1301 at 115200 baud. + TCLab Firmware 2.0.1 Arduino Leonardo/Micro. + 24.218 + 23.154 + 24.347 + 24.411 + 24.411 + 24.347 + 24.314 + 24.347 + 24.347 + 23.896 + 24.476 + 24.637 + 24.669 + 24.669 + 25.056 + 25.088 + 24.991 + 25.088 + 25.217 + 25.281 + 25.313 + 25.668 + 25.668 + 25.636 + 26.022 + 25.926 + 19.126 + 26.248 + 26.248 + 26.055 + 25.152 + 26.699 + 26.989 + 26.957 + 27.021 + 27.118 + 27.247 + 27.344 + 27.666 + 27.183 + 27.795 + 27.892 + 28.021 + 28.311 + 28.214 + 28.504 + 28.536 + 28.762 + 28.826 + 28.858 + 29.245 + 29.181 + 29.374 + 29.6 + 29.567 + 29.793 + 29.761 + 29.89 + 30.147 + 30.147 + 30.438 + 30.599 + 30.728 + 30.856 + 30.76 + 31.018 + 31.114 + 31.34 + 31.533 + 31.501 + 31.727 + 31.469 + 32.017 + 32.081 + 32.113 + 32.5 + 32.403 + 32.403 + 32.693 + 32.726 + 32.887 + 33.016 + 33.048 + 33.08 + 33.37 + 33.37 + 33.499 + 33.725 + 33.789 + 33.821 + 34.047 + 34.079 + 34.144 + 34.305 + 34.434 + 34.434 + 34.659 + 34.756 + 34.659 + 34.691 + 34.917 + 34.981 + 34.981 + 35.271 + 35.4 + 35.336 + 35.239 + 35.594 + 35.626 + 35.819 + 26.796 + 35.948 + 27.408 + 36.174 + 35.304 + 36.271 + 36.528 + 36.561 + 36.689 + 36.657 + 36.979 + 36.979 + 37.044 + 37.205 + 37.173 + 37.237 + 37.205 + 37.302 + 37.656 + 37.56 + 37.592 + 37.882 + 37.882 + 37.817 + 38.043 + 37.173 + 38.269 + 38.365 + 38.397 + 38.591 + 33.016 + 26.022 + 38.913 + 38.945 + 38.913 + 38.945 + 38.945 + 39.235 + 39.203 + 39.268 + 39.3 + 39.493 + 39.042 + 39.59 + 39.622 + 39.654 + 39.815 + 39.88 + 39.912 + 39.912 + 40.009 + 40.009 + 40.234 + 40.234 + 40.234 + 40.363 + 40.524 + 40.524 + 40.557 + 40.557 + 40.653 + 40.814 + 40.557 + 40.911 + 40.879 + 41.072 + 41.169 + 41.104 + 41.072 + 41.104 + 41.137 + 41.523 + 41.33 + 41.523 + 41.523 + 41.62 + 41.813 + 41.781 + 41.846 + 41.813 + 41.942 + 42.136 + 42.136 + 42.136 + 42.136 + 42.104 + 42.168 + 42.361 + 42.458 + 42.232 + 42.49 + 42.361 + 42.394 + 42.426 + 42.394 + 42.716 + 42.748 + 42.813 + 42.651 + 42.813 + 42.748 + 42.941 + 43.103 + 43.135 + 43.103 + 43.038 + 43.135 + 43.264 + 43.425 + 43.328 + 43.328 + 43.457 + 43.457 + 43.521 + 43.683 + 43.779 + 43.683 + 43.683 + 43.715 + 43.973 + 43.94 + 44.102 + 44.005 + 44.005 + 44.005 + 44.23 + 44.359 + 44.424 + 44.392 + 44.327 + 44.327 + 44.424 + 44.521 + 43.779 + 44.682 + 44.714 + 44.649 + 44.649 + 44.746 + 44.778 + 44.907 + 44.972 + 42.2 + 44.939 + 45.036 + 44.907 + 44.327 + 43.876 + 45.004 + 45.197 + 45.294 + 45.358 + 45.326 + 45.229 + 45.358 + 45.101 + 45.423 + 45.391 + 45.713 + 45.681 + 45.616 + 45.713 + 45.616 + 45.713 + 45.713 + 45.713 + 45.745 + 45.648 + 45.971 + 45.938 + 45.938 + 45.938 + 46.067 + 45.971 + 46.035 + 46.132 + 46.196 + 45.938 + 46.164 + 46.261 + 46.261 + 46.229 + 46.261 + 46.229 + 46.229 + 46.357 + 46.551 + 46.519 + 46.551 + 46.583 + TCLab disconnected successfully. + + + +```python +import matplotlib.pyplot as plt +plt.plot(T1, '.r') +plt.show() +``` + + + +![png](data-gattering_files/data-gattering_3_0.png) + + + + +```python +import pandas as pd +DF = pd.DataFrame(T1) +DF.to_csv("data.csv", index=False) +``` + +# Linear regression + +The linear regression is a training procedure based on a linear model. The model makes a prediction by simply computing a weighted sum of the input features, plus a constant term called the bias term (also called the intercept term): + +$$ \hat{y}=\theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$$ + +This can be writen more easy by using vector notation form for $m$ values. Therefore, the model will become: + +$$ + \begin{bmatrix} + \hat{y}^0 \\ + \hat{y}^1\\ + \hat{y}^2\\ + \vdots \\ + \hat{y}^m + \end{bmatrix} + = + \begin{bmatrix} + 1 & x_0^0 & x_1^0 & \cdots x_n^0\\ + 1 & x_0^1 & x_1^1 & \cdots x_n^1\\ + \vdots & \vdots \\ + 1 & x_0^m & x_1^m & \cdots x_n^m + \end{bmatrix} + \begin{bmatrix} + \theta_0 \\ + \theta_1 \\ + \theta_2 \\ + \vdots \\ + \theta_n + \end{bmatrix} +$$ +Resulting: + +$$\hat{y}= h_\theta(x) = x \theta $$ + +**Now that we have our mode, how do we train it?** + +Please, consider that training the model means adjusting the parameters to reduce the error or minimizing the cost function. The most common performance measure of a regression model is the Mean Square Error (MSE). Therefore, to train a Linear Regression model, you need to find the value of θ that minimizes the MSE: + +$$ MSE(X,h_\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(\hat{y}^{(i)}-y^{(i)} \right)^2$$ + + +$$ MSE(X,h_\theta) = \frac{1}{m} \sum_{i=1}^{m} \left( x^{(i)}\theta-y^{(i)} \right)^2$$ + +$$ MSE(X,h_\theta) = \frac{1}{m} \left( x\theta-y \right)^T \left( x\theta-y \right)$$ + +# The normal equation + +To find the value of $\theta$ that minimizes the cost function, there is a closed-form solution that gives the result directly. This is called the **Normal Equation**; and can be find it by derivating the *MSE* equation as a function of $\theta$ and making it equals to zero: + + +$$\hat{\theta} = (X^T X)^{-1} X^{T} y $$ + +$$ Temp = \theta_0 + \theta_1 * t $$ + + +```python +import pandas as pd +df = pd.read_csv('data.csv') +df +``` + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
0
024.218
123.154
224.347
324.411
424.411
......
29546.357
29646.551
29746.519
29846.551
29946.583
+

300 rows × 1 columns

+
+ + + + +```python +import numpy as np +y = df['0'] +n = 300 +t = np.linspace(0,n-1,n) +X = np.c_[np.ones(len(t)), t] +X +``` + + + + + array([[ 1., 0.], + [ 1., 1.], + [ 1., 2.], + [ 1., 3.], + [ 1., 4.], + [ 1., 5.], + [ 1., 6.], + [ 1., 7.], + [ 1., 8.], + [ 1., 9.], + [ 1., 10.], + [ 1., 11.], + [ 1., 12.], + [ 1., 13.], + [ 1., 14.], + [ 1., 15.], + [ 1., 16.], + [ 1., 17.], + [ 1., 18.], + [ 1., 19.], + [ 1., 20.], + [ 1., 21.], + [ 1., 22.], + [ 1., 23.], + [ 1., 24.], + [ 1., 25.], + [ 1., 26.], + [ 1., 27.], + [ 1., 28.], + [ 1., 29.], + [ 1., 30.], + [ 1., 31.], + [ 1., 32.], + [ 1., 33.], + [ 1., 34.], + [ 1., 35.], + [ 1., 36.], + [ 1., 37.], + [ 1., 38.], + [ 1., 39.], + [ 1., 40.], + [ 1., 41.], + [ 1., 42.], + [ 1., 43.], + [ 1., 44.], + [ 1., 45.], + [ 1., 46.], + [ 1., 47.], + [ 1., 48.], + [ 1., 49.], + [ 1., 50.], + [ 1., 51.], + [ 1., 52.], + [ 1., 53.], + [ 1., 54.], + [ 1., 55.], + [ 1., 56.], + [ 1., 57.], + [ 1., 58.], + [ 1., 59.], + [ 1., 60.], + [ 1., 61.], + [ 1., 62.], + [ 1., 63.], + [ 1., 64.], + [ 1., 65.], + [ 1., 66.], + [ 1., 67.], + [ 1., 68.], + [ 1., 69.], + [ 1., 70.], + [ 1., 71.], + [ 1., 72.], + [ 1., 73.], + [ 1., 74.], + [ 1., 75.], + [ 1., 76.], + [ 1., 77.], + [ 1., 78.], + [ 1., 79.], + [ 1., 80.], + [ 1., 81.], + [ 1., 82.], + [ 1., 83.], + [ 1., 84.], + [ 1., 85.], + [ 1., 86.], + [ 1., 87.], + [ 1., 88.], + [ 1., 89.], + [ 1., 90.], + [ 1., 91.], + [ 1., 92.], + [ 1., 93.], + [ 1., 94.], + [ 1., 95.], + [ 1., 96.], + [ 1., 97.], + [ 1., 98.], + [ 1., 99.], + [ 1., 100.], + [ 1., 101.], + [ 1., 102.], + [ 1., 103.], + [ 1., 104.], + [ 1., 105.], + [ 1., 106.], + [ 1., 107.], + [ 1., 108.], + [ 1., 109.], + [ 1., 110.], + [ 1., 111.], + [ 1., 112.], + [ 1., 113.], + [ 1., 114.], + [ 1., 115.], + [ 1., 116.], + [ 1., 117.], + [ 1., 118.], + [ 1., 119.], + [ 1., 120.], + [ 1., 121.], + [ 1., 122.], + [ 1., 123.], + [ 1., 124.], + [ 1., 125.], + [ 1., 126.], + [ 1., 127.], + [ 1., 128.], + [ 1., 129.], + [ 1., 130.], + [ 1., 131.], + [ 1., 132.], + [ 1., 133.], + [ 1., 134.], + [ 1., 135.], + [ 1., 136.], + [ 1., 137.], + [ 1., 138.], + [ 1., 139.], + [ 1., 140.], + [ 1., 141.], + [ 1., 142.], + [ 1., 143.], + [ 1., 144.], + [ 1., 145.], + [ 1., 146.], + [ 1., 147.], + [ 1., 148.], + [ 1., 149.], + [ 1., 150.], + [ 1., 151.], + [ 1., 152.], + [ 1., 153.], + [ 1., 154.], + [ 1., 155.], + [ 1., 156.], + [ 1., 157.], + [ 1., 158.], + [ 1., 159.], + [ 1., 160.], + [ 1., 161.], + [ 1., 162.], + [ 1., 163.], + [ 1., 164.], + [ 1., 165.], + [ 1., 166.], + [ 1., 167.], + [ 1., 168.], + [ 1., 169.], + [ 1., 170.], + [ 1., 171.], + [ 1., 172.], + [ 1., 173.], + [ 1., 174.], + [ 1., 175.], + [ 1., 176.], + [ 1., 177.], + [ 1., 178.], + [ 1., 179.], + [ 1., 180.], + [ 1., 181.], + [ 1., 182.], + [ 1., 183.], + [ 1., 184.], + [ 1., 185.], + [ 1., 186.], + [ 1., 187.], + [ 1., 188.], + [ 1., 189.], + [ 1., 190.], + [ 1., 191.], + [ 1., 192.], + [ 1., 193.], + [ 1., 194.], + [ 1., 195.], + [ 1., 196.], + [ 1., 197.], + [ 1., 198.], + [ 1., 199.], + [ 1., 200.], + [ 1., 201.], + [ 1., 202.], + [ 1., 203.], + [ 1., 204.], + [ 1., 205.], + [ 1., 206.], + [ 1., 207.], + [ 1., 208.], + [ 1., 209.], + [ 1., 210.], + [ 1., 211.], + [ 1., 212.], + [ 1., 213.], + [ 1., 214.], + [ 1., 215.], + [ 1., 216.], + [ 1., 217.], + [ 1., 218.], + [ 1., 219.], + [ 1., 220.], + [ 1., 221.], + [ 1., 222.], + [ 1., 223.], + [ 1., 224.], + [ 1., 225.], + [ 1., 226.], + [ 1., 227.], + [ 1., 228.], + [ 1., 229.], + [ 1., 230.], + [ 1., 231.], + [ 1., 232.], + [ 1., 233.], + [ 1., 234.], + [ 1., 235.], + [ 1., 236.], + [ 1., 237.], + [ 1., 238.], + [ 1., 239.], + [ 1., 240.], + [ 1., 241.], + [ 1., 242.], + [ 1., 243.], + [ 1., 244.], + [ 1., 245.], + [ 1., 246.], + [ 1., 247.], + [ 1., 248.], + [ 1., 249.], + [ 1., 250.], + [ 1., 251.], + [ 1., 252.], + [ 1., 253.], + [ 1., 254.], + [ 1., 255.], + [ 1., 256.], + [ 1., 257.], + [ 1., 258.], + [ 1., 259.], + [ 1., 260.], + [ 1., 261.], + [ 1., 262.], + [ 1., 263.], + [ 1., 264.], + [ 1., 265.], + [ 1., 266.], + [ 1., 267.], + [ 1., 268.], + [ 1., 269.], + [ 1., 270.], + [ 1., 271.], + [ 1., 272.], + [ 1., 273.], + [ 1., 274.], + [ 1., 275.], + [ 1., 276.], + [ 1., 277.], + [ 1., 278.], + [ 1., 279.], + [ 1., 280.], + [ 1., 281.], + [ 1., 282.], + [ 1., 283.], + [ 1., 284.], + [ 1., 285.], + [ 1., 286.], + [ 1., 287.], + [ 1., 288.], + [ 1., 289.], + [ 1., 290.], + [ 1., 291.], + [ 1., 292.], + [ 1., 293.], + [ 1., 294.], + [ 1., 295.], + [ 1., 296.], + [ 1., 297.], + [ 1., 298.], + [ 1., 299.]]) + + + + +```python +theta = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y) +theta +``` + + + + + array([25.70275643, 0.07850281]) + + + + +```python +import matplotlib.pyplot as plt +Xnew1 = np.linspace(0,300, 20) +Xnew = np.c_[np.ones(len(Xnew1)), Xnew1] +Xnew +``` + + + + + array([[ 1. , 0. ], + [ 1. , 15.78947368], + [ 1. , 31.57894737], + [ 1. , 47.36842105], + [ 1. , 63.15789474], + [ 1. , 78.94736842], + [ 1. , 94.73684211], + [ 1. , 110.52631579], + [ 1. , 126.31578947], + [ 1. , 142.10526316], + [ 1. , 157.89473684], + [ 1. , 173.68421053], + [ 1. , 189.47368421], + [ 1. , 205.26315789], + [ 1. , 221.05263158], + [ 1. , 236.84210526], + [ 1. , 252.63157895], + [ 1. , 268.42105263], + [ 1. , 284.21052632], + [ 1. , 300. ]]) + + + + +```python +ypre = Xnew.dot(theta) +plt.plot(Xnew1, ypre, '*-r', label='model') +plt.plot(t,y, '.k', label='data') +plt.legend() +plt.show() +``` + + + +![png](main_files/main_11_0.png) + + + +# Polynomial model +$$ Temp = \theta_0 + \theta_1 * t + \theta_2 * t^2$$ + + +```python +X = np.c_[np.ones(len(t)), t, t*t] +theta = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y) +theta +``` + + + + + array([ 2.28848082e+01, 1.35240024e-01, -1.89756565e-04]) + + + + +```python +Xnew1 = np.linspace(0,300,50) +Xnew = np.c_[np.ones(len(Xnew1)), Xnew1, Xnew1*Xnew1] +ypred = Xnew.dot(theta) +plt.plot(Xnew1, ypred, '*-r', label='model') +plt.plot(t,y, '.g', label='data') +plt.legend() +plt.show() +``` + + + +![png](main_files/main_14_0.png) + + + +# Batch Gradient Descent + +$$\theta_{new} = \theta_{old}-\eta \nabla_{\theta} $$ + +$$\nabla_{\theta} = \frac{2}{m} X^T (X \theta -y) $$ + + +```python +y = np.array(df['0']).reshape(300,1) +n = 300 +t = np.linspace(0,n-1,n) +X = np.c_[np.ones(len(t)), t] +y +``` + + + + + array([[24.218], + [23.154], + [24.347], + [24.411], + [24.411], + [24.347], + [24.314], + [24.347], + [24.347], + [23.896], + [24.476], + [24.637], + [24.669], + [24.669], + [25.056], + [25.088], + [24.991], + [25.088], + [25.217], + [25.281], + [25.313], + [25.668], + [25.668], + [25.636], + [26.022], + [25.926], + [19.126], + [26.248], + [26.248], + [26.055], + [25.152], + [26.699], + [26.989], + [26.957], + [27.021], + [27.118], + [27.247], + [27.344], + [27.666], + [27.183], + [27.795], + [27.892], + [28.021], + [28.311], + [28.214], + [28.504], + [28.536], + [28.762], + [28.826], + [28.858], + [29.245], + [29.181], + [29.374], + [29.6 ], + [29.567], + [29.793], + [29.761], + [29.89 ], + [30.147], + [30.147], + [30.438], + [30.599], + [30.728], + [30.856], + [30.76 ], + [31.018], + [31.114], + [31.34 ], + [31.533], + [31.501], + [31.727], + [31.469], + [32.017], + [32.081], + [32.113], + [32.5 ], + [32.403], + [32.403], + [32.693], + [32.726], + [32.887], + [33.016], + [33.048], + [33.08 ], + [33.37 ], + [33.37 ], + [33.499], + [33.725], + [33.789], + [33.821], + [34.047], + [34.079], + [34.144], + [34.305], + [34.434], + [34.434], + [34.659], + [34.756], + [34.659], + [34.691], + [34.917], + [34.981], + [34.981], + [35.271], + [35.4 ], + [35.336], + [35.239], + [35.594], + [35.626], + [35.819], + [26.796], + [35.948], + [27.408], + [36.174], + [35.304], + [36.271], + [36.528], + [36.561], + [36.689], + [36.657], + [36.979], + [36.979], + [37.044], + [37.205], + [37.173], + [37.237], + [37.205], + [37.302], + [37.656], + [37.56 ], + [37.592], + [37.882], + [37.882], + [37.817], + [38.043], + [37.173], + [38.269], + [38.365], + [38.397], + [38.591], + [33.016], + [26.022], + [38.913], + [38.945], + [38.913], + [38.945], + [38.945], + [39.235], + [39.203], + [39.268], + [39.3 ], + [39.493], + [39.042], + [39.59 ], + [39.622], + [39.654], + [39.815], + [39.88 ], + [39.912], + [39.912], + [40.009], + [40.009], + [40.234], + [40.234], + [40.234], + [40.363], + [40.524], + [40.524], + [40.557], + [40.557], + [40.653], + [40.814], + [40.557], + [40.911], + [40.879], + [41.072], + [41.169], + [41.104], + [41.072], + [41.104], + [41.137], + [41.523], + [41.33 ], + [41.523], + [41.523], + [41.62 ], + [41.813], + [41.781], + [41.846], + [41.813], + [41.942], + [42.136], + [42.136], + [42.136], + [42.136], + [42.104], + [42.168], + [42.361], + [42.458], + [42.232], + [42.49 ], + [42.361], + [42.394], + [42.426], + [42.394], + [42.716], + [42.748], + [42.813], + [42.651], + [42.813], + [42.748], + [42.941], + [43.103], + [43.135], + [43.103], + [43.038], + [43.135], + [43.264], + [43.425], + [43.328], + [43.328], + [43.457], + [43.457], + [43.521], + [43.683], + [43.779], + [43.683], + [43.683], + [43.715], + [43.973], + [43.94 ], + [44.102], + [44.005], + [44.005], + [44.005], + [44.23 ], + [44.359], + [44.424], + [44.392], + [44.327], + [44.327], + [44.424], + [44.521], + [43.779], + [44.682], + [44.714], + [44.649], + [44.649], + [44.746], + [44.778], + [44.907], + [44.972], + [42.2 ], + [44.939], + [45.036], + [44.907], + [44.327], + [43.876], + [45.004], + [45.197], + [45.294], + [45.358], + [45.326], + [45.229], + [45.358], + [45.101], + [45.423], + [45.391], + [45.713], + [45.681], + [45.616], + [45.713], + [45.616], + [45.713], + [45.713], + [45.713], + [45.745], + [45.648], + [45.971], + [45.938], + [45.938], + [45.938], + [46.067], + [45.971], + [46.035], + [46.132], + [46.196], + [45.938], + [46.164], + [46.261], + [46.261], + [46.229], + [46.261], + [46.229], + [46.229], + [46.357], + [46.551], + [46.519], + [46.551], + [46.583]]) + + + + +```python +np.random.seed(82) +eta = 0.00001 #lerning rate +n_iteration = 1000000 +m = len(y) +theta = np.random.randn(2,1)*10 +theta +``` + + + + + array([[ 8.40650403], + [-13.57147156]]) + + + + +```python +for iterations in range(n_iteration): + gradient = 2/m * X.T.dot(X.dot(theta)- y) + theta = theta - eta*gradient +theta +#array([25.70275643, 0.07850281]) +#array([[25.53711216],[ 0.07933242]]) -> 42 +#array([[25.53941259],[ 0.0793209 ]]) -> 82 +``` + + + + + array([[25.5895366 ], + [ 0.07906986]]) + + + +# BGD Visualization + + +```python +def plot_gradient_descent(eta): + m =len(y) + theta = np.random.randn(2,1) + plt.plot(t,y,'.b') + n_iteration = 1000000 + Xnew1 = np.linspace(0,n-1,n) + Xnew = np.c_[np.ones(len(Xnew1)), Xnew1] + for iterations in range(n_iteration): + if iterations % 100000 == 0: + #print(iterations) + ypre = Xnew.dot(theta) + style = '-r' if iterations > 0 else 'g--' + plt.plot(Xnew1, ypre, style) + gradient = 2/m * Xnew.T.dot(Xnew.dot(theta)- y) + theta = theta - eta*gradient + plt.xlabel('$x_1$', fontsize=18) + #plt.axis([0,300, 15,50]) + plt.title(r'$\eta$ = {}'.format(eta), fontsize=16) +``` + + +```python +np.random.seed(112) +plot_gradient_descent(eta=0.000001) +theta +``` + + + + + array([[25.5895366 ], + [ 0.07906986]]) + + + + + +![png](main_files/main_21_1.png) + + + + +```python +plt.plot(t,y,'.b') +Xnew1 = np.linspace(0,n-1,n) +Xnew = np.c_[np.ones(len(Xnew1)), Xnew1] +ypre = Xnew.dot(theta) +plt.plot(Xnew1, ypre, '-r') +``` + + + + + [] + + + + + +![png](main_files/main_22_1.png) + + + + +```python +plt.figure(figsize=(10,4)) +plt.subplot(131) +np.random.seed(112) +plot_gradient_descent(eta=0.000001) +plt.subplot(132) +np.random.seed(112) +plot_gradient_descent(eta=0.001) +plt.subplot(133) +np.random.seed(112) +plot_gradient_descent(eta=0.00000001) +``` + + + +![png](main_files/main_23_0.png) + + diff --git a/data-gattering.ipynb b/data-gattering.ipynb new file mode 100644 index 0000000..7c192bd --- /dev/null +++ b/data-gattering.ipynb @@ -0,0 +1,404 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import time\n", + "import numpy as np\n", + "import tclab" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TCLab version 1.0.0\n", + "Arduino Leonardo connected on port /dev/cu.usbmodem1301 at 115200 baud.\n", + "TCLab Firmware 2.0.1 Arduino Leonardo/Micro.\n", + "24.218\n", + "23.154\n", + "24.347\n", + "24.411\n", + "24.411\n", + "24.347\n", + "24.314\n", + "24.347\n", + "24.347\n", + "23.896\n", + "24.476\n", + "24.637\n", + "24.669\n", + "24.669\n", + "25.056\n", + "25.088\n", + "24.991\n", + "25.088\n", + "25.217\n", + "25.281\n", + "25.313\n", + "25.668\n", + "25.668\n", + "25.636\n", + "26.022\n", + "25.926\n", + "19.126\n", + "26.248\n", + "26.248\n", + "26.055\n", + "25.152\n", + "26.699\n", + "26.989\n", + "26.957\n", + "27.021\n", + "27.118\n", + "27.247\n", + "27.344\n", + "27.666\n", + "27.183\n", + "27.795\n", + "27.892\n", + "28.021\n", + "28.311\n", + "28.214\n", + "28.504\n", + "28.536\n", + "28.762\n", + "28.826\n", + "28.858\n", + "29.245\n", + "29.181\n", + "29.374\n", + "29.6\n", + "29.567\n", + "29.793\n", + "29.761\n", + "29.89\n", + "30.147\n", + "30.147\n", + "30.438\n", + "30.599\n", + "30.728\n", + "30.856\n", + "30.76\n", + "31.018\n", + "31.114\n", + "31.34\n", + "31.533\n", + "31.501\n", + "31.727\n", + "31.469\n", + "32.017\n", + "32.081\n", + "32.113\n", + "32.5\n", + "32.403\n", + "32.403\n", + "32.693\n", + "32.726\n", + "32.887\n", + "33.016\n", + "33.048\n", + "33.08\n", + "33.37\n", + "33.37\n", + "33.499\n", + "33.725\n", + "33.789\n", + "33.821\n", + "34.047\n", + "34.079\n", + "34.144\n", + "34.305\n", + "34.434\n", + "34.434\n", + "34.659\n", + "34.756\n", + "34.659\n", + "34.691\n", + "34.917\n", + "34.981\n", + "34.981\n", + "35.271\n", + "35.4\n", + "35.336\n", + "35.239\n", + "35.594\n", + "35.626\n", + "35.819\n", + "26.796\n", + "35.948\n", + "27.408\n", + "36.174\n", + "35.304\n", + "36.271\n", + "36.528\n", + "36.561\n", + "36.689\n", + "36.657\n", + "36.979\n", + "36.979\n", + "37.044\n", + "37.205\n", + "37.173\n", + "37.237\n", + "37.205\n", + "37.302\n", + "37.656\n", + "37.56\n", + "37.592\n", + "37.882\n", + "37.882\n", + "37.817\n", + "38.043\n", + "37.173\n", + "38.269\n", + "38.365\n", + "38.397\n", + "38.591\n", + "33.016\n", + "26.022\n", + "38.913\n", + "38.945\n", + "38.913\n", + "38.945\n", + "38.945\n", + "39.235\n", + "39.203\n", + "39.268\n", + "39.3\n", + "39.493\n", + "39.042\n", + "39.59\n", + "39.622\n", + "39.654\n", + "39.815\n", + "39.88\n", + "39.912\n", + "39.912\n", + "40.009\n", + "40.009\n", + "40.234\n", + "40.234\n", + "40.234\n", + "40.363\n", + "40.524\n", + "40.524\n", + "40.557\n", + "40.557\n", + "40.653\n", + "40.814\n", + "40.557\n", + "40.911\n", + "40.879\n", + "41.072\n", + "41.169\n", + "41.104\n", + "41.072\n", + "41.104\n", + "41.137\n", + "41.523\n", + "41.33\n", + "41.523\n", + "41.523\n", + "41.62\n", + "41.813\n", + "41.781\n", + "41.846\n", + "41.813\n", + "41.942\n", + "42.136\n", + "42.136\n", + "42.136\n", + "42.136\n", + "42.104\n", + "42.168\n", + "42.361\n", + "42.458\n", + "42.232\n", + "42.49\n", + "42.361\n", + "42.394\n", + "42.426\n", + "42.394\n", + "42.716\n", + "42.748\n", + "42.813\n", + "42.651\n", + "42.813\n", + "42.748\n", + "42.941\n", + "43.103\n", + "43.135\n", + "43.103\n", + "43.038\n", + "43.135\n", + "43.264\n", + "43.425\n", + "43.328\n", + "43.328\n", + "43.457\n", + "43.457\n", + "43.521\n", + "43.683\n", + "43.779\n", + "43.683\n", + "43.683\n", + "43.715\n", + "43.973\n", + "43.94\n", + "44.102\n", + "44.005\n", + "44.005\n", + "44.005\n", + "44.23\n", + "44.359\n", + "44.424\n", + "44.392\n", + "44.327\n", + "44.327\n", + "44.424\n", + "44.521\n", + "43.779\n", + "44.682\n", + "44.714\n", + "44.649\n", + "44.649\n", + "44.746\n", + "44.778\n", + "44.907\n", + "44.972\n", + "42.2\n", + "44.939\n", + "45.036\n", + "44.907\n", + "44.327\n", + "43.876\n", + "45.004\n", + "45.197\n", + "45.294\n", + "45.358\n", + "45.326\n", + "45.229\n", + "45.358\n", + "45.101\n", + "45.423\n", + "45.391\n", + "45.713\n", + "45.681\n", + "45.616\n", + "45.713\n", + "45.616\n", + "45.713\n", + "45.713\n", + "45.713\n", + "45.745\n", + "45.648\n", + "45.971\n", + "45.938\n", + "45.938\n", + "45.938\n", + "46.067\n", + "45.971\n", + "46.035\n", + "46.132\n", + "46.196\n", + "45.938\n", + "46.164\n", + "46.261\n", + "46.261\n", + "46.229\n", + "46.261\n", + "46.229\n", + "46.229\n", + "46.357\n", + "46.551\n", + "46.519\n", + "46.551\n", + "46.583\n", + "TCLab disconnected successfully.\n" + ] + } + ], + "source": [ + "n = 300\n", + "t = np.linspace(0,n-1,n)\n", + "T1 = np.empty_like(t)\n", + "with tclab.TCLab() as lab:\n", + " lab.Q1(40)\n", + " for i in range(n):\n", + " T1[i] = lab.T1\n", + " print(T1[i])\n", + " time.sleep(1)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2hElEQVR4nO3de3TU9Z3/8dfMlEQxJMg1YRMCQla0iL8tRZx6luVAMKL2p+Xyw2pP1aZc2uBBbkKsW4u/1iChIrtbWKE52tMDRvFIXd0Kq1zizxLYGGVBXTkJB4RZbq49JBBKwOT7++O7M5lJ5p6Z79yej3NywlyYfPg6MC8/n/fn/bEZhmEIAADAIvZEDwAAAGQWwgcAALAU4QMAAFiK8AEAACxF+AAAAJYifAAAAEsRPgAAgKUIHwAAwFLfSPQAuuvs7NSpU6fUr18/2Wy2RA8HAACEwTAMXbhwQcOGDZPdHnxuI+nCx6lTp1RUVJToYQAAgCicPHlShYWFQZ+TdOGjX79+kszB5+bmJng0AAAgHK2trSoqKvJ8jgeTdOHDvdSSm5tL+AAAIMWEUzJBwSkAALAU4QMAAFiK8AEAACxF+AAAAJYifAAAAEsRPgAAgKUIHwAAwFKEDwAAYCnCBwAAsBThAwAAWIrwAQBAJnG5pD17zO8JknRnuwAAgBhxuaSmJiknRzp2TNq9W9q8WerslOx2adMmqbzc8mERPgAASEc1NdK8eWbQ8KezU5o/XyorkwoLLR0ayy4AAKQblyt48HDr6JCam60ZkxdmPgAASDUul7Rvn/nr73zH/N7UJJWUmLMY69eHDh6S5HBIo0fHb5wBED4AAEhm7roNd7CoqZHmzpUMo+s5Npt522aTHnxQ2rIl9Os6HNKLL1q+5CKx7AIAQPJau1YqLpamTDG//+xnPYOH1HXbMEIHD5tNWrZMOn48IcWmEjMfAAAkB+8ZDkn65S/NmQm3zk7p2Weje22bTdqwQRo4UHI6EzLb4Y3wAQCAlbpvf5WkQ4ekqqrw6jQilcAttYEQPgAAsEqo7a+xZrdL+/dLEyZY8/PCRM0HAABWCHf7a7hsNukHPzALR923vblnPJIseEjMfAAAELnuO1C612t0X1YZOVL6f/8vtjMeS5dK1dXmck1zc9eW2fp683sS1HYEYjOM7iWzidXa2qq8vDy1tLQoNzc30cMBAMCX99KJzSZNny7t2NEVLNzbXmPlBz+Qtm71DS52u/TFF0kVLiL5/GbZBQCAcHVfOjEM6Y9/9A0GvQkeNlvX8ondLq1ZI/3+9+byiXt5xeEwbydR8IgUyy4AAISrqSk2Syc2m/Qv/yL95S/m7REjpLa2rqUT9zKKO2CUl5tnsHS/P0URPgAAkHrWcXS/T5I+/zw2P8swzJqQe+/1/7i/cFFYmPKhw43wAQDA2rXSihVddRxLl0pDh/reF8s6jgSdqZIsCB8AgMzlcvXsJGoYZhjxFk7wcNdqGIZZr7FypfS//pd533/8R1cTsQSeqZIsCB8AgMzk74C2SK1bJ91xR/B6DUmaPVtasCBtajZ6q1e7XVavXi2bzabHH3/cc9/kyZNls9l8vhYsWNDbcQIAEB2XS9qzx/zufd+8eb0LHg6HNGuW2cRr8uSumgz3r7sL9liGiTp8NDQ06MUXX9S4ceN6PDZ37lydPn3a87VmzZpeDRIAgLB0Dxo1Nb6nwtbUmPf3dteK3Z7xSye9EVX4uHjxoh566CFt3rxZ119/fY/H+/btq/z8fM8XzcIAAHHn7/h5754cnZ3mbZdL+vDD6H6GzSZt3Gg2+Eqig9pSTVTho6KiQvfcc49KS0v9Pr5lyxYNGjRIY8eOVWVlpS5duhTwtdrb29Xa2urzBQBARKqrpeXLfYPGs8/2nN3o7DQLTFeu7PkaCxZIJ0+ar2UP8PFoGNKYMcx49FLEBae1tbX66KOP1NDQ4PfxBx98UMXFxRo2bJgOHTqkFStW6MiRI3rjjTf8Pr+qqkqrVq2KdBgAgEwTqA/HW29JTzwR/uts3ux/yWXOHPN1ly2THnjAPCPlgQd8n5vhW2RjJaLwcfLkSS1atEjvvvuurrnmGr/PmTdvnufXt9xyiwoKCjR16lQdPXpUo0aN6vH8yspKLVmyxHO7tbVVRUVFkQwLAJDuuvfhcH/WbNoUedFoZ6c5sxEsVBQWmjtUWlul+fOljg62yMZQRAfL/eEPf9D3vvc9Odz95SV1dHTIZrPJbrervb3d5zFJamtrU05Ojnbs2KGysrKQP4OD5QAAPqqrI5vZCMXhkFavNpdevENFoBoOl4stsmGI5PM7opmPqVOn6vDhwz73PfrooxozZoxWrFjRI3hI0sGDByVJBQUFkfwoAECmc7mkffvMGY9I2GzSzJnS9u1muHAf1ubd4Ku83FxSCSdUpFFb82QRUfjo16+fxo4d63Pfddddp4EDB2rs2LE6evSotm7dqrvvvlsDBw7UoUOHtHjxYk2aNMnvllwAQAZz13Dk5EgXL3bVcrhc0vr10vPPR74d1m6X9u83e294z1hIPYMGoSJhYtrhNCsrS++9955eeOEFtbW1qaioSDNnztRTTz0Vyx8DAEh13jUcbjabNH269M470TX/stvNGpAJE8zb3cOFO9js2eNbtArLRVTzYQVqPgAgjfk7SyUS3Q94cxefTp0qOZ3BA0VNTVffD3dQoVdHzETy+U34AABYozdnqdjtUm2tGTAkcxusFDpwuLlcZuOx7jtcjh9nBiRG4lZwCgBAWLr35OjNWSruItHZs7vu8/51OPy1U+/oMOtACB+WI3wAAGLDHTgaG3v25BgyJLqzVBYsMNuk9zYglJSE7u0ByxA+AAC9511P4c0wgtd32O3SXXdJO3b4/l673ezFsXx5bMZXWGjWeNAwLClQ8wEA6B1/9RTh8J7VcG+Lve46qa0tfg29XC6zXsQwpO98h/ARQ9R8AADip3s9R7TH07vPUpEC99zwd55Lb+zcyY6XJBDVqbYAgAzlfWz98OHm7MXnnwc+BTaQcOotamq6flZxsXm7N9xFr94n386fb94PSzHzAQAIT/czVkLVcwQSTr1FoKBQVhb9DAg7XpIG4QMAEFpDQ+RnrDgcUlWVNGKEeXvEiPDrOeIRFNjxkjQIHwAAk7/eHE1N0q5d0rPPRtajY906adas5AoK7HhJGoQPAIDvVln3GSvdt7+Gy+HoXfCQ4hcUysvNpZtwTrNF3LDVFgAyXUODdPvt0QWN7ryPrI8F75NpCQpJja22AIDwRHPeis0mHTggFRR0nbESST1HJDj2Pi0RPgAg3blrN3JypGPHzPu+8x3zezTnraxZ03VsfaRnrAAifABAegvU9lySvv3tyJZa3C3Ply2L3fiQkQgfAJCuuvfK6O7DD0O/ht0urVwpTZtG3QVihvABAOlq/frIi0jnz5ceeCD+Z6wgoxE+ACCVeddzXLxo9seQpLfeMluhR8Jul556irCBuCN8AECqWrvW7DrqPbths0VeQCrRcAuW4mA5AEhF1dXS8uU9l1WCBQ+bTdq40TwMzuEw77PbzQLS48c53RWWockYAKQal8s8UTaSf767Hx9P8y7EGE3GACBVeZ+vIvmeteJ+/LXXIg8e+/d39eaQaN6FhCJ8AECy8K7hsNnM+wzD/PW8eebtzZsj782xaZNv8AASjPABAMmgulp64omu294zG4ZhFoMG4h1UvO/bsEG6915mOJB0KDgFgERzucwZj2i4z1nZvLmriNThMG8vWJC5wcPlkvbsMb8j6TDzAQBWcLmkffvMX48c2XXGysiRZk+OaGv/DcNsBsZR8V28W8p3L7RFUmC3CwDEWzQnx4bL4TC3yWZy2PDmcknFxb51MVwjS0Ty+c2yCwDEU0ND7IOHu8aDxmA9NTX1LMjt6DBnhJA0WHYBgFhzb5dtbDSLSCMNHt27lNrt0m9+Iw0cKDmd5n0sr/hXUmJer+4zH6NHJ25M6IHwAQCx4A4cu3ZJVVWRH+jm5nCYx9avXGn+H7t7dqN7zQKhw7/CQrPGY/583+vH9Uoq1HwAQG95Fzj2hndxJB1Ie4frZ7lIPr8JHwDQG/4KHANx994YP94sgJSkESO6fu108kGJlEV7dQCIh+6tz/ftk37/+/BnPJYuNXtvSL4dR+k+igxD+ACAcHgvrURzbL3dLi1aFJ+xASmGrbYAEIrL5VvTEU7wsNl8t8Ru2sSSCvA/mPkAgFD89Y4IxGaTXn2VLbFAEIQPAAjFX+8If9zbOmfP7rqP0AH0wLILALgFO4xs7tzAv89mk5YtM3etcIYIEBIzHwAgSWvXmifLugtK582TpkyRDh0K3jTs6aelH/+YGQ4gAvT5AIDqarMNeqQ4sAzwoM8HAITD5TKPs482eNC2G4gK4QNAZonFoW/u3SwEDyAqhA8AmSMWZ7CsWeO7mwVAxNjtAiAzNDT0LnjY7WbwWLYstuMCMhAzHwDSl/cx988+G3qJxW6X9u+XCgqk+nrzvhEjpLY2GoUBMUT4AJBevANHsC2y3bmPs3cf8sbSChA3hA8A6SOamg73Mff33svMBmARaj4ApIfuh7+FyzCkMWMIHoCFmPkAkJrcyys5OdKxY9Lvfx9dManDYdZzALAM4QNA6ol2y6zdLs2YIW3fLnV00CgMSJBeLbusXr1aNptNjz/+uOe+y5cvq6KiQgMHDlROTo5mzpyps2fP9nacAGCKdHnFbpeefNI8MO6LL6Rt28yW6Hv2cBAckCBRz3w0NDToxRdf1Lhx43zuX7x4sf71X/9V27ZtU15enhYuXKgZM2boT3/6U68HCyDDuVzSa6+FFzyCdSItLGS2A0igqMLHxYsX9dBDD2nz5s365S9/6bm/paVFNTU12rp1q6ZMmSJJeumll3TTTTdp//79uv3222MzagCZI5qts+7lFLbLAkkpqmWXiooK3XPPPSotLfW5v7GxUVevXvW5f8yYMRo+fLjq3Q17umlvb1dra6vPF4AM53KZyyJPPSUVF5tH2//qV6GDh81mdiBlOQVIahHPfNTW1uqjjz5SQ0NDj8fOnDmjrKws9e/f3+f+oUOH6syZM35fr6qqSqtWrYp0GADSVTTFpE8/LX3zmxz2BqSIiGY+Tp48qUWLFmnLli265pprYjKAyspKtbS0eL5OnjwZk9cFkIKi6dXhcEg//rG5xELwAFJCRDMfjY2NOnfunL71rW957uvo6ND777+vf/qnf9LOnTt15coVnT9/3mf24+zZs8rPz/f7mtnZ2crOzo5u9ADSg8sl7dsXea8OtsoCKSmi8DF16lQdPnzY575HH31UY8aM0YoVK1RUVKQ+ffpo165dmjlzpiTpyJEjOnHihJxOZ+xGDSC1uYtIS0qknTuluXNDH/rmZrdLK1dK06Zx2BuQoiIKH/369dPYsWN97rvuuus0cOBAz/3l5eVasmSJBgwYoNzcXD322GNyOp3sdAFg8q7psNnCCx0EDiCtxLzD6bp162S32zVz5ky1t7errKxMGzZsiPWPAZCKutd0hAoewXp1AEhZNsMId67TGq2trcrLy1NLS4tyc3MTPRwAveG9vCKZDcKWLg3v97rrOdgyC6SESD6/OdsFQHx03zIbaInFZjO/ux+z2cyAsmgRsx1AmiJ8AIg9f1tmA02yrlkjPfCA5G5EyBILkPYIHwBir6kp/C2zDof5nVboQMYgfADoHXePDkkaOVI6dkz66itzh0o4AWTJErMl+qZN1HcAGYLwASB6NTWR9egIpLNTmj9fKitjyQXIAFEdLAcAcrkiDx52u/Tkk9Lzz/d8rKNDam6O3fgAJC3CB4DoNDVFFjzWrZO++MI8nXb2bDOIeHM4zAZiANIe4QNA+NxH3btcZu8O9zbZUBwOadasriWVwkKzxsNdbMoZLUBGIXwACE9NjVRcLE2ZYn7fuVPavDl0AAkULMrLpePHzTBz/DjFpkAGocMpgNBcLjNweO9ecTjM0CB19egYMaLrvhEjpLY2zmIBMgQdTgHEjstltkXvvm3WXSA6ebJvj44JEywdHoDUQ/gAENjatdKKFf77dVAgCiBKhA8A/lVXS088Efjx1atZTgEQFQpOAfTkcpkzHsF8+9vWjAVA2iF8APDlrvEIVovOkguAXmDZBUCXmpqep9F2R08OAL1E+AAymctldirNyTEPhAsUPOx2aeVKado0ts4C6DXCB5CpwpnlkMy26N7dSQGgl6j5ADKRyxVe8OjeFh0AYoCZDyCTuJdZvvwyvOBBbQeAOCB8AJmi+zKLzRZ8R8srr/h2LgWAGGHZBcgE/pZZQm2ldTrjPy4AGYnwAWSCpqbQyyz2//nngOUWAHHGsguQCXJyQi+z1NZKgwezlRZA3BE+gHTiLigtKTFvNzVJu3ZJVVXhLbMQOgBYgPABpItIC0rd/C2zeIcYAgmAGCN8AOkg0oLSdeukO+6Q2tp6LrN4hxi7Xdq0SSovj9/YAWQcm2GE879G1mltbVVeXp5aWlqUm5ub6OEAyc3lkvbtk37/e+ntt8P7PXa79MUX/mc0XC6puNg3xDgc0vHjzIAACCqSz29mPoBUVVMjzZ0b3tKKt+eeCxwk/O2K6eiQmpsJHwBihq22QCpyuSIPHna7tGaNtGxZ4OeUlHRtuXVzOMylGQCIEcIHkIqamsILHna79OST0p495lLL8uXBn19YaNZ4OBzmbXp+AIgDll2AVONySZ9/Hvhxh8PcWjthQnQ9O8rLpbIyc6mFnh8A4oDwAaQKl0tav1769a/9z3rYbNLSpdKiRb0PDIWFhA4AcUP4AFLB2rXSE08EDh0bNkj33ktgAJASqPkAkl11tVmrEajGwzCkMWMIHgBSBuEDSGYul7RiRfDnsBsFQIohfADJbN++4Lta7HZ2owBIOdR8AMnGfa5KY6NZ5+HPD34g/e//zWFwAFIS4QNIJt0Ph+vObpdWrw7drwMAkhjhA0gW/g6H6662Vpo927oxAUAcUPMBJAOXS3rtteDBw+Ewl1kAIMUx8wEkindtx4oVoYMHhaUA0gThA0iEULUdUu/bpANAkiJ8AFYLp7Zj3Tpp1iwCB4C0RM0HYKVwazsIHgDSGDMfgFXCXWqhtgNAmiN8APHkLirNyQkePH72M6m0lNoOABmB8AHESzgzHW6lpdLkyXEfEgAkA2o+gHhoaAg/eAQ6GM7lkvbsMb8DQBohfACxVlMjTZwYfvDwV+NRUyMVF0tTppjfa2riM1YASICIwsfGjRs1btw45ebmKjc3V06nU++8847n8cmTJ8tms/l8LViwIOaDBpKWexttsJNoJclmM3e9HD8ulZf7fw13eOnslObPZwYEQNqIqOajsLBQq1evVklJiQzD0O9+9zvdd999+vjjj/XNb35TkjR37lw988wznt/Tt2/f2I4YSFbhbKN1Mwxp8GD/xaVNTT1fo6NDam6mGBVAWogofHz3u9/1uf2rX/1KGzdu1P79+z3ho2/fvsrPz4/dCIFUsHZt6Bbp3gLVeUhSSYl5eq33awV7PgCkmKhrPjo6OlRbW6u2tjY5vQ672rJliwYNGqSxY8eqsrJSly5dCvo67e3tam1t9fkCUkp1tXnEfbBttMuWmQFCCt3Lo7BQ2rQp/OcDQIqxGUaoxWlfhw8fltPp1OXLl5WTk6OtW7fq7rvvliRt2rRJxcXFGjZsmA4dOqQVK1botttu0xtvvBHw9X7xi19o1apVPe5vaWlRbm5uhH8cwALu3h0lJebt4cOD13js2WNuo3W5zKWTcHt5RPp8AEig1tZW5eXlhfX5HXH4uHLlik6cOKGWlha9/vrr+u1vf6u6ujrdfPPNPZ67e/duTZ06Vc3NzRo1apTf12tvb1d7e7vP4IuKiggfSE7eyys2m3TPPdLbbwd+vsNhFpUSHgCkubiGj+5KS0s1atQovfjiiz0ea2trU05Ojnbs2KGysrKwXi+SwQOWqq6Wnngi/Oe7l0u672YBgDQUyed3rzucdnZ2+sxceDt48KAkqaCgoLc/Bkgsl8uc8QjFbpdWrpSmTWO5BAACiCh8VFZWavr06Ro+fLguXLigrVu3au/evdq5c6eOHj3qqf8YOHCgDh06pMWLF2vSpEkaN25cvMYPxJ/LZRaAhjNJWFsrzZ4d/zEBQAqLKHycO3dOP/zhD3X69Gnl5eVp3Lhx2rlzp6ZNm6aTJ0/qvffe0wsvvKC2tjYVFRVp5syZeuqpp+I1diD+amqkuXPDCx4Oh+S18wsA4F+vaz5ijZoPJI2GBrNNur+/Ijab7/12uzk7Qn0HgAxlac0HkJZCzXi8+qo5y1Ffb952OqnvAIAwET4Aby6XtG9f8PNZ3MsrhYXUdwBAFAgfgGSGjvXrpeefD94i3W6n2ygA9BLhAwinqNRmkzZskO69l+ABAL1E+EBmcx9fH6rueulSacECa8YEAGku6oPlgJTnckmvvRb6JFq7XVq0yJoxAUAGYOYDmcn7jJZgOFEWAGKO8IHME+qMlgULpB/9SGpro0U6AMQB4QOZJZwzWubMkSZMsGY8AJCBqPlAZtm3L3hxqcNhznYAAOKGmQ+kP5dLamqSdu2Snn028POo7wAASxA+kN5qasyttIEKS+12aeVKado06jsAwCKED6Qvdw+PYDtaamtpkQ4AFqPmA+mrqSl0q3Sn07rxAAAkET6Qrlwu6csvzYARyHPPscwCAAlA+ED6WbtWKi42t8z6m/mw26U1a6Rly6wfW7pwuaQ9e8zvABAhwgfSh8tlNghbvtx/6LDZzHbqX3xhPgfRqakxw92UKeb3mppEjwhAiiF8ID3U1EjDh5tbZQMxDGnwYJZaeqN7EW9npzR/PjMgACJC+EBqcx8OF87JtDQQ6z1/RbwdHVJzc2LGAyAlsdUWqStUDw9vNBCLjZISs2bG+5oT6gBEiJkPpKZwenjY7dKTT5qFkcePS+Xllg0vbRUWSps2mYFDItQBiAozH0gt7lbpX34ZPHj8n/8j/frXfCjGQ3m5VFZmLrXQFRZAFAgfSB3dl1lsNv91HnY7wSPeCgu5vgCixrILUoO/ZRZ/wcPhMJcF+GAEgKTFzAdSQ6hW6Tab9OqrZrt0ggcAJDVmPpAaSkrMgBEIPTwAIGUQPpD8XC5p3z7pwQcDP4ftngCQMlh2QfJyuaT1683iUe/6ju6Fpmz3BICUQvhAcqqpkebO9V9U6q7vGDFCamtjuycApBjCB5KPe2dLoHbpnZ1mfceECdaOCwAQE9R8ILm4z2oJtrOF+g4ASGnMfCB5hHNWi91OfQcApDjCB5JDsLNa7Haz/mPqVPp4AEAaIHwg8YIttTz9tPTjHxM4ACCNUPOBxKqpkYqLpaVL/T/+f/+vtHOntWMCAMQV4QOJE2ypxa2zU5o/33wuACAtED6QOOvXBw8ebh0d5vHtAIC0QPhAYrhcZufScLC1FgDSCuEDibFvX+AmYjabucNFonU6AKQhdrvAemvXSk880fN+d9t0p9O83dxM63QASEOED1irutp/8HDPcMye3XUfoQMA0hLhA9ZwucyllhUr/D/+yiu+wQMAkLYIH4i/UG3T7faupRYAQNqj4BTx1dAQupfHc8+xxAIAGYTwgfhZu1aaODH4jMeaNdKyZdaOCwCQUCy7ID4CFZZ6q62lzgMAMhAzH4i9hobAhaVuDgd1HgCQoQgfiK2aGnOpJVADMYnGYQCQ4Vh2Qey4D4oLFDx+9jOptJTGYQCQ4QgfiJ2mJv/FpTabuaNl+XLrxwQASDoRLbts3LhR48aNU25urnJzc+V0OvXOO+94Hr98+bIqKio0cOBA5eTkaObMmTp79mzMB40k5HJJX37ZdSaLm90uHThA8AAAeEQUPgoLC7V69Wo1Njbqww8/1JQpU3Tffffp008/lSQtXrxYb731lrZt26a6ujqdOnVKM2bMiMvAkURqaqTiYmnOHN+ZD7td2rRJmjAhcWMDACQdm2EEqwwMbcCAAaqurtasWbM0ePBgbd26VbNmzZIkff7557rppptUX1+v22+/PazXa21tVV5enlpaWpSbm9ubocEKLpcZPPwtt9jt0hdfUN8BABkgks/vqHe7dHR0qLa2Vm1tbXI6nWpsbNTVq1dVWlrqec6YMWM0fPhw1dfXB3yd9vZ2tba2+nwhhQSq85DM+5ubrR0PACDpRVxwevjwYTmdTl2+fFk5OTnavn27br75Zh08eFBZWVnq37+/z/OHDh2qM2fOBHy9qqoqrVq1KuKBI8HcB8X9y78Efo7DYe5sAQDAS8Th48Ybb9TBgwfV0tKi119/XQ8//LDq6uqiHkBlZaWWLFniud3a2qqioqKoXw8WqKmR5s6llwcAICoRh4+srCyN/p//mx0/frwaGhq0fv16zZkzR1euXNH58+d9Zj/Onj2r/Pz8gK+XnZ2t7OzsyEcO67lnO0IFj3XrpFmzCB4AAL963eG0s7NT7e3tGj9+vPr06aNdu3Z5Hjty5IhOnDghJ220U5/3jpZQMx4EDwBAEBHNfFRWVmr69OkaPny4Lly4oK1bt2rv3r3auXOn8vLyVF5eriVLlmjAgAHKzc3VY489JqfTGfZOFyQpd+fSQIWlbiy1AADCEFH4OHfunH74wx/q9OnTysvL07hx47Rz505NmzZNkrRu3TrZ7XbNnDlT7e3tKisr04YNG+IycFho377gwcNmk5YulRYtIngAAELqdZ+PWKPPR5IJVVz69NPSj39M6ACADBfJ5zdnu8A/d3FpsIPiHA6CBwAgYoQP9FRTE7rGg/oOAECUCB/wFaq41G6Xamslp5PgAQCICuEDvoK1S5ekJUuk2bOtGw8AIO30us8H0kxJiTm74Y/dbu5oAQCgFwgf6OJySevX+y8wdTikTZtYagEA9BrLLjCtXSs98UTP4GGzSa++So0HACBmmPmAVF0tLV/uf8bDMKTBgwkeAICYIXxkuoYGacWKwI87HNL/HCQIAEAsED4y2dq10sSJwZuI0csDABBjhI9MFWypRZIWLJCOH5fKyy0dFgAg/VFwmmncbdMDLbXYbNJzz5nBBACAOCB8ZJJQbdNtNunAAWnCBGvHBQDIKCy7ZIpQbdMlac0aggcAIO4IH5kiWNt0u90MHsuWWTsmAEBGYtklU+TkmMsq/gpMa2s5rwUAYBlmPjLB2rXS7bcHbpvudFo/JgBAxiJ8pDOXy9wyu3y5/yUX+ngAABKAZZd0VVMjzZ0buI/HunXSrFkEDwCA5Qgf6cbdx2PevMDBw24neAAAEobwkU5C9fFwe+45ggcAIGGo+UgX4fTxYEstACAJMPORLkL18ViyRFq0iBmPZOdymf8tS0r4bwUgbRE+0kVJiRkyvAOI3W728HA6+SBLBd7LZna7tGkTB/sBSEssu6QDl0tav963wNT94TV7NsEjFXRfNuvslObPN+8HgDRD+Eh1NTXS8OFmIzHv8GEYUr9+fHilCn/LZh0dUnNzYsYDAHFE+Ehl7v9b9rel1jCkOXOk4mIzoCC5uZfNvDkc0ujRiRkPAMQR4SOVuFzSnj3md5dLWro09LZapu9TQ2GhuUzmcJi36T4LII1RcJoqwu3h4Y97+p4PsuRWXi6VlZn/rUaP5r8XgLTFzEcqCKeHh9u99zJ9n8oKC6XJkwkeANIa4SMVBOvh4c1ulzZuZPo+1XgvpwFABiB8pAJ/xYjdORxm6CgsNKfvjx83P9COH6dXRDKrqTGLgqdMoTgYQMYgfKSCnTsDHxInSQsW9AwZTN8nP3p7AMhQhI9kF2w7rfuslo0bCRmpiN4eADIUu12SXaB6j3XrpFmzCB2pzF9LfIqDAWQAZj6SXaDmUwSP1EdvDwAZipmPZOI+0TQnR7p4setk002bzFqAjg4+oNINvT0AZCDCR7Lw10TM+2RTPqDSV2Eh/00BZBSbYQTbRmG91tZW5eXlqaWlRbm5uYkejjVcLnObpb/aDofD3MnChxMAIIlF8vlNzUciuZtL7dsXuIlYR4dUX2/tuIBw0BwNQJQIH4ni3VxqzhzJZgv83AceoPkUkgvN0QD0AssuiRBomcVmC9xMjOUXJAt/71/en0DGY9kl2QU7q+W116QNG3reT/MpJAuaowHoJcKHVdzr4w0N0pdf+l9mMQxp8GDpu9/lZFokr0C9Z3h/AggT4cMK3uvjt91m1nj4W15x/wNO8ykkM96fAHqJmo94C7aNVuqq83D/A+59OJzLRW8PJC/enwC8RPL5TZOxeAtW3+H22muS09nzH3CaTyGZ8f4EECWWXeLN3/q4N3edB/+IAwAyBOEjntxntVRWBg4gFOoBADIMyy7xsnattGKF75KLzSZNny7t2GHeT6EeACADRTTzUVVVpQkTJqhfv34aMmSI7r//fh05csTnOZMnT5bNZvP5WrBgQUwHnfSqq6Xly3vWehiGtHOntH+/ue32+HHfAlN/aGENAEgzEc181NXVqaKiQhMmTNDXX3+tJ598Unfeeac+++wzXXfddZ7nzZ07V88884zndt++fWM34mTjcplns0jSd74jnT5tzngE0tEhtbVJkyeHfm3vk269T7gFACCFRRQ+duzY4XP75Zdf1pAhQ9TY2KhJkyZ57u/bt6/y8/NjM8JkVlMjzZ0buCW6P+HWeLhcXcFDMr/Pny+VlbFMAwBIab0qOG1paZEkDRgwwOf+LVu2aNCgQRo7dqwqKyt16dKl3vyY5ORyRRc8wq3xoIU1ACBNRV1w2tnZqccff1x33HGHxo4d67n/wQcfVHFxsYYNG6ZDhw5pxYoVOnLkiN544w2/r9Pe3q729nbP7dbW1miHZK2mpvCCh81m7naZNi2yZkzuLbrdD+9iZwwAIMVFHT4qKir0ySef6IMPPvC5f968eZ5f33LLLSooKNDUqVN19OhRjRo1qsfrVFVVadWqVdEOI3FKSoKfQiuZjx84IE2YEPnru1tYz59vzniwMwYAkCaiaq++cOFCvfnmm3r//fc1cuTIoM9ta2tTTk6OduzYobKysh6P+5v5KCoqSs726u6+HTk50rFj0u7dZkAIdAmrq6Vly3r/M2lhDQBIcnFrr24Yhh577DFt375de/fuDRk8JOngwYOSpIKCAr+PZ2dnKzs7O5JhJIb3zpPu5s83Zzk2bzZnKex2afXq3gcPiRbWAIC0E9HMx09/+lNt3bpVb775pm688UbP/Xl5ebr22mt19OhRbd26VXfffbcGDhyoQ4cOafHixSosLFRdXV1YPyMpD5YLdTicw2H27JCYpQAAZKS4zXxs3LhRktlIzNtLL72kRx55RFlZWXrvvff0wgsvqK2tTUVFRZo5c6aeeuqpyP4EVvFeRrl40azj8Bca1q8PfjicexfK5MmEDgAAQoh42SWYoqKisGc4Ei5Q+/PKSunWW83bI0eatR2//nXw12IXCgAAYcuss13cMx27dkm/+lXPxw1DevbZyF7TbmcXCgAAEcic8BGsYDRSNpu0YYM0cKDkdBI8AACIQGaEj+6tynvD3W+DM1YAAIhKZoQPf63KI2W3S7W1zHQAANBLvTrbJWW4W5X7Y7dLd98d+HH3c1avlmbPJngAANBLmTHz4a9VeVWV2fbc3ZPD3Un0uuu6enb8x3+Yz+vslFaulAYMYLkFAIBeiqq9ejzFtclYJK3K/TUWczcTY/YDAAAfcWsylvIiaVUe7Eh7wgcAAFHLjJqPaPirE6GZGAAAvUb4CMRdJ+JwmLc50h4AgJjIrGWXSJWXS2VlHBYHAEAMET5C4Uh7AABiimUXAABgqcwLHy6XtGeP+R0AAFgus8JHTY3Zu2PKFPN7TU2iRwQAQMbJnPDR/XC5zk6z4ykzIAAAWCpzwkewpmEAAMAymRM+aBoGAEBSyJzwQdMwAACSQmb1+aBpGAAACZdZ4UOiaRgAAAmWOcsuAAAgKRA+AACApQgfAADAUoQPAABgKcIHAACwFOEDAABYivABAAAsRfgAAACWInwAAABLET4AAIClCB8AAMBShA8AAGApwgcAALAU4QMAAFiK8AEAACxF+AAAAJYifAAAAEsRPgAAgKUIHwAAwFKEDwAAYCnCBwAAsBThAwAAWIrwAQAALEX4AAAAliJ8AAAASxE+AACApQgfAADAUoQPAABgKcIHAACwFOEDAABYKqLwUVVVpQkTJqhfv34aMmSI7r//fh05csTnOZcvX1ZFRYUGDhyonJwczZw5U2fPno3poAEAQOqKKHzU1dWpoqJC+/fv17vvvqurV6/qzjvvVFtbm+c5ixcv1ltvvaVt27aprq5Op06d0owZM2I+cAAAkJpshmEY0f7mL7/8UkOGDFFdXZ0mTZqklpYWDR48WFu3btWsWbMkSZ9//rluuukm1dfX6/bbbw/5mq2trcrLy1NLS4tyc3OjHRoAALBQJJ/fvar5aGlpkSQNGDBAktTY2KirV6+qtLTU85wxY8Zo+PDhqq+v9/sa7e3tam1t9fkCAADpK+rw0dnZqccff1x33HGHxo4dK0k6c+aMsrKy1L9/f5/nDh06VGfOnPH7OlVVVcrLy/N8FRUVRTskAACQAqIOHxUVFfrkk09UW1vbqwFUVlaqpaXF83Xy5MlevR4AAEhu34jmNy1cuFBvv/223n//fRUWFnruz8/P15UrV3T+/Hmf2Y+zZ88qPz/f72tlZ2crOzs7mmEAAIAUFNHMh2EYWrhwobZv367du3dr5MiRPo+PHz9effr00a5duzz3HTlyRCdOnJDT6YzNiAEAQEqLaOajoqJCW7du1Ztvvql+/fp56jjy8vJ07bXXKi8vT+Xl5VqyZIkGDBig3NxcPfbYY3I6nWHtdAEAAOkvoq22NpvN7/0vvfSSHnnkEUlmk7GlS5fqlVdeUXt7u8rKyrRhw4aAyy7dsdUWAIDUE8nnd6/6fMQD4QMAgNRjWZ8PxJDLJe3ZY34HACCNET6SQU2NVFwsTZlifq+pSfSIAACIG8JHorlc0rx5UmenebuzU5o/nxkQAEDaInwkWlNTV/Bw6+iQmpsTMx4AAOKM8JFoJSWSvdt/BodDGj06MeMBACDOCB+JVlgobdpkBg7J/P7ii+b9AACkoajaqyPGysulsjJzqWX0aIIHACCtET6SRWEhoQMAkBFYdgEAAJYifAAAAEsRPgAAgKUIHwAAwFKEDwAAYCnCBwAAsBThAwAAWIrwAQAALEX4AAAAliJ8AAAASxE+AACApZLubBfDMCRJra2tCR4JAAAIl/tz2/05HkzShY8LFy5IkoqKihI8EgAAEKkLFy4oLy8v6HNsRjgRxUKdnZ06deqU+vXrJ5vNFtPXbm1tVVFRkU6ePKnc3NyYvna64VpFhusVPq5V+LhWkeF6hS8e18owDF24cEHDhg2T3R68qiPpZj7sdrsK43y0fG5uLm/MMHGtIsP1Ch/XKnxcq8hwvcIX62sVasbDjYJTAABgKcIHAACwVEaFj+zsbD399NPKzs5O9FCSHtcqMlyv8HGtwse1igzXK3yJvlZJV3AKAADSW0bNfAAAgMQjfAAAAEsRPgAAgKUIHwAAwFIZEz5+85vfaMSIEbrmmms0ceJE/fu//3uih5Rwv/jFL2Sz2Xy+xowZ43n88uXLqqio0MCBA5WTk6OZM2fq7NmzCRyxtd5//31997vf1bBhw2Sz2fSHP/zB53HDMPTzn/9cBQUFuvbaa1VaWqqmpiaf5/z5z3/WQw89pNzcXPXv31/l5eW6ePGihX8Ka4S6Vo888kiP99pdd93l85xMuVZVVVWaMGGC+vXrpyFDhuj+++/XkSNHfJ4Tzt+9EydO6J577lHfvn01ZMgQLV++XF9//bWVfxRLhHO9Jk+e3OP9tWDBAp/nZML12rhxo8aNG+dpHOZ0OvXOO+94Hk+m91VGhI9XX31VS5Ys0dNPP62PPvpIt956q8rKynTu3LlEDy3hvvnNb+r06dOerw8++MDz2OLFi/XWW29p27Ztqqur06lTpzRjxowEjtZabW1tuvXWW/Wb3/zG7+Nr1qzRP/zDP+if//mfdeDAAV133XUqKyvT5cuXPc956KGH9Omnn+rdd9/V22+/rffff1/z5s2z6o9gmVDXSpLuuusun/faK6+84vN4plyruro6VVRUaP/+/Xr33Xd19epV3XnnnWpra/M8J9TfvY6ODt1zzz26cuWK9u3bp9/97nd6+eWX9fOf/zwRf6S4Cud6SdLcuXN93l9r1qzxPJYp16uwsFCrV69WY2OjPvzwQ02ZMkX33XefPv30U0lJ9r4yMsBtt91mVFRUeG53dHQYw4YNM6qqqhI4qsR7+umnjVtvvdXvY+fPnzf69OljbNu2zXPff/7nfxqSjPr6eotGmDwkGdu3b/fc7uzsNPLz843q6mrPfefPnzeys7ONV155xTAMw/jss88MSUZDQ4PnOe+8845hs9mM//qv/7Js7Fbrfq0MwzAefvhh47777gv4ezL1WhmGYZw7d86QZNTV1RmGEd7fvT/+8Y+G3W43zpw543nOxo0bjdzcXKO9vd3aP4DFul8vwzCMv/u7vzMWLVoU8Pdk8vW6/vrrjd/+9rdJ975K+5mPK1euqLGxUaWlpZ777Ha7SktLVV9fn8CRJYempiYNGzZMN9xwgx566CGdOHFCktTY2KirV6/6XLcxY8Zo+PDhXDdJx44d05kzZ3yuT15eniZOnOi5PvX19erfv7++/e1ve55TWloqu92uAwcOWD7mRNu7d6+GDBmiG2+8UT/5yU/01VdfeR7L5GvV0tIiSRowYICk8P7u1dfX65ZbbtHQoUM9zykrK1Nra6vn/3LTVffr5bZlyxYNGjRIY8eOVWVlpS5duuR5LBOvV0dHh2pra9XW1ian05l076ukO1gu1v77v/9bHR0dPhdTkoYOHarPP/88QaNKDhMnTtTLL7+sG2+8UadPn9aqVav0t3/7t/rkk0905swZZWVlqX///j6/Z+jQoTpz5kxiBpxE3NfA3/vK/diZM2c0ZMgQn8e/8Y1vaMCAARl3De+66y7NmDFDI0eO1NGjR/Xkk09q+vTpqq+vl8PhyNhr1dnZqccff1x33HGHxo4dK0lh/d07c+aM3/ee+7F05e96SdKDDz6o4uJiDRs2TIcOHdKKFSt05MgRvfHGG5Iy63odPnxYTqdTly9fVk5OjrZv366bb75ZBw8eTKr3VdqHDwQ2ffp0z6/HjRuniRMnqri4WK+99pquvfbaBI4M6eaBBx7w/PqWW27RuHHjNGrUKO3du1dTp05N4MgSq6KiQp988olPrRUCC3S9vGuDbrnlFhUUFGjq1Kk6evSoRo0aZfUwE+rGG2/UwYMH1dLSotdff10PP/yw6urqEj2sHtJ+2WXQoEFyOBw9KnrPnj2r/Pz8BI0qOfXv319//dd/rebmZuXn5+vKlSs6f/68z3O4bib3NQj2vsrPz+9R1Pz111/rz3/+c8ZfwxtuuEGDBg1Sc3OzpMy8VgsXLtTbb7+tPXv2qLCw0HN/OH/38vPz/b733I+lo0DXy5+JEydKks/7K1OuV1ZWlkaPHq3x48erqqpKt956q9avX59076u0Dx9ZWVkaP368du3a5bmvs7NTu3btktPpTODIks/Fixd19OhRFRQUaPz48erTp4/PdTty5IhOnDjBdZM0cuRI5efn+1yf1tZWHThwwHN9nE6nzp8/r8bGRs9zdu/erc7OTs8/jpnK5XLpq6++UkFBgaTMulaGYWjhwoXavn27du/erZEjR/o8Hs7fPafTqcOHD/sEtnfffVe5ubm6+eabrfmDWCTU9fLn4MGDkuTz/sqU69VdZ2en2tvbk+99FdPy1SRVW1trZGdnGy+//LLx2WefGfPmzTP69+/vU9GbiZYuXWrs3bvXOHbsmPGnP/3JKC0tNQYNGmScO3fOMAzDWLBggTF8+HBj9+7dxocffmg4nU7D6XQmeNTWuXDhgvHxxx8bH3/8sSHJeP75542PP/7Y+OKLLwzDMIzVq1cb/fv3N958803j0KFDxn333WeMHDnS+Mtf/uJ5jbvuusv4m7/5G+PAgQPGBx98YJSUlBjf//73E/VHiptg1+rChQvGsmXLjPr6euPYsWPGe++9Z3zrW98ySkpKjMuXL3teI1Ou1U9+8hMjLy/P2Lt3r3H69GnP16VLlzzPCfV37+uvvzbGjh1r3HnnncbBgweNHTt2GIMHDzYqKysT8UeKq1DXq7m52XjmmWeMDz/80Dh27Jjx5ptvGjfccIMxadIkz2tkyvVauXKlUVdXZxw7dsw4dOiQsXLlSsNmsxn/9m//ZhhGcr2vMiJ8GIZh/OM//qMxfPhwIysry7jtttuM/fv3J3pICTdnzhyjoKDAyMrKMv7qr/7KmDNnjtHc3Ox5/C9/+Yvx05/+1Lj++uuNvn37Gt/73veM06dPJ3DE1tqzZ48hqcfXww8/bBiGud327//+742hQ4ca2dnZxtSpU40jR474vMZXX31lfP/73zdycnKM3Nxc49FHHzUuXLiQgD9NfAW7VpcuXTLuvPNOY/DgwUafPn2M4uJiY+7cuT3Cf6ZcK3/XSZLx0ksveZ4Tzt+948ePG9OnTzeuvfZaY9CgQcbSpUuNq1evWvynib9Q1+vEiRPGpEmTjAEDBhjZ2dnG6NGjjeXLlxstLS0+r5MJ1+tHP/qRUVxcbGRlZRmDBw82pk6d6gkehpFc7yubYRhGbOdSAAAAAkv7mg8AAJBcCB8AAMBShA8AAGApwgcAALAU4QMAAFiK8AEAACxF+AAAAJYifAAAAEsRPgAAgKUIHwAAwFKEDwAAYCnCBwAAsNT/BxEkYP6IohYhAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.plot(T1, '.r')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "DF = pd.DataFrame(T1)\n", + "DF.to_csv(\"data.csv\", index=False)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/data-gattering_files/data-gattering_3_0.png b/data-gattering_files/data-gattering_3_0.png new file mode 100644 index 0000000000000000000000000000000000000000..739cc9c40b339eb4264137c25d3968702f4f4bd3 GIT binary patch literal 14103 zcmch;XIN8fw>7*F5TuGouL?H0H0hv-G(n|zL?HCuArwVv3PDg15Kw6X(xi8#3IQUa zNeM{rBuELJ@6O))Ip2BCIq!R&U+)hUvR2l*%e?0tbBtm1Lv2-R3RVgTf~eKi?&?6$ z87>GSN+&-HKKa^9mkIun_Es_S)^&q<`&oI~LRwbd?#^!B&JItweQiCx9Nb*RgrtPT z1i0dU2WYFX1S8xpA(ULbt&-t$x`rcAytx8L#1&qTIIpGh-zFyg0m0?G} z6gFv^yIi(*22%QCQg6T~l$3k_X7lNqoqTxYpwGC-9WvT9Et9JIG9hx8+H)_6fj!|R z!?Mt*AIuB)rktzp(_S96%L;Ny(;6$i%_{ZKQ-)r2d^#3vY1rF3x6rrQ%8}Ux1-KRQ z%WuC4Rz4*Rs#N3idPy0qTJsRENq^O7YpdmMFW686a=$~T8fVF6GDQ(eRZMkbt({zg zfWKM~2#NEx8?q1UMx4AY4Opag4nj|btHd}plQo8h7Cg1Qyhf5n4+6J>E)4pTJP~`f zaiu(ZXl$&Yp+T;)qT>3kTetdKiJ))Ecyx5{Rjo{+^+r`eTyH!G?THab3V z*u%T|L4v}moTMUBq$f2#2)lDy)9n7p=-r=>t%P;^Hdcv_VKDb$2lG>oJeXuc%EXbR z=O+k&^AOfE@42(a>&Oga-elCqxsNz9M;MosdFE_4pCkuNg&wII(wC8B{Ojg9Y*>|A zk?A#zhbk_RT0K?X)TET##ZfY_(6HXzpu|Ejtv9!mD|EtZYOX8MwtN)c#3*3&bKK($ zbeCaqoDiyw@o^sbHB3cG6E-t>*&SW`Q<1rg3 zC+W9gmaY&ywp9u1O|_uD0ELx$)3QoPH08An55B|WeMe$28Jn8d8tL@+YWz1paRx43 za+z!}9Kvt|#K_y z^H+Sly??;UyIiXa8yhi;H`N`ToOHFd<9yeCef;|MYrJB3_&fwD6cqBLjgq%d#~YML zCR;Qpt9)RkNq#B#)hcRkOZHO=0%X}0+;pn~ULGtGs~GH+!55=`9)C6T_i(Z+>ZGKk zuaB-nO1WOO*};cBEC{t<&gh;L^zJ&W#+_?;0rR`CVZu!3+%>)IN2XggbdUCyMoKa} z;y6~lrhG=s^PUouIj;RGlL_4ZT;+->sK+*$5|hykepHUE@ZWr*l`7taO)`U&&U%fw z&&{bZ3HuIt)|jCWcFl@U4AkTp0B8Jp_CMDQiCDX)%>$dx3`z21lj`y<0pQG;?$F#nX{k1ka zYg$2pRMFeAB6U=NxMTNaHLqO2(E58ZWooDMNvD4&R?*TjoTBx6_|Z_c=kA|NV!uxZFQl zUca$*;v;obsf%3_SydwEO5y>z?@23%6f0ZM?i{lyZ(X?_qkzbGHeQnZ&70>N>qJOG zLTy|$e=yxE@@&NK*E-tVPhHk`@5G`Wv({b)4{+`68&8S)~zpxvnQ;lo1%#$zgSS&M|Tp!%OTQC6O_`y$1zqyJX?$@74qwkX`H z^bFm_Uz-Wy1OSlOJjt%5g)TNnm!s|tXIW!p9EQKlQBbV;tFwag8-_J7#+L5fXuI7gu#TLh+oyX!R> z(|eUeikso0cY4_cb$L}@sa*v@kf^yawNAG@J+rMldk&knIJSbs7mL0a5BN9-XWM;& z07_8`q#WEeOK3V?|B+-eA&5#Ae2LkMe+`BlUtEXpUfO7-Rc?*|MZ@fdR@yxb>5~YM z+Ls-V4}QE;VEdH{ zOzMZ%WLD(st;$s_l=%AHDU)U%OG9cZLqq64^YY31&qzUq9;@k>qw1R$!IqErok-ml;WU1jC9@W}d(@Q%mw5)wNCKh~E-?4HMq8~GB2 z8F{%SyEu!#RO6xM#MHkTTSvQv@KCc~mrh>@7AV;>)Oli2vLVKmrFzZv{?b!0!?NEr z?Df9t`ueZAmKGM=-*pa`m^qwq)d%@z1@)f!*xKB3r@X`Z1U|Lexud}cPK=UU0F%^i zgr5g5hgwkNs$H#`Li0H;=qK9=1v{|^ev(;nQXuS2HXTo0$h!BR+tF`Sf_$K;$c-Wt zemybd^blt!mn0++Ib zv~i`Q@ai_#v9<&XoZ`EEDD2_UP8@j~EYTwPtzenbd2lqy+byx=p%ddWcBqXy#80B_ zZ(yBjNM&C+Z%lk^M!^!31jYP{+#|@(6Hpzuy3X8gLkYrmQx32OO;aLKA^~;=dJUih;oFa|IaG6D2i!fC0KO(N4E`(00}KO zA9#NX52Ib_7vtIbG*YFuU+ZVM#l*$8h5Uc5!*E7b0#&nTM9+iwqLcAA@hAnh!02{D z>Q1Jh$OcfZiGZLaSzi#{yt@a*TQm@>mI{8w)FR6Lxc+pYDbC*l&tK+AO{D=}#!n)9 z&OW9CsX04xBeMAgQY8DPH92S43$QHlsS`+kX=!wsH5wbrWqvci)oR!aDy0IWU5WNZ ze!&R!zPscyCFJA%^E#DUyoF%>7mG#{$uup5;z`Y76Ea!25WoyjfAm0^g!R48FSkSO z`o4!A$9M;T@n*o$av~cqg|l78dy_`(FFV<>Jk=ksa?!Q0 z$Y2yQ`^+K+TY3!6f(0=dz%HO%<`)htDmY?Jt>jek#*CY%TNx zq#e3k+nkf5A|W9$R_9Zgdq3r}df;+SviE@2Er-*S&1Gee3`;C_YD0V8-DFjO*Q{WugX$dI+zg$Z3QOhG$CE??y(qXRNYux=sM>4|6< z05$-i`!|6rEQuqe@y|Xj4^6wPDV~(ow%x%&I(P1hamB{Q%J^-(Z`vtx3)om)TKaj2 zZ7vBt$O}dHrOW!vcQd3bhECe;&aRD?ccW1F!_?8y(eA#!IM;0m9ge)RKF$ zkD9x(_NAJpMs~VvPOXUe&B-sG!I^jRwA4-*q+^1HvRJ!R6@yonzFDPAreZK32Kq2VrSYiM1r^I5g29+&W1 zxL;XaUHIk8eKtwws2v1Rd`#Vl_j3x)?}0v$nz3XnxnJ=BE9h9ekw{%l&6l2DUi9+p zP~&uC!{rp}mLwr+EWU14`j;qW_H&STq{m5>;NDZBZ1&OZFtO%(uJX~Iu&?%X zAiYP)hnm8OwZ0Y`^T^}E=3MXoxIh`d3+mRBlKdM-g5@-k`{@QtN*&yA02cfZH0rF< zI-qeqSmF1I)Q}>w>AFyU6~Fk(TSCrlHFxf25mdT&2@X(&R;-?xfL6+rkf~bTu?A^x z=-fqtZe-4EXRnCYkyLxG(%Fx#H^P3J35mJ;V=X+SdVX^I>?|?g{IvRadg*&YBuc`e zP1F{Lw5?LXHn|L&bISyLbwk9RqZi=d3>ySl`24TGy0Mc(pNHHO+!`S5oah^B0*Jr2 zIaFw@O>~}tLYruN&ND@f^E>=-eE1cq(ij*VZoYVv+~8$j0%e%R<55zjp;Po%)^>HcEaJR{`M@s%?EoTuj<;qt*@jc~H^ zw~R^?bP8eKGeXw|Z`^ddC87RT5u6q*KQ99rh2e;@U#d}RU_g-gM>3x|7sd?m$uc+k z8QNzxTXrLUY%EZSaHZaStU{en7%}yW$c8=5>iJgly`G=}l*wM8{Mw zW>B*89<9eL69^GdWS@Y#sKobAxK+SnE1ZpgFTQ!>?NaLlLMn#^ilPIH8k3sZLitZT zX2>t-ApgvN&$J{!V=49pm%tDxia5zUOmEgxJu{SZ&m*#R!bH~Uj<>ulh^VikUimLF zxS$!r5>O;-nlxJ+?35g%0zqek&Ov`tX{4ok@!~lRDmSfWK-mK;t}7!7Y}ukt)T2xao49YWiJovgYfX1*u5` zVA0hPT&!W8WxP0zq7C6b#-8?CxkEY^z*nzgXd_qqT$2q-XfP$jPy#dfjPZmfa<#b1 zAXR?6?k15EJ3#!r#L1e0>y^L1w@!;B8v}w1AadRqKbOuJhL7Q7FLEF>3Hajkhm{;U z*zs&)r38>73@G!e{sP(pXUM`T06FtG$K6SmoD)Jbi*beNx0pMAtRhxQ1-rjFCj`Ry z9H(5!u2_D>n=u-Q1>mPPO(`)B*PI;mT$cye1&Ei}Q6bFV-kx01pG1ba?{5T1ti%fD zTV|lkqxGIS1cx)6eWc67z@(|0`)FkJQlW?7onqOGpyLHP@J5Lwe zuobts*_C(=2`k@+3mTPjFNB{>ND5+eDNVG$(ghRqYh+gxdYgP0O6}*ry!K`RWp|cD zX)NmVLRM+%!$QLn19kOis@9*_5WFnLZz}j;Zx*rB>lUJ$AP(pY`K=zYjH!WYx2a!o z%xVVH&RITUR1Ubur|mgfTJn}zgd~>B%%EfvbsY}J*H7)#9v503Yp~sN9XvTcl%LLW zn`#1O2!SDgs#ogkvc$MNd1fd;O-DUCAg~DUL>dG@%Dc}_3NkV>dZwm@RaKJGjWqRR zUu|EWrDn}8v+gYT`c)@c$eiLpW_^9#(ZywF|BQ}?Ph~(`aH&fLGAV`V4h068Rr+wO z;>OV;u~JMK%e~L-4wjL$TuB4VgY(Gbw~2{aMW)p&8}-;EUKel>{|j|dHSRjV=GH)m z+X>lxX=y)HpfA7S=HT$i)z$TRDEqfF8!}X8F|i8M= zLuwy}hYdh^d$F_6;jvfaIUl3_Ug~2~5@X}Z!Ro=fTWDcjoeT!P)hnM-AB1<+N|({^ z?d@fiaC|d0;slUJP*6SU_sf_VaxOLPNhH5ynm0-wJ?=&p($s3j`1S%PlwDgBf!F|) zj)ddj^~SxKm-3uW|He_2S_mh6Cr&CTPRj7Ve6(1ftXYSJ5rv6g>{|3Ik$vy$>wC~+ z<}d4y`@oz3;lqb&#j|Px$;kJcmF?AzT{@x6ZQ*g*A zUS5a4m-W+DJesEUIoNgp%i}On<3V^*u2x!Z;bJA=H|+y--6nly^082u2@Kw@dsYi^^lQ`Vd9{QD6Nu-q7T*qpT zPFX54P#e)SamtnVVkQecudm)Og~>tjPe1P~!A7fv{XGB%@ACy5LqrN~wqmlTqho^a zdO}99ByQ_77I6RP72+oy9eau@o>FM8|5F)PWPx( z45(M{LhrnRx=p}K(<#Ikn+Yu=g?q#3et4nEdd@)Sl=hSkj0wE9WOdI$+J5PHj)YUT zE%FPOX&vZ32{b)){!$AWIudCsNp9LS5xN9gU*8o=xRnA~e}4YWR?M3l3;5L3y9jbZ zhUS(Z98_zKOf$75zDY<7NhX0=L3D0*dE%i8V%*T>J9|owUR*RxeO(pe=U3%JRT?-r zbiBNtbP#i2DH~$U=hvg9brV1TGB)8tIjrL_m3{@f8wD03*F6w)M(D%`sV`o4A~fgc zlclskIsFCmOKc2POJFC4j zkFW=E8!vL5@g!kyz_dLJ2qMFdrQS+0migu#M~b$Y|nDhO93A4;nveO@Y0xE1-(KXn(vbOZ zLh&ELgNssGz4EU-B)%ElVFkrcgWXxHp^X8U^6z^5*N5P?^xUhUf`NHu+3tI;c9KA9 zGIWCV&J#6{W;)v(qPw_2+Dc?|%i_7@?P$pPRD>*-9p8*SUu*mUqrm z-7;j<=jzKej1Y&E5)Oj=?_N}(prot}+;NnUlw4`0RUCYCL)UvM7{5I5K=CcFphbg` zTjNermCJZ8C=KZ{J{n@Mo+#wE*LOkYn|b2U$3B%p`xjtL6}jYLO$_mJq*;*^Qc<~l z3nMBhE*}13TrTd9d+dU#(=UhhCh!KI>@U_W=cegdT9%BvHOqe)ar)2Day;$hcM73o z7P%wAYH*&IEFVr0K`h(}DC}pydT(#<&s9|hE-o&hA#-$g9vmt()Hg9%3Fv!w(^?$9 z=RPztLIzLY-Sw@ksycvQdO=dK72k81mR7_;3vn;2n7Ie;;jE<7wauI0#?sQ#V@<*J zu1)(e4mtma#>U1gQ_an&twCblz#9t+_=-#_`DUK-e4ij|KSnl_gv7O4Z8!so zN3(5uwu8-W5HRLLX!IwbfSA)N9+j@FtbF2B0s=;ofbmQ%254BHK7IOZNz3?`fR~d@ z266MzMIu1w9ea{_n#Q3R(!k2fS`l&_*qb7zYFKR6zrVE@3{&jOkOx}IQCLZGdV0~? z+S(6Qn$=o6**l~NfYgo40g{8712NMT<>k5nX0U?CfKr%cUhf;gDeE~G1&aEmYc3VK znfSP*hhm&0w2;zyy59dw$^7%@kDi4^@fFP^d$4WYy}d)$2>Gjd11!7ROuRSz7ST!| zY6U7GsO9{lJt@%6hwQa-t!yt3fR1(mXh#)Zi`rUgl3EEBt{9oob>H6i(u9HW@$(Nv zP_xa5x*OR8T>QNia8^QZ83ix`HA-*Dxo`{xHG{6nj!swd5<&eVuvbmbDm9a{ zuV`kEmKU*s-Cp0WLy@8Ht4B-MPa`m{8}>xd2PSf^r5R84)saJC5g(~+tu!M?B4`_k zv?4|3{PLT3QNOLq)k~T*V!=CM@Akv=%moE4H$n-J|9kj3PAKf%CAdvp#94>-m~RMK zcJwJbFFB+na9%-l6!Z*j(cjae`jLPWw|+&d)S3B`RUC+QMW=rIdSL6p$EtXGq{rfqneD1!Ss zF2l3Ml93al_3+x$D@-60Ll?qqlfD0L$7&Frbw21X#vnq%=E=F1J20KrlMUa#x4K>< z+!%p-t$k-_(>-WInlKEj&--dj)7zVmH3cE=b0S->g}_CluXjx zBjt9XQ$VYzN3)1F5JzELcX94A``ntOlSr6veT4%(*&&gdra*l*XlzWHC#$~=9#2aI zNq*;H@V1m(B>?_gSh6s2qnqY=3-l$>GWvn{)roIcndD-1m90M3 z-Uq~R^|AsbcP!W#zLxdrX++RL2JP250}G+IZ&OZ-?jaVMnZhdCdsO+z^CBb18}XvS zncWnWIbDe$7|^WKJPahO)6>1K$&#)%2MR;}!g&B)al^CEgtkXvq}gFh*9FA$un4YO zia+DH@(k~a7Uti4`7H1LM=53kKa>3|U6z>Z!ZmeD#%(H=`%~8x1B0L+51%7!n4D#c z4!osBSKiR1X=Q4T*W9Hb$-UXvPnjqu+uzxXuvbP`FK7$mBK5w7W4x^m7|7xCzmogM< zIhm={VLf_flvK8GzH%g+nk{hh!PX64%G4~Pr7JCw`V*_O)YRx?%L7Z;UqEfSern#v zgttVg(at~g3_1ODE5+pMY&8Zp?7wGf;c-f=4ZbZlnF$3(ry~3*t6~jS3bx!&i8q3! z-Xm4qXnBRfwFZK?mssXcX)ratJLZ%yFuKL%p8DWY%H|2l`7250Grdy>HMjiI$xfp{ z#U`2N$(XRK)H66s!+mju2oj}23T=M%Evk6(0-NyiA1i{@|zOt_BUWI&$6;hLDaAI2wRu{T}T5GA+u zYSDM9DcJhfjLocPie0%H+OLTxUBRW#p9I~1sj^Z%@mgev3pUZU@j(qK#Qj3$q5{y0 zr@ap6lP!niFDVcH`t?~o@oK;ZcD%ae&(@Z;Sc?tl=mAkvbEQskdf30l%>28uXfrBP z`0d-W`#@@SXylV}ad3FeOU*3uZSh3Vw95YHhuf^OzF$DH_gO~gOdh?PoAXp*l4~j2 z{P02o;?`0zcOM%a%?CaOGrtLsNP<#ad-|P>OV7ij3{;0)p{U@*-`D`yeie;53=v>v)*LMKjaz71^hla+p%sc!k2remZ zt#{}5SAjhWmFd>!Un+JMiog2Fv82g;`cC8iLR#SIFr0?yO9b(MB^41FTEm-_uFZ z8wfDUt!Y2kwPEuf>Np@EpbmsFVUC0gfDNfWOT+$|u%MeW?R)|PdgkWlMv6Q)Xp<;? zq~5n$?XJbY%K`4K?3!LU0X-&+s`ZR(3O8n}at7Q52q+M!?AtAr!k>$Zw188Az^7+` zR`fD|pjM1qIN+3^C=J+i+R&nI9@}co%E}&Z2>Pkn zC^LS=w#M}Bp>?&U-xSB52j0t|BngJP3ToI-&6Jy4(fCoqYv81?PC)w)36 zqt4KGC{S(ysc@F+aV;cUz-8NL>f)N2tU5qCab+o*0i-{XC#A^sOS{# zOsfR}A3%&P6R?}*_fT?yPTvl(&jDNpLgg*0TCt<`*4-Dkg0!?gsgi)2-Sr;Vf9zh{ zr(HgK12mDXqj@|5vg+#A8Q*+oTY1ge#yC0{mRsqV!89;bBv^#vGUNs{G<&?L6&t^eYyz zCkpPs%9ZLIVa42kvLM`iq@x@`^~l^j{i;@KHlV|(IpvH@t6hgc^TG@G8J?&7q;0i-5w?v+H}mc_^c=uMg1n79228Dzdy_ z_-8)RaDiVA<`N%(xsDeS0ZObOC#QYO=g(Z1MI-1D)Lf^c7H$ce)jV`-KCYS!Jq>1H zWDMLup->}l`3=2Kjsh}A5kL{;Q&gP7I@$i6ic$&Y%ZnHLdm^ovO={dfR=G_TW9t2! z=6<|ZKp?mjErJiW`-{!%F$z}tv{3ngsO+BlQ8EgtBFqt+n+s>aeOB;5WFeW@g0 zeLD)|4z?E6Pe80~2+*<13#cb>3z;nEK}&xb&TFEpYxs{xlU@ug-OMZ8Yx^r#5*o)t z&qgY<%FEoGC4#v70K_pcy6!S&bC#y-=w#;Q!ZGl7e*8RE$kXwU&S1N3Pr%AWU;rvs zmjJ5}PX{av|D!YZe|^FdHk_GSMR?Ug+@0e*2SMb?hhF2y(wz6vFA$VWLTU*yF)7Zp_d2_I{dM&M&abUz1^xBUey(UPx6B85fntbb~ zO;jRQ85D|vrO)8?bl?kN&XMl_Y|L#a;8}(#tohbc%)%?+uC79EJt7`Oms@uzxJLNk zW`#f88(WxGofsTDT4SF91M@$2TD^NO5Nm7B^2gf)K+V8y;Q z8sUdWHyNlK0t*#{HoeyiOiN*H1h>?`n}=EG6+*VsrtI6I=m?s#xW~-hg>49)$BtJlvjInc=8*-TKmYvpl$b!Fr-<3D07>~Ads!tR?t=l>KU8Yf3hv*I zR6P2==+P>&y_I=t2Hb9h5(-#^g52DznTtpJsL)|$TKR0C`~r2{5`=6WusXg7rEq#) zXMm9VqlUnb0SGp~_5OaX0XUPXB3949^5$Jqj#xT5#E!h?QH5vF_f0j@U(;U72-hLU0zmHzsQD(h5#D?f1G78u5%0T7|uDTfb)7 zU+#c}=K#D41%-tJ!0IOsbaIloVH3cb)PYMoX;ViX*jcCHFa3%~t%^&Tr~8>czrPU? zU?rhn2NHxlDq!hjnw#MoU&Gms0w&;ro!>IuDbee zlc?x77Xbc&`0wxP=k3i5T;yT}1qBzR3fh7Wmh)mk&L6^BFQPJU0cOP7dAzFEYbx|) zF_bmo)xkmF%X{zScv;4)-S86|Yir^F`NpoSIHH0H_kS%fk2SOiXcwVs-CHY1QK{ck zRt{g3Cg@gH<)g1o4@yqIIT>d}oQE zo1AJ?JlRA_`LMoOj1gFbaCn6OM{r0N%`=wfiot+&5*9E+9Zb2EkCMJCKm}20O zF;ZB#J6`Ws5<$iC2}n$j6!*IxY!4Y)25=(hoB+*rS)EnnaacC)WP?x&lT2Ove|}V! zN8RA(*98`o#Z%7#ef;Wt)qk_{&IJh2ml&$5MuK=48Xg9`Qi?aWFk9A0X!ryiW>XFh z4h1INga|;qp%hQ$Zf9xGfWtG06mI@P7)IWM%;5t4!tLtN!)ijY^Iqs-v9-0$4?R6m zXtrDW`4JS%`%likzdJGVZR)W5_!pS1I5=^coz0uEZUjP$#g7^b0=D{V?lg^2IKS0%oD<*1C9__y!pN7 ze$X{;cCaOgt_A{MiV=`E2~Y)CjR-{(lt5#^SKlwd>yJg!l1K(0c%w=>W7+be>8};k z)EJdC?xq$u?v9bfQ7tb#CF8^$9T3(O&}rg8JX^=q8|vn1YyJLlfnZ_Eg#U?tP{eSC z(z~(2DcrSoo{{0=Mf;V(e1gyRUM#EajtKqA|IA2UkpIGo4jHuteVV5fyF6bY>Thi>uvl`DH>+8c<#}u2=CA5gW`f@Mnlu-_+E}#?Fon zpvkYBqjs4rAYY0d;IUZU{

MA#=wyO#O(I@7lY~JjLU#>w|KM<~`}DKT%}y>huF#{hOI`keKaU0OwqHP86$TmT z72v?xjt}v-CgEFJv*18>1miJwuh^y0dq~TZnSfZ}YeMd&HSe>{g3{Ol%pm|YFHr+cWwVpYT3=QqrWqo_3yqDt3Jm)o9 zVdX5RyKbj2=6jxvC8C$%%n?>cvx+BKgvH|F=SSA8SB<{{)4vv|cJ7v4AA8n^58r-t zcZ;5^l$>Ky@n1@i*4bjhf}~E(xGM z$A>9u!Aa{4fbcK6(Xgd$jr;xmUZz6uE08X%L7|p!3C%U*4;@iY*hFgz2mA#OW;+pV z;Ptma1~9P(N3#Q+qZtbt29u+_=;ntbt8LNr9og!MuZW1xG80Cz)Snd#YBQUlprArY z;<=GkRmFqXkIc-RZES5>2y30IoxXC8Gvc)wmOssk`JVG4_&;jU8O_5~(Ducf5v\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
024.218
123.154
224.347
324.411
424.411
......
29546.357
29646.551
29746.519
29846.551
29946.583
\n", + "

300 rows × 1 columns

\n", + "" + ], + "text/plain": [ + " 0\n", + "0 24.218\n", + "1 23.154\n", + "2 24.347\n", + "3 24.411\n", + "4 24.411\n", + ".. ...\n", + "295 46.357\n", + "296 46.551\n", + "297 46.519\n", + "298 46.551\n", + "299 46.583\n", + "\n", + "[300 rows x 1 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "df = pd.read_csv('data.csv')\n", + "df " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1., 0.],\n", + " [ 1., 1.],\n", + " [ 1., 2.],\n", + " [ 1., 3.],\n", + " [ 1., 4.],\n", + " [ 1., 5.],\n", + " [ 1., 6.],\n", + " [ 1., 7.],\n", + " [ 1., 8.],\n", + " [ 1., 9.],\n", + " [ 1., 10.],\n", + " [ 1., 11.],\n", + " [ 1., 12.],\n", + " [ 1., 13.],\n", + " [ 1., 14.],\n", + " [ 1., 15.],\n", + " [ 1., 16.],\n", + " [ 1., 17.],\n", + " [ 1., 18.],\n", + " [ 1., 19.],\n", + " [ 1., 20.],\n", + " [ 1., 21.],\n", + " [ 1., 22.],\n", + " [ 1., 23.],\n", + " [ 1., 24.],\n", + " [ 1., 25.],\n", + " [ 1., 26.],\n", + " [ 1., 27.],\n", + " [ 1., 28.],\n", + " [ 1., 29.],\n", + " [ 1., 30.],\n", + " [ 1., 31.],\n", + " [ 1., 32.],\n", + " [ 1., 33.],\n", + " [ 1., 34.],\n", + " [ 1., 35.],\n", + " [ 1., 36.],\n", + " [ 1., 37.],\n", + " [ 1., 38.],\n", + " [ 1., 39.],\n", + " [ 1., 40.],\n", + " [ 1., 41.],\n", + " [ 1., 42.],\n", + " [ 1., 43.],\n", + " [ 1., 44.],\n", + " [ 1., 45.],\n", + " [ 1., 46.],\n", + " [ 1., 47.],\n", + " [ 1., 48.],\n", + " [ 1., 49.],\n", + " [ 1., 50.],\n", + " [ 1., 51.],\n", + " [ 1., 52.],\n", + " [ 1., 53.],\n", + " [ 1., 54.],\n", + " [ 1., 55.],\n", + " [ 1., 56.],\n", + " [ 1., 57.],\n", + " [ 1., 58.],\n", + " [ 1., 59.],\n", + " [ 1., 60.],\n", + " [ 1., 61.],\n", + " [ 1., 62.],\n", + " [ 1., 63.],\n", + " [ 1., 64.],\n", + " [ 1., 65.],\n", + " [ 1., 66.],\n", + " [ 1., 67.],\n", + " [ 1., 68.],\n", + " [ 1., 69.],\n", + " [ 1., 70.],\n", + " [ 1., 71.],\n", + " [ 1., 72.],\n", + " [ 1., 73.],\n", + " [ 1., 74.],\n", + " [ 1., 75.],\n", + " [ 1., 76.],\n", + " [ 1., 77.],\n", + " [ 1., 78.],\n", + " [ 1., 79.],\n", + " [ 1., 80.],\n", + " [ 1., 81.],\n", + " [ 1., 82.],\n", + " [ 1., 83.],\n", + " [ 1., 84.],\n", + " [ 1., 85.],\n", + " [ 1., 86.],\n", + " [ 1., 87.],\n", + " [ 1., 88.],\n", + " [ 1., 89.],\n", + " [ 1., 90.],\n", + " [ 1., 91.],\n", + " [ 1., 92.],\n", + " [ 1., 93.],\n", + " [ 1., 94.],\n", + " [ 1., 95.],\n", + " [ 1., 96.],\n", + " [ 1., 97.],\n", + " [ 1., 98.],\n", + " [ 1., 99.],\n", + " [ 1., 100.],\n", + " [ 1., 101.],\n", + " [ 1., 102.],\n", + " [ 1., 103.],\n", + " [ 1., 104.],\n", + " [ 1., 105.],\n", + " [ 1., 106.],\n", + " [ 1., 107.],\n", + " [ 1., 108.],\n", + " [ 1., 109.],\n", + " [ 1., 110.],\n", + " [ 1., 111.],\n", + " [ 1., 112.],\n", + " [ 1., 113.],\n", + " [ 1., 114.],\n", + " [ 1., 115.],\n", + " [ 1., 116.],\n", + " [ 1., 117.],\n", + " [ 1., 118.],\n", + " [ 1., 119.],\n", + " [ 1., 120.],\n", + " [ 1., 121.],\n", + " [ 1., 122.],\n", + " [ 1., 123.],\n", + " [ 1., 124.],\n", + " [ 1., 125.],\n", + " [ 1., 126.],\n", + " [ 1., 127.],\n", + " [ 1., 128.],\n", + " [ 1., 129.],\n", + " [ 1., 130.],\n", + " [ 1., 131.],\n", + " [ 1., 132.],\n", + " [ 1., 133.],\n", + " [ 1., 134.],\n", + " [ 1., 135.],\n", + " [ 1., 136.],\n", + " [ 1., 137.],\n", + " [ 1., 138.],\n", + " [ 1., 139.],\n", + " [ 1., 140.],\n", + " [ 1., 141.],\n", + " [ 1., 142.],\n", + " [ 1., 143.],\n", + " [ 1., 144.],\n", + " [ 1., 145.],\n", + " [ 1., 146.],\n", + " [ 1., 147.],\n", + " [ 1., 148.],\n", + " [ 1., 149.],\n", + " [ 1., 150.],\n", + " [ 1., 151.],\n", + " [ 1., 152.],\n", + " [ 1., 153.],\n", + " [ 1., 154.],\n", + " [ 1., 155.],\n", + " [ 1., 156.],\n", + " [ 1., 157.],\n", + " [ 1., 158.],\n", + " [ 1., 159.],\n", + " [ 1., 160.],\n", + " [ 1., 161.],\n", + " [ 1., 162.],\n", + " [ 1., 163.],\n", + " [ 1., 164.],\n", + " [ 1., 165.],\n", + " [ 1., 166.],\n", + " [ 1., 167.],\n", + " [ 1., 168.],\n", + " [ 1., 169.],\n", + " [ 1., 170.],\n", + " [ 1., 171.],\n", + " [ 1., 172.],\n", + " [ 1., 173.],\n", + " [ 1., 174.],\n", + " [ 1., 175.],\n", + " [ 1., 176.],\n", + " [ 1., 177.],\n", + " [ 1., 178.],\n", + " [ 1., 179.],\n", + " [ 1., 180.],\n", + " [ 1., 181.],\n", + " [ 1., 182.],\n", + " [ 1., 183.],\n", + " [ 1., 184.],\n", + " [ 1., 185.],\n", + " [ 1., 186.],\n", + " [ 1., 187.],\n", + " [ 1., 188.],\n", + " [ 1., 189.],\n", + " [ 1., 190.],\n", + " [ 1., 191.],\n", + " [ 1., 192.],\n", + " [ 1., 193.],\n", + " [ 1., 194.],\n", + " [ 1., 195.],\n", + " [ 1., 196.],\n", + " [ 1., 197.],\n", + " [ 1., 198.],\n", + " [ 1., 199.],\n", + " [ 1., 200.],\n", + " [ 1., 201.],\n", + " [ 1., 202.],\n", + " [ 1., 203.],\n", + " [ 1., 204.],\n", + " [ 1., 205.],\n", + " [ 1., 206.],\n", + " [ 1., 207.],\n", + " [ 1., 208.],\n", + " [ 1., 209.],\n", + " [ 1., 210.],\n", + " [ 1., 211.],\n", + " [ 1., 212.],\n", + " [ 1., 213.],\n", + " [ 1., 214.],\n", + " [ 1., 215.],\n", + " [ 1., 216.],\n", + " [ 1., 217.],\n", + " [ 1., 218.],\n", + " [ 1., 219.],\n", + " [ 1., 220.],\n", + " [ 1., 221.],\n", + " [ 1., 222.],\n", + " [ 1., 223.],\n", + " [ 1., 224.],\n", + " [ 1., 225.],\n", + " [ 1., 226.],\n", + " [ 1., 227.],\n", + " [ 1., 228.],\n", + " [ 1., 229.],\n", + " [ 1., 230.],\n", + " [ 1., 231.],\n", + " [ 1., 232.],\n", + " [ 1., 233.],\n", + " [ 1., 234.],\n", + " [ 1., 235.],\n", + " [ 1., 236.],\n", + " [ 1., 237.],\n", + " [ 1., 238.],\n", + " [ 1., 239.],\n", + " [ 1., 240.],\n", + " [ 1., 241.],\n", + " [ 1., 242.],\n", + " [ 1., 243.],\n", + " [ 1., 244.],\n", + " [ 1., 245.],\n", + " [ 1., 246.],\n", + " [ 1., 247.],\n", + " [ 1., 248.],\n", + " [ 1., 249.],\n", + " [ 1., 250.],\n", + " [ 1., 251.],\n", + " [ 1., 252.],\n", + " [ 1., 253.],\n", + " [ 1., 254.],\n", + " [ 1., 255.],\n", + " [ 1., 256.],\n", + " [ 1., 257.],\n", + " [ 1., 258.],\n", + " [ 1., 259.],\n", + " [ 1., 260.],\n", + " [ 1., 261.],\n", + " [ 1., 262.],\n", + " [ 1., 263.],\n", + " [ 1., 264.],\n", + " [ 1., 265.],\n", + " [ 1., 266.],\n", + " [ 1., 267.],\n", + " [ 1., 268.],\n", + " [ 1., 269.],\n", + " [ 1., 270.],\n", + " [ 1., 271.],\n", + " [ 1., 272.],\n", + " [ 1., 273.],\n", + " [ 1., 274.],\n", + " [ 1., 275.],\n", + " [ 1., 276.],\n", + " [ 1., 277.],\n", + " [ 1., 278.],\n", + " [ 1., 279.],\n", + " [ 1., 280.],\n", + " [ 1., 281.],\n", + " [ 1., 282.],\n", + " [ 1., 283.],\n", + " [ 1., 284.],\n", + " [ 1., 285.],\n", + " [ 1., 286.],\n", + " [ 1., 287.],\n", + " [ 1., 288.],\n", + " [ 1., 289.],\n", + " [ 1., 290.],\n", + " [ 1., 291.],\n", + " [ 1., 292.],\n", + " [ 1., 293.],\n", + " [ 1., 294.],\n", + " [ 1., 295.],\n", + " [ 1., 296.],\n", + " [ 1., 297.],\n", + " [ 1., 298.],\n", + " [ 1., 299.]])" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import numpy as np\n", + "y = df['0']\n", + "n = 300\n", + "t = np.linspace(0,n-1,n)\n", + "X = np.c_[np.ones(len(t)), t]\n", + "X" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([25.70275643, 0.07850281])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "theta = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)\n", + "theta " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1. , 0. ],\n", + " [ 1. , 15.78947368],\n", + " [ 1. , 31.57894737],\n", + " [ 1. , 47.36842105],\n", + " [ 1. , 63.15789474],\n", + " [ 1. , 78.94736842],\n", + " [ 1. , 94.73684211],\n", + " [ 1. , 110.52631579],\n", + " [ 1. , 126.31578947],\n", + " [ 1. , 142.10526316],\n", + " [ 1. , 157.89473684],\n", + " [ 1. , 173.68421053],\n", + " [ 1. , 189.47368421],\n", + " [ 1. , 205.26315789],\n", + " [ 1. , 221.05263158],\n", + " [ 1. , 236.84210526],\n", + " [ 1. , 252.63157895],\n", + " [ 1. , 268.42105263],\n", + " [ 1. , 284.21052632],\n", + " [ 1. , 300. ]])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "Xnew1 = np.linspace(0,300, 20)\n", + "Xnew = np.c_[np.ones(len(Xnew1)), Xnew1]\n", + "Xnew" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXpElEQVR4nO3deVxU9f4/8NecUXBhMXBBGxhNcEmzxUxpMVILLf2VW2Z62wiltFwR0MosCxLUrKsm3rnaZoj3m3Wtqy2KlAmGlKmZXPCKeFLUTEFQQWfO749PMzIwwAzMBvN6Ph488CxzzmdOwLz7LO+3SlEUBUREREROIrm6AURERORZGHwQERGRUzH4ICIiIqdi8EFEREROxeCDiIiInIrBBxERETkVgw8iIiJyKgYfRERE5FQtXN2A6gwGA06cOAFfX1+oVCpXN4eIiIisoCgKLly4gC5dukCS6u7bcLvg48SJEwgODnZ1M4iIiKgBjh8/Do1GU+c5bhd8+Pr6AhCN9/Pzc3FriIiIyBqlpaUIDg42fY7Xxe2CD+NQi5+fH4MPIiKiJsaaKROccEpEREROZVPw8eqrr0KlUpl99erVy3T88uXLmDZtGgIDA+Hj44OxY8fi1KlTdm80ERERNV0293z06dMHJ0+eNH3t2rXLdGzWrFnYsmULNm3ahMzMTJw4cQJjxoyxa4OJiIioabN5zkeLFi0QFBRUY39JSQl0Oh02bNiAIUOGAADWrVuH3r17Izs7G4MGDWp8a/+iKAquXr0KvV5vt2uSZS1btoRarXZ1M4iIqBmxOfjIz89Hly5d0KpVK4SHhyMxMREhISHIzc3FlStXMGzYMNO5vXr1QkhICLKysmoNPioqKlBRUWHaLi0trfP+lZWVOHnyJC5evGhr06kBVCoVNBoNfHx8XN0UIiJqJmwKPgYOHIj169ejZ8+eOHnyJBYtWoR77rkHBw8eRHFxMby8vNCuXTuz13Tq1AnFxcW1XjMxMRGLFi2y6v4GgwFHjx6FWq1Gly5d4OXlxURkDqQoCs6cOQNZlhEWFsYeECIisgubgo8RI0aY/t2vXz8MHDgQWq0W6enpaN26dYMakJCQgNmzZ5u2jeuELamsrITBYEBwcDDatGnToPuRbTp06IDCwkJcuXKFwQcREdlFo5batmvXDj169EBBQQGCgoJQWVmJ8+fPm51z6tQpi3NEjLy9vU05PazN7VFf2layH/YsERGRvTXqU7ysrAxHjhxB586d0b9/f7Rs2RLbt283Hc/Ly0NRURHCw8Mb3VAiIiJqHmwKPubOnYvMzEwUFhZi9+7dGD16NNRqNSZOnAh/f39ERUVh9uzZyMjIQG5uLp5++mmEh4fbdaULERERNcLevcCQIeK7i9gUfMiyjIkTJ6Jnz5549NFHERgYiOzsbHTo0AEAsHz5cowcORJjx47F4MGDERQUhE8//dQhDSfLIiIiMHPmTKvPX79+fY1JwkRE1Ix98AGQkQF8+KHLmmDThNO0tLQ6j7dq1QorV67EypUrG9Uop9m7F5g3D1iyBLj9dle3hoiIyDGOHQP++ANQqYCNG8W+tDTgyScBRQHatwe0Wqc1x+0KyzlV1eiPwQcRETVXXbvW3HfmDNC//7VtRXFac5r+shFFAcrLrf/67Tdg1y7ghx9E1AcAn3witnftEsetvZYN/6EiIiLwwgsvYObMmbjuuuvQqVMnrF27FuXl5Xj66afh6+uL0NBQbN261fSazMxM3HHHHfD29kbnzp0RHx+Pq1evmo6Xl5fjiSeegI+PDzp37oylS5fWuG9FRQXmzp2L66+/Hm3btsXAgQOxc+fOBj9uIiJqgtatA6qvFDV+hrVoAXz0kVOb0/R7Pi5eBBqbffPMGeDuu21/XVkZ0Lat1ae///77mDdvHn788Uds3LgRzz33HDZv3ozRo0dj/vz5WL58Of72t7+hqKgI586dw4MPPoinnnoKH3zwAQ4fPozo6Gi0atUKr776KgAgNjYWmZmZ+Pzzz9GxY0fMnz8fP/30E2655RbTPadPn45Dhw4hLS0NXbp0webNmzF8+HAcOHAAYWFhtr9nIiJqOhQF+OIL4I03AIPB8jl79gC33ebsdrmXkpISBYBSUlJS49ilS5eUQ4cOKZcuXbq2s6xMUcTjdf5XWZnV7+vee+9V7r77btP21atXlbZt2yp/+9vfTPtOnjypAFCysrKU+fPnKz179lQMBoPp+MqVKxUfHx9Fr9crFy5cULy8vJT09HTT8bNnzyqtW7dWZsyYoSiKohw7dkxRq9XK77//btaWoUOHKgkJCYqiKMq6desUf3//Wttt8ZkTEZH7++03RRk+/NpnVmCg+C5J5t9zc+1yu7o+v6tr+j0fbdqIHghb7Ntnuadj1y6gSq+BVfe2Qb9+/Uz/VqvVCAwMxE033WTa16lTJwDA6dOn8dtvvyE8PNwsydddd92FsrIyyLKMc+fOobKyEgMHDjQdDwgIQM+ePU3bBw4cgF6vR48ePczaUVFRgcDAQJvaTkRETURJCfDaa8A77wBXrwItWwKzZgFPPw3cdx8QHAxERQE6HXD8ONCxo9Ob2PSDD5XKpqEPAIAxFbwkiW4o4/fWrW2/lg1atmxptq1Sqcz2GQMNQ21dYzYqKyuDWq1Gbm5ujdToLBRHRNTMGAxibsf8+cDp02LfyJHAsmWAcZi9sBDw8hKfnVOmAJWVgLe305va9CecNkTHjkBQkJjl+9574ntQkEuiv9r07t0bWVlZUKpMav3hhx/g6+sLjUaD7t27o2XLltizZ4/p+Llz5/Df//7XtH3rrbdCr9fj9OnTCA0NNfuqK+U9ERE1Mbt3A3fcATz7rAg8evYEtm4Ftmy5FngAItAw9qirVC4JPIDm0PPREBqN20R/tXn++efx9ttv44UXXsD06dORl5eHhQsXYvbs2ZAkCT4+PoiKikJsbCwCAwPRsWNHLFiwwKzuTY8ePTBp0iQ88cQTWLp0KW699VacOXMG27dvR79+/fDQQw+58B0SEVGj/f47EBcHfPyx2PbzAxYuBKZPF59xbsozgw/APNBwYfRXm+uvvx7/+c9/EBsbi5tvvhkBAQGIiorCSy+9ZDonOTkZZWVlGDVqFHx9fTFnzhyUlJSYXWfdunVYvHgx5syZg99//x3t27fHoEGDMHLkSGe/JSIispfLl4Hly8UqlvJy8Tn2zDNi+6/5g+5MpVTt13cDpaWl8Pf3R0lJSY0Kt5cvX8bRo0fRrVs3tGrVykUt9Cx85kREbkRRgH//G5g9G/jf/8S+8HAxudTFyTLr+vyuzjPnfBARETU1v/0GREYCjzwiAo8uXUSG7h9+cHngYSsGH0RERO6ketXZ8+eBmTOBm24CvvlGzOVISADy8oDJk69NIG1CPHfOBxERkTsy1h374APg55/F0tk//hDHHn4YWLoU6N7dtW1sJAYfRERErmap6uzq1SJJGACEhgIrVwIPPOC6NtoRgw8iIiJXs1R1tkohURQUNJvAA+CcDyIiItf75z9rVp01ckHVWUdjzwcREZGrKArw2WeiFos7VZ11MPZ8EBERucKvvwL33w+MGSOybnfoIPYbe0Bq6wlpBprvO2sCIiIiMHPmTFc3g4iInOncOeDFF4Gbbwa2bxcZtl96SVRWd/O6Y/bCYZcmYufOnbjvvvtw7tw5tGvXztXNISIiW+n1wNq1ItA4e1bsGz1aLJ3t1k1su3ndMXth8EFERORo330nejt++UVs9+kDrFgBDB1qfp6b1x2zF48edpFlGRkZGZBl2eH3Ki8vxxNPPAEfHx907twZS5cuNTv+4Ycf4vbbb4evry+CgoLw+OOP4/Tp0wCAwsJC3HfffQCA6667DiqVCk899RQAYNu2bbj77rvRrl07BAYGYuTIkThy5IjD3w8REVmhqAiYMAG4914ReLRrJ+qw7NtXM/DwIB4bfOh0Omi1WgwZMgRarRY6nc6h94uNjUVmZiY+//xzfP3119i5cyd++ukn0/ErV67g9ddfxy+//ILPPvsMhYWFpgAjODgY//d//wcAyMvLw8mTJ7FixQoAIqiZPXs29u7di+3bt0OSJIwePRqG2mZNExGR4126JFaw9OoFpKeLXoyYGCA/H3jhBbF81pMpbqakpEQBoJSUlNQ4dunSJeXQoUPKpUuXGnWP48ePK5IkKQBMX2q1Wjl+/HijrlubCxcuKF5eXkp6erpp39mzZ5XWrVsrM2bMsPianJwcBYBy4cIFRVEUJSMjQwGgnDt3rs57nTlzRgGgHDhwwC5tt9czJyLyCAaDomzapCharaKIhbSKcs89ivLzz65umcPV9fldnUf2fOTn59foGdDr9SgoKHDI/Y4cOYLKykoMHDjQtC8gIAA9e/Y0befm5mLUqFEICQmBr68v7r33XgBAUVFRndfOz8/HxIkTccMNN8DPzw9d/8qSV9/riIjIzg4cEAXhxo8X6dKDg4G0NCAzE7jlFle3zq14ZPARFhYGqdr6abVajdDQUJe0p7y8HJGRkfDz88PHH3+MnJwcbN68GQBQWVlZ52tHjRqFP//8E2vXrsWePXuwZ88eq15HREQNVL3q7NmzwLRpIsDYuRNo1Qp45RXg8GEx36MJVp11NI8MPjQaDVJTU6FWqwGIwGPNmjXQaDQOuV/37t3RsmVLU2AAAOfOncN///tfAMDhw4dx9uxZJCUl4Z577kGvXr1Mk02NvLy8AIgeGqOzZ88iLy8PL730EoYOHYrevXvj3LlzDnkPRET0F2PV2fffB1atAnr0EN8NBmDcOOC334BFi4A2bVzdUrflsTNeoqKiEBkZiYKCAoSGhjos8AAAHx8fREVFITY2FoGBgejYsSMWLFhg6n0JCQmBl5cX3n33XcTExODgwYN4/fXXza6h1WqhUqnwxRdf4MEHH0Tr1q1x3XXXITAwEKmpqejcuTOKiooQHx/vsPdBROSxaqs6a/wfwh49RGKwv1YmUt08sufDSKPRICIiwqGBh1FycjLuuecejBo1CsOGDcPdd9+N/v37AwA6dOiA9evXY9OmTbjxxhuRlJSElJQUs9dff/31WLRoEeLj49GpUydMnz4dkiQhLS0Nubm56Nu3L2bNmoXk5GSHvxciIo/TtStw++0i66ixZ7pKTzT++1+3DzycmV6iPipFURRXN6Kq0tJS+Pv7o6SkBH5+fmbHLl++jKNHj6Jbt25o1aqVi1roWfjMiYggqs5GR1su/taiBbB+PTBpktObVRdZlrF7924AwP79+5GYmAiDwQBJkpCamoqoqCi73q+uz+/qPHbYhYiIqF6KIvJ0vPpqk6o6q9PpEB0dDUv9CwaDAVOnTkVkZKRTev4t8ehhFyIiolrt2wdERACPPQYcPy6KvAFuX3U2Jyen1sDDyJHpJazBng8iIqKq/vgDePllIDVV9Ha0bg3ExwMTJwKDB4v8HVFRgE4nghInVp2VZRn5+fnw8fHB0aNHAQDdunUz/Xv//v1488036ww8AECSJJellwAYfBAREQlXr4oVLK+8Apw/L/Y9+iiQnAyEhIhtJ1WdrRpklJWVISwsDGlpaYiLi7NL+Yy33nrLZUMuAIMPIiIiYPt2YMYM4NdfxfbNN4uqs39lmzZxUNVZY7Bh7yCjOkmSkJSUhLlz59r92rZoksGHmy3Qadb4rImoWTt6FJg7F/j0U7EdGAgsXixWtvyViNKeqq5AMQ6X7NixA2vXrnVYQdDVq1ejf//+KC8vd3heK2s1qeCjZcuWAICLFy+idevWLm6NZzCmaVc74JeQiMhlysuBpCQxpFJRIQKN558Xq1oCAhxyy7pWoDhKcnIyYmJinHY/azWp4EOtVqNdu3am1ONt2rSBijnzHcZgMODMmTNo06YNWnh6+Wciah4URRR7mzcPMCbbGjJEDLH07euw28qy7NTAw12GV2rT5D5Rgv5a6lS99gk5hiRJCAkJYZBHRE3fzz8DL74I7Noltrt2BZYtAx55xKbib1WHTu68804AMM3XMP67+mqU77//3m6Bh0qlQkJCAm75q1Ju165dUVhYaPq3Ow2v1KbJBR8qlQqdO3dGx44dceXKFVc3p9nz8vKqUQGYiMit7d0rejaWLBEp0c+cAV56CVi7VvR8tGkDJCQAc+aIZbQ2sDR0olKpTNtV/91Yxv/pq3o9SZKQnZ2NAQMGmJ1bfdvdNbngw0itVnMeAhER1VS16uyuXWIeR0mJODZxoghKGtArUNvQSdXtxgQexsBFkiTMnj0bM2bMwFdffYWpU6dCr9ebKrA3tUDDkiYbfBAREZnUV3W2Tx9Rdfbuuxt0eVmWkZ6ebrdeDeMKFONwSXh4OADUqLTuzArsztSkCssRERFZZM2cjTo+7iwl9QLE/I3c3Fy7593IyMhARESE3a7nDlhYjoiIPMs//iEyjtZVdbYWKSkpFoMLe87fqEqtVrs0tbk7YPBBRERNl6IAH38sUqLbWHVWlmUsXrwYa9asqeXSdQcekydPxieffAK9Xm82OVSSJMTHx5tWo/zyyy+mcvbGeRvNZfikoRo17JKUlISEhATMmDEDb7/9NgAgIiICmZmZZudNnToV7733nlXX5LALERFZZe9esXQ2K0tsX3898PvvotqswXDte25ujeDDHgm/MjIyEBoaapqPAdScs2Eky3Kzm7dRnVOGXXJycrBmzRr069evxrHo6Gi89tprpu02bdo09DZERETmTp8G5s8H/vlP0fPRti2wYAHku+9G/sMPIywkBJrnngN0OsiFhcgvKEBYx46mD31ZljFlypRGBR7GoRONRmMWTNQWWFQ/z9M1KIFDWVkZJk2ahLVr1+K6666rcbxNmzYICgoyfbEHg4iIGq2yUiQFCwsT5ewVBZg8GcjLQ0rLltBGRGDIuXPQHjiA5NJSxA4eDO3ZsxgyYQJCQkKQnJwMAFixYkWjJo9y6KTxGjTs8uSTTyIgIADLly9HREQEbrnlFrNhl19//RWKoiAoKAijRo3Cyy+/XGvvR0VFBSoqKkzbpaWlCA4O5rALERFds20bMHMmkJcntvv3B955B3JISJ3zNqpbsGAB3nzzTYu9HpIkYfjw4di2bVutwcny5csxbtw4Bh4WOHTYJS0tDT/99BNycnIsHn/88ceh1WrRpUsX7N+/H3FxccjLy8OnxoqB1SQmJmLRokW2NoOIiDxBQQHkmBjs3r4dAHBnYCA0S5YATz2FlGXLMO/uu20aPqkt8Hj00UexdOlSaDQayLKMrKwsPPbYY2ZBiFqtZuBhJzb1fBw/fhy33347vvnmG9Ncj+o9H9Xt2LEDQ4cORUFBAbp3717jOHs+iIiohgsXgMWLoVu6FNF6Pap+UE2dOhVlZWX4+OOPG3RpSZLMggpJknDs2LEaQYVOp6uRXTQqKqpB9/QEtvR82BR8fPbZZxg9erRZWnPjEiNJklBRUVEj5Xl5eTl8fHywbds2REZG2rXxRETUzBgMwEcfQZ47F7vPnMFjAOyZaUOtViMpKQnx8fFWBRWesErFXhw27DJ06FAcOHDAbN/TTz+NXr16IS4uzmKtlX379gEAOnfubMutiIioGTNmFA0LC7v2of7jj5CnTsWKffuwDEBDpoRKkoQxY8Zg8+bNNfJvVA00HnvsMauCCq5ScQybgg9fX1/07dvXbF/btm0RGBiIvn374siRI9iwYQMefPBBBAYGYv/+/Zg1axYGDx5scUkuERF5FlmWsWLFCixbuhQGRRHl4V98ETfv24cdmZlIRcN7OmJiYrBgwQLTvI3q+Tfatm2LsrIyyLLMoMLF7Jrh1MvLC99++y3efvttlJeXIzg4GGPHjsVLL71kz9sQEVETZCmxl6IoeHPFikZdV5IkJCUlITY21rSvenDx1VdfYcqUKTAYDJAkCampqZy/4UIsLEdERA4nyzK0Wm2D8mtIkoSVK1fil19+wZo1a0zBi0qlwpw5czBjxow6ezEs3VutVqOwsJC9H3bEwnJEROQyluZzNDSxV/UJoQsWLEDWX+nUw8PDrQoe8vPza9xbr9ejoKCAwYeLMPggIqJGMwYcVcvPq1QqJCQkQKPRICUlxabrSZKE2bNn1+jV0Gg0GD9+vE3XCgsLq7G8lpVlXYvBBxERNYpOpzPNp6hKURS8+eabtb5OhZqTS60dSrGFRqNBamqqKWeHJElITExkr4cLMfggIqIGMxZps3VIRQKQDaBcpUJbRUFhUhJwww1WD6XYKioqCufOnTP1ysTHxyMgIICTTl2EE06JiMhq1edzpKenY8KECTZdQwKQ2rUrouLjRYG448eBnBzAQhn6GrlAGtFuTjp1LFs+vxtU1ZaIiDyLLMuIjY2FVqvFkCFDEBISgoceegiPPfaYTdeRJAnZ33+PqP/9D5g6FdizBygsrBF46HQ60720Wi10Ol2j2l/XpFNyPvZ8EBFRnVJSUjBv3jybCrhZYm1+DUf0UrDnw/G41JaIiKxmaXhDlmXs3r0b//73v20u4Kb+a0LngDvuQNu2bVFYWAjAtUtjq086NS7hZeDhGuz5ICLyYFVXqhh7JgDUyERqDRWAje+/j/AhQxr1oe7IXgoWinMch1W1dQYGH0REztGYrKOWJCcnY+7cuXa5FsvZNz0cdiEiono1NOto9fwcxtoq9go8ALE0NjIykr0UzRSDDyKiZsw4n8PHxwdHjx4FANx55504efIkli5datO1JABJACb6+KDgiSfQdtIklFdWOiw4YOXZ5ovBBxFRM1Vb5lFbqQDMATADgObZZ4E33oCmY0d7NJE8FIMPIqJmqKGZR6tSAVgFYCQATb9+wBtvACNH2quJ5MEYfBARNXFVl8oCYqnqxo0bbQo8VCoVoCimuRwSgFQApime+/cDo0YB7rVGgZooBh9ERE2QMQ/Hjh07sHbtWlMVWQC2L5FVqbDn66/R+fXXkfXddwCAcABmsy1atADWr7dL24kYfBARNTE6nc5iHo6GZk5YMno0BkycCPzxB2otVr9nD3DbbQ26PlF1rO1CRNSEyLLcsARgKhVWr16NmJgYqNVqAICkUmFJ586Y++mnwB9/ADfeCKxaJV4gSebfieyIP1VERG5ClmVkZGRAlmWzf1eVn59vc+AhSRLWrl2LmJgYrF69GoW7dyPjvvtwTFEQe/Ik0K4dsGIFsG+fmNcRFAT07w+89574HhQEcHUL2RGHXYiI3EBKSgri4uJqzN1QqVSYMmUKhgwZgm7duuHw4cM2XVeSJGRnZ2PAgAHApUtASgo0iYnQXLoEqFTAlCnA668DHTqIF2g0osqsl9e145WVgLe3nd8xeTKmVycicrHk5GTMmzfP7tc1pSV/5hng00+BuXNFYAEAd98NvPMOcOutdr8veSamVyciaiJkWUZcXFyDXqtSqbBq1SqUlZUhPj7eVAclMTERAwYMEJlHz50Dhg4FMjLEizQaIDkZmDBB9Gw0Q5aq9JJ7YfBBRORgxmWxANCtWzdTmvNu3bphy5YtDV6loigKevXqhYiICDz22GPmdVD+/BNYuFBMIDUYxLDJvHlAXBzQtq3d3pu7sVSllwXp3A+HXYiIHKi2ZbH2YLHMvF4PpKYCL78MnD0r9o0dC6SkAF272r0N7sRSlV6Lz4gcwpbPb652ISJykJycHIcFHpJKhTWhodAUF1/bmZkpcnE8/7wIPPr2BbZvB/71r2YfeABiJVD1rK56vR4FBQUuahHVhsMuRESNZCm9+fbt2/Hmm282KB9H1ddIkoSVK1ciMDAQXbt2ReFfE0bDt26FZt064MMPxUqV2Fhg0ybxouuuA157DYiJEZlJPURYWBgkSarR8xEaGurCVpElnvNTSUTkANUrx1YPHmyhVquRlJRkNnl0zZo11+YsHDuGAZIkJop++aWxASIfR2Wl2B8TIwKP9u3t8faaFI1Gg9TUVEydOtXs+XHIxf1wzgcRUQNZmmPQUFUnR8qybD551Mia1Snu9SfdJWp9fuRQXGpLROQEluYY1GX16tXo37+/aejEbBglPNz0QanRaCx/aH70EfDkk2JSaXUs/GZS6/Mjt8Hgg4jICtXndezevRv//ve/rX59cnIyYmJiAEBkG/1L1X/X6exZ4IcfxLJZS1j4jZoQBh9ERPWoOq/D1jkdkiQhKSkJc+fObdjNr14VczpeeQU4d+7afpVKDLFIUu0BCZGb4lJbIqI6yLJsNqHUmsBDkiTMnz8fGRkZOHbsGGJjYxt28x07RPrzF14QgUe/fkB6uij0dvvtLPxGTRZ7PoiI6mDLvA5JkpCWlmY2f6NBCgtFHZb/+z+xHRAALF4MREeLuR3/7/+x8Bs1aQw+iIhwbU6Hj48PysrKTHM7rK0ia1zWOX78+IY3orwceOstUXvl8mUxpPLcc2LpbEDAtfOqBhoqFQMPanIYfBCRx6tazt5WKpUKc+bMwYwZMxre26EowMaNIlGYLIt9990HrFgB3HRTw65J5MYYfBCRR2toOXtjRdmRI0c2bojl55+BGTOA778X21otsHQpMGZMs606S8Tgg4g8kizL2LJlS4MCjxqZRxvizBngpZeAtWtFz0fr1kBCgpjr0bp1w69L1AQw+CAij2Gc15Gbm4t58+bZnAbdLhNKr1wBVq8W5e7Pnxf7JkwAliwBQkIadk2iJobBBxE1e7IsY8WKFVi2bFmDU6Eb05/bNKF0715g3jwRWNx+O/Dtt2KI5dAhcfzmm4F33gEGD25Qm4iaKgYfRNQsGXs5bKkuq1KpMGLECGzbtg0GgwGSJCE6OhpDhw5tWG/HBx8AGRnA3/8OlJQAn30m9gcGAm+8ATz7LKBW2/7miJo4Bh9E1GxUDTgSExNt6uWQJAnZ2dkYMGBA4wqTHTsG/PGHmCyalib2vf++8SbAE08Ay5aJsvdEHopVbYmoWahe2t4WVSvKNhorz5KHsuXzm+nViajJq54C3RYLFy7EsWPH7BN4AMDrr9cegLRoISrTEnk4DrsQUZNTNRvp0aNH8eGHHzYo8FCr1Xj22WftU3799GlgwQJAp6u9Z4OVZ4kAMPggoiamocMrkiRhzJgx2Lx5M/R6vSlXR6MDjytXxITSRYvEpFIAGD4c2LbtWsVZVp4lMtOoYZekpCSoVCrMnDnTtO/y5cuYNm0aAgMD4ePjg7Fjx+LUqVONbScRkc3DK9Wry27atAmFhYXIyMhAYWFh44davvpKVJqdPVsEHrfdBuzaJRKHBQWJirOsPEtUQ4N7PnJycrBmzRr069fPbP+sWbPw5ZdfYtOmTfD398f06dMxZswY/PDDD41uLBF5LlmWkZ6eblXgoVKpsHHjRovLYzUaTeN7OwoKRMCxZYvYbt8eePNN4Jlnri2dLSxk5VmiWjQo+CgrK8OkSZOwdu1aLF682LS/pKQEOp0OGzZswJAhQwAA69atQ+/evZGdnY1BgwbZp9VE1OzJsozdu3cDAPbv32/10lm7VJetzYULIshYtkwEEy1aANOni2yl7dqZn8vKs0S1alDwMW3aNDz00EMYNmyYWfCRm5uLK1euYNiwYaZ9vXr1QkhICLKysiwGHxUVFaioqDBtl5aWNqRJRNRMGLORLl261Kb053apLlsbgwH4+GMgLg44eVLse+AB4O23gd697XsvIg9gc/CRlpaGn376CTk5OTWOFRcXw8vLC+2q/R9Ap06dUFxcbPF6iYmJWLRoka3NIKJmSKfTITo62qagY+HChejTp0/j6q3UJScHePFFIDtbbN9wA7B8OTBqFKvOEjWQTcHH8ePHMWPGDHzzzTdo1aqVXRqQkJCA2bNnm7ZLS0sRHBxsl2sTkfszDq+cPXsW06dPtynwsOtS2epOnRJVZtetE9tt24oqtLNmcQiFqJFsCj5yc3Nx+vRp3FZlnbper8d3332Hv//97/jqq69QWVmJ8+fPm/V+nDp1CkFBQRav6e3tDW/+IhN5lMZWlwVgv6Wy1VVWAu++C7z2GmAcBp48GXjrLaBLF/vei8hD2RR8DB06FAcOHDDb9/TTT6NXr16Ii4tDcHAwWrZsie3bt2Ps2LEAgLy8PBQVFSE8PNx+rSaiJquxadDj4+Nx//33N6zuSnXVq85u3Sp6NvLyxPHbbxdVZ/n3i8iubAo+fH190bdvX7N9bdu2RWBgoGl/VFQUZs+ejYCAAPj5+eGFF15AeHg4V7oQEXJycmwKPEaOHIknnngCXbt2RXl5uX0CjqqMVWfffRc4exb48kuxv2NHIDEReOopkSCMiOzK7hlOly9fDkmSMHbsWFRUVCAyMhKrVq2y922IqAkwDq+EhYUhLS3NpiEWSZKwevVq+w+rWKo6+8EH4rtaLXJ1JCcD/v72vS8RmbCqLRE5RGOGV4zzOexW7K0qVp0lcghbPr9Z24WI7M7aNOgqlQoJCQm45ZZbAMBxwytVvfqq+LKkRQtg/XrH3JeITBh8EFGjVR1eAYDU1FSrejwURUFSUhJSU1Md08tR1cmTYuns++/Xfg6rzhI5BYMPImowYzbSZcuWNWh4BQAMBgOmTp2KyMhIx/R2VFQAK1YAr78OlJWJfSNHAl98waqzRC7C4IOIGqQh2UgBMdRS/TV6vR4FBQX2Dz6+/BKYOVMUggOAO+4QS2evv14ssw0OBqKiAJ0OOH6cVWeJnIQTTonIZrIsQ6vV2tTbIUkSZs+ejUcffRSDBg0ye61arUZhYaH9go+8PJGvY+tWsR0UBCQlAX/727WlsxUV16rOKgqrzhI1EiecEpFDGOd2nDlzxurAQ5IkpKWlmdVeSU1NxdSpU6HX6+2bqbSkRAyvrFgBXL0KtGwpgpAFC4DqfwxZdZbIZdjzQURWqbp0VvXXctX6/nxIklTrZFJZllFQUGCflS0Gg1ilkpAAnD4t9j30ELBsGdCjR+OuTURWseXzm8EHEdXL0jCLSqWCJEnQ6/VmwYgkSYiOjsbQoUMdV2m2qqwsUXV2716x3aOHKHU/YoRj70tEZjjsQkR2I8uyxaWziqLgk08+QYcOHRAaGgoA9uvJsMaJE0BcHPDRR2Lb1xdYuBB44QUxl4OI3BaDDyKyyLiMdunSpRaHV9RqdY2eDacEHRUVwPLlwOLFQHm52PfMM8CbbwKdOjn+/kTUaKyYREQ16HQ6hISEICUlpdbAwyHl7KvbuxcYMkR8VxTg3/8G+vQRczvKy4FBg4AffxRLZRl4EDUZ7PkgIjPG1Oh1TQf75JNPMH78eMc3xlh1dsUKMZH066/F/s6dgbfeAiZNYtVZoiaIwQcRmciyjPT09DqX0RqHWxymatXZTz4R+4zzOlq0AKKjReDh6+u4NhCRQzH4IPJgsixj9+7dAICioiLExcXVGXhIkuT44ZauXWs/dvUqsHo1sGqV4+5PRA7H4IPIQ1mbHt3pS2dfeQV47TXLx1h1lqhZYPBB5IFkWbYq8Fi+fDnGjRvnnFUssiyWzm7YUPs5rDpL1CxwphaRh5BlGRkZGaYU6fUFHmq12jmBx+XLwBtvAD17isBDpQIeeUQcM04m5aRSomaFPR9EHqB6avTHH3+83tfMmjXLsYGHogCffQbMmQMcPSr23XmnqDrbqROQnc2qs0TNFNOrEzVzDa1Ae+zYMccFH7/+CsyYAWzfLravvx5YsgSYOFH0fACsOkvUxNjy+c2+TKJmLj8/v87AQ6VSYfLkyVCr1QDEcEtqaqpjAo9z50TQcfPNIvDw9hYVZw8fBh5//FrgAYhjxm1WnSVqVjjsQtRMGed2+Pj4QJKkWgMQRVEQFRWFxMREx9Vm0euBf/xDBBpnz4p9jzwCLF0K3HCDfe9FRG6PwQdRM2LM27Fjxw6sXbvWqqEWtVptCjiMQYcxcAkLC2t8IPL996Lq7L59YvvGG0XG0mHDGnddImqyGHwQNRPW5u2oylLSsKqTUyVJQmpqKqKiomxv0PHjQGwssHGj2G7XDli0CHjuOaBlS9uvR0TNBiecEjVRVYdV9u7di+eff97q1y5cuBB9+vSpkTTM0uRUtVqNwsJC63tALl0CUlKAxETxb5UKmDIFeP11oEMHq9tIRE2LLZ/f7PkgaoKq9k7YSq1W49lnn7UYTFianKrX61FQUGA5+Ni7F5g3T6xU6d8f+PRTsXT22DFx/J57xNLZW26xuZ1E1Hwx+CBqYoxVZxsaeNRVmyUsLKzG5FTjnBCLjFVnly8HTp4U/wYAjUb0fjz6qPkKFiIicKktUZNT39LZqlR/ffBLkoS5c+eisLCwzvkbGo0GqampZstuawQrx44BubnATz9dqzq7YYMIPLy8gBdeEEtnJ0xg4EFEFnHOB1ETYlzNMnHixFoDEJVKhVWrVmHkyJEA0KDls7Is1/46awIK9/qzQkROwDkfRM2IcWLp9u3bkZiYWG/J++qrUxqyVLbqstsa5s8H3nzT8jFWnSUiKzD4IHJj1kwsNfZ0BAYGOrbk/bFjYunspk21n8Oqs0RkBc75IHJT1k4sVRQFvXr1wvjx4x0TeFy8CLz6KtCrlwg8JAkYN04cY9VZImoA9nwQuSlrJ5bWuRqlMRQF+Ne/gLlzgaIise/ee8XS2YAAYNcuVp0logZh8EHkZqrO8ahPfUtnG2z/fpESPTNTbIeEiKWz48Zdm3BaWHit6uyUKaw6S0RWY/BB5EasmeMhSRLi4+Nx//33278I3NmzwMsvA2vWAAYD0KoVEB8v5nq0aWN+btVAg1VnicgGDD6I3IQ1czyWL1+OcePG2b+n4+pV4L33gFdeEWXvAWD8eCA5GdBq7XsvIvJ4DD6I3IAsy0hPT68z8FCr1Y4JPHbsAGbMAA4eFNv9+omqsxER9r0PEdFfGHwQuYhxbkdubi7i4uLqDTzsPrejsFDUYfn0U7EdEAAsXgxER4t8HUREDsK/MEQuYM3cDrVajcTERAwYMMC+czvKy4G33hLF4CoqALValLlftEgEIEREDsbgg8jJcnJynDu3w1h59q23gCNHxORRWRbHhgwRQyx9+zb+PkREVmJmICInSklJwcCBA507t8NYefaRR4CJE0XgodWKHB7ffsvAg4icjj0fRE6SnJyMefPm1XmO3eZ2HDsG/PEHcP48sHat2HfihFgO+/TTwMyZQM+ejbsHEVEDsaotkYMYJ5SGhYUBAEJCQmDp102SJCQlJdl3bgcrzxKRk7GqLZGLpaSkmFawqFQqjB8/3mLgoVKpkJ2djQEDBpjtrxq42ByMfPstcP31wO+/Wz7OyrNE5GKc80FkZ8nJyYiNjTXN61AUBenp6RbPXbJkSY3AQ6fTQavVYsiQIdBqtdDpdNbd+H//A0aPBu6/XwQe7dpZPm/PHmDSJGvfDhGR3dkUfKxevRr9+vWDn58f/Pz8EB4ejq1bt5qOR0REQKVSmX3FxMTYvdFE7kqWZcTFxdV7niRJWLJkCebOnVvj9VVXwhgMBkydOhWycXWKJWVlwIIFwI03Ap99JpbOzpgBbN5svJn5dyIiF7Np2EWj0SApKQlhYWFQFAXvv/8+Hn74Yfz888/o06cPACA6Ohqvvfaa6TVtqteDIGrG8vPzLQ6vVFXbUIvx9dVXwuj1ehQUFNQcflEUYMMGsYz2xAmxb9gw4O23gT59xKqWoCBWniUit2NT8DFq1Ciz7TfeeAOrV69Gdna2Kfho06YNgoKC7NdCIjdnnJ/h4+ODw4cPQ6VS1RmAKIqC8vJyi8fCwsIgSZJZAKJWqxEaGmp+Ym6uqDq7e7fY7tYNWLYMePjha5NNNRpWniUit9Tgfli9Xo+0tDSUl5cjPDzctP/jjz9G+/bt0bdvXyQkJODixYt1XqeiogKlpaVmX0RNRdX5GXfccQeef/75ens+LAYTf9FoNEhNTYVarTada7b09vRpkf58wAAReLRpA7zxBnDokMjjUX2Vi7f3tX2sPEtEbsLm1S4HDhxAeHg4Ll++DB8fH2zevBk33ngjAODxxx+HVqtFly5dsH//fsTFxSEvLw+fGmtHWJCYmIhFixY1/B0QOVnVno66MpVKkoTs7GxkZmaaVr5Yk8cjKioKkZGRKCgouLb09soV4O9/FynQS0rEiZMmiayl11/viLdJROQwNuf5qKysRFFREUpKSvCvf/0L//jHP5CZmWkKQKrasWMHhg4dioKCAnTv3t3i9SoqKlBRUWHaLi0tRXBwMPN8kNuRZRkrVqzAsmXL6sxQWlVGRgYiIiIgy7J5MGGLr74SScEOHxbbt90GvPMOcNddtl2HiMiBbMnz0egkY8OGDUP37t2xZs2aGsfKy8vh4+ODbdu2ITIy0qrrMckYuSOdTofo6Oh6h1SqUqvVKCwsbHjSsIICYPZsYMsWsd2hA5CYCDz1lFjRQkTkRmz5/G702juDwWDWc1HVvn37AACdO3du7G2IXMa4/NWWwEOSJOvTpO/dKwq87d0rti9cAOLjxYqVLVtEUrBZs4D//lesWmHgQURNnE1zPhISEjBixAiEhITgwoUL2LBhA3bu3ImvvvoKR44cwYYNG/Dggw8iMDAQ+/fvx6xZszB48GD069fPUe0ncihZlpGenm71MMvChQvRp08fhIeHW9/jYSz89sEHwG+/AXFxwMmT4lhkJLB8OdC7dwPfARGR+7Fp2CUqKgrbt2/HyZMn4e/vj379+iEuLg73338/jh8/jsmTJ+PgwYMoLy9HcHAwRo8ejZdeesmm4RMOu5C7qJoi3Ro2DbMYC7+pVMCIEWIVS4sWwNWr4nhIiJhgOnKkdXVaiIhczKlzPuyNwQe5g/oq0FbP5WFcxRIVFWXdDVj4jYiaGRaWI2qEnJycelOkb9y4ER06dEDbtm1RXl5u+yqW9euBZ54BLPWqsPAbETVzDD6IcC13x/bt2/Hmm2/WOblUrVbbNqejuv/8B3jzTcuBByAKv912W8OuTUTUBDD4II+n0+nqTBZWlTVJwmqVny9WrXz5pdgOCAD+/FMUfDMYrn0nImrmWOaSPFr1KrKWqFQqzJ8/HxkZGSgsLLR+XodRaako/tanjwg8WrYE5s4Fdu0Shd/69wfee098Dwpi4TciavbY80Eey5pltCqVCnv27LFYgbZeBoNYPpuQABQXi30PPiiWzvboIbZZ+I2IPBCDD/JI1i6jXbJkScMCjz17RNXZH38U22FhotT9gw+an1c10GDhNyLyEBx2IY+TnJyM2NjYOgMPSZKwZMkSzJ0717aLnzwp0p8PGiQCD19fIDkZOHiwZuBBROSh2PNBHsWaZbTLly/HuHHjbJtUWlEBrFgBvP46UFYm9j39tFjVEhTUiBYTETU/7Pkgj6HT6TBw4MB6l9HaFHgoCvDFF0DfviItelkZMHCgGHb55z8ZeBARWcCeD2r2ZFnG7t276y0OZ/My2rw8Uep+2zaxHRQEvPUWMHmyWDZLREQW8S8kNWs6nQ5arRYTJkywOMfDqmW01avOlpQAc+aI3o5t28Rqlbg4UXX2iScYeBAR1YM9H9Rs1ZfDQ5IkZGdn17+apWrV2f37xdLZ06fFsVGjgGXLgNBQO7eeiKj5YvBBzZI1OTxmz55de+BRtersxo1i3+rV16rO3nADsHIlMHy4nVtORNT8saotNTvW5PCQJAnHjh2rfX4Hq87WylgHJywsrOH1bYio2bHl85uD09RsyLKMmJiYenN4qNVqpKam1v3B+c9/1j53o0UL4KOPGtnapsk4h2bIkCHQarXQ6XSubhIRNUHs+aBmQafTITo6us7VLIAVOTwUBdiyRRSA+9//LJ+Tm+uRVWdlWYZWqzUL7NRqNQoLC9kDQkTs+SDPYZzbUd8yWsCKHB6//SbmcDz8sAg82rcX+409IB6+iiU/P79Gj5Jer0dBQYGLWkRETZVn/zWlJq2+ZbRV1ZnD4/x5ka/jppuAr78WS2fnz2fV2WrCwsIgVQvA1Go1QrnSh4hsxNUu1GRUnegIoM5ltICYVBofH4/7778foaGhNQMPvV7M7Zg/X6xsAUSvx9KlQPfuYptVZ000Gg1SU1MxdepU6PV625OyERH9hcEHNQk6nc4UbKhUKowfP77OwOPRRx/F0qVLa/9g3LVLVJ39+Wex3bu3qM1y//3m57HqrJmoqChERkaioKDAckBHRGQFTjglt2dpomNd6lxGK8vAvHnAJ5+IbX9/YNEi4PnngZYt7dhqIiLPYsvnN3s+yO1ZmuhYm1qHAi5fBlJSgMRE4OJF0Yvx7LPAG28AHTo4oNVERFQbBh/k9owTHesLQCwuo1UUYPNmUYulsFDsu+su4J13PHK5LBGRO+BqF3JrxkmmCQkJUNWRddTiMtqDB4Fhw4CxY0Xgcf31wIYNwPffM/AgInIh9nyQ26otTbpKpTLL6aGWJKwJDYWmuBjQaIBz54CFC4FVq8SKFm9vIDYWiI8H2rZ19tsgIqJqGHyQW0pOTsa8efMsHlOpVNi4cSO6du2K8vJyhH7wATTr1omqszk5wMsvA2fPipPHjBFzPbp1c2LriYioLgw+yO3Isoy4uLhajxsMBnTQ6zFAkgA/P+DLL8WBqlVnw8LE9tChTmgxERHZgsEHuRVjuvS6VoCr1WqETpxY84Ax8ACA/HwGHkREborBB7mNqonEamNaSitJYqmspXNbtADWr3dcQ4mIqFEYfJDLybKMLVu2YNq0aRZ7PMzSpHfvDk12NjB3ruXAAwD27OFqFiIiN8bgg1xKp9MhOjq61mEWs9wd+/cDTzwB7NwpDnbqBJw6JarNGgzXvhMRkVtjng9ymZycnDoDDwC4evUqNK1bA9OmAbfeKgKPVq2AV14R+TpYdZaIqMlhbRdyifp6PIzUkoRCX19oSkrEjnHjxNJZrVZsV1RcqzqrKB5ddZaIyJVs+fxmzwc5nSzLmDJlSr2BBwDoDQYUlJQAN90E7NgBbNp0LfAARKBhzHzKqrNERE0Cgw9yOpsKxQEIXbwY+Okn4L77HNswIiJyCgYf5FSyLGPjxo019qtUKqx+8EEkt2gB9V/71CoV1rz9NjQLFojls0RE1CzwLzo5TV3zPJb4+SHmP/8BADw2aBAKnn0WoZGR5oXiiIioWWDwQQ4nyzJ2795d5zyP20tKxFyOlBRoxo6Fpo4KtkRE1LRx2IUcKiUlBVqtFhMmTKh1nocaQOjs2cBvv4nVLAw8iIiaNfZ8kMPUVZnWSK1SYU1SEjT1nEdERM0Hgw9yiJycHMTVE1DEDBuGBevWcV4HEZGH4bAL2V1KSgoGDhyI+rJ4TPj2WwYeREQeiMEH2VVycjJiY2Prz1wKIHTFCuc0ioiI3AqDD7IbWZYRFxdX63HjNFI1gDUvvwzNiy86pV1EROReOOeD7Cb/P/+x2OOhArAHQGcABSoVQhUFmkcecXLriIjIXdjU87F69Wr069cPfn5+8PPzQ3h4OLZu3Wo6fvnyZUybNg2BgYHw8fHB2LFjcerUKbs3mtzMmTOQH38ch6dOhaVFskt8fDBgwABo3nsPEbffDg0rzxIReTSbgg+NRoOkpCTk5uZi7969GDJkCB5++GH8+uuvAIBZs2Zhy5Yt2LRpEzIzM3HixAmMGTPGIQ0nN3DlCvD229BptQj55BM8D5hNMpUkCUuWLMHcP/4A9uwBpk4V3wsLAU40JSLyWCrFmtKidQgICEBycjLGjRuHDh06YMOGDRg3bhwA4PDhw+jduzeysrIwaNAgq65nS0lecqGvvwZmzkTOb79hIFBjZYskScjOzsaAAQNc0ToiInIyWz6/GzzhVK/XIy0tDeXl5QgPD0dubi6uXLmCYcOGmc7p1asXQkJCkJWVVet1KioqUFpaavZFbuzIEeCRR4DISOhqCTwAwGAwoLy83MmNIyKipsDm4OPAgQPw8fGBt7c3YmJisHnzZtx4440oLi6Gl5cX2rVrZ3Z+p06dUFxcXOv1EhMT4e/vb/oKDg62+U2QE5SVAfPnAzfeCPnzz5GuUmEKLAceAKBWqxEaGurMFhIRURNhc/DRs2dP7Nu3D3v27MFzzz2HJ598EocOHWpwAxISElBSUmL6On78eIOvRQ6gKMBHHwE9ewKJidBVVkILYIKiwHKlFjHksmbNGiYQIyIii2xeauvl5WX6P9r+/fsjJycHK1aswIQJE1BZWYnz58+b9X6cOnUKQUFBtV7P29sb3t7etrecHG/vXuDFF4GsLMgAdnfsiClnzsBQyzQhlUqFVatWYeTIkQw8iIioVo1OMmYwGFBRUYH+/fujZcuW2L59u+lYXl4eioqKEB4e3tjbkKPt3QsMGSK+nzoFREUBd9wBZGVB5+UFrUqFCadP1xp4AMCcOXMQExPDwIOIiOpkU89HQkICRowYgZCQEFy4cAEbNmzAzp078dVXX8Hf3x9RUVGYPXs2AgIC4OfnhxdeeAHh4eFWr3QhF/rgAyAjA5g9G/jlF+Cvib/y6NGY8vnndQYdgBhqmTFjhjNaSkRETZxNwcfp06fxxBNP4OTJk/D390e/fv3w1Vdf4f777wcALF++HJIkYezYsaioqEBkZCRWrVrlkIaTHRw7BvzxB6BSieADAL7/Xnzv1Qt44w2syMqCwVDb7A5BrVZzjgcREVmt0Xk+7I15PpxIZSkfqSAD2ALg+TpfrsLGjRsRHh7OwIOIyMM5Jc8HNXEXLgAPPWTxkA5ACOoOPNRqNdauXYvx48cz8CAiIpuwsJynMRiADz8E4uMBC/lXZADRqD1/B3s7iIiosdjz4Ul+/BG4807gqadE4NG9O7B8uTgmiR+FfJWq1sBDkiT2dhARUaMx+PAExcXA008DAweKwm4+PkBSEvDrr8C4cUBQENC/P+TERByuJcOssVZLVFSUkxtPRETNDYddmrPKSmDFCuD118UcDwB44gkReHTuLLY1Gsi7dmHF6tVYOn8+LM0/liQJqampLBJHRER2weCjufryS2DWLCA/X2wPGAC88w5QLeeKTqdDdHS0xaCDGUuJiMgROOzS3OTlAQ8+CIwcKQKPTp2AdeuA7OwagYcsy5gyZYrFwAMAFEVBr169GHgQEZFdMfhoLkpLgdhY4KabgK1bgZYtxfZ//ysmmErm/6llWUZ6enqdCcRYmZaIiByBwy5NncEAvP8+kJAgarIAoudj+XKgRw+LL9HpdJgyZUqdgQcr0xIRkaOw56OpqFr4zcg4lPLMMyLwCAsTcz2+/NJi4GHs7agr8Jg8eTLS09Nx7NgxrmwhIiKHYM9HU2Es/Pbhh0CXLiJJ2IcfimO+vsArrwAvvgh4eVl8uTW9HQAQFRWFiIgIOzeeiIjoGtZ2cWdVC7+NGAGcPg20bSuGWi5dEuc8/TTw5psiV0ctZFmGVqu1qkBcYWEhh1qIiMhmtnx+s+fDnXXtWnNfebn59j//We9l8vPzWZmWiIjcBud8uLOPPgLUasvHWrQQx62wt+o8EQuWL1+OwsJCzvEgIiKnYM+HuyopAXJzaz++Zw9w2231XiYnJwfx8fG1Hler1Rg3bhx7PIiIyGnY8+Fu9HrgH/8QK1eWLxfbgJj3AdTI11GXlJQUDBw4sNYhFw61EBGRK7Dnw5388INYsfLTT2K7Z09gwQJg3jwgOBiIigJ0OuD4caBjR4uXkGUZ+fn52L59O9544w2L50iShLS0NISHhzPwICIip2Pw4Q5+/x2IiwM+/lhs+/kBCxcC06eLpbOPPiq+q1TAlCmiYJy3d43LWJs8LDU1FePHj3fUuyEiIqoTgw9XunwZWLZMLJUtLxfBxTPPAG+8IWqyGFUNNFQqi4GHsU5LXYGHSqVCdnY2q9MSEZFLMfhwBUUBPv8cmDMH+N//xL7wcODdd4H+/Rt0SWuW0y5ZsoSBhxszDpmFhYVxOIyImjVOOHW2Q4eAyEhg9GgReHTpIpbM/vBDgwMPAPDx8YFUy2RUSZKwZMkSzJ07t8HXJ8fS6XTQarUYMmQItFotdDqdq5tEROQwzHDqLOfPA6++Cvz972IFi5cXMHeuKAjn49OoS6ekpCAuLs6s50OtViMxMREDBgxAaGgo/0/ajVnKQMtss0TU1DDDqTvR68UKlQULRKp0AHj4YWDpUqB790ZdWpZlLF68GGvWrDHbr1Kp8O6772LUqFH88GoCLA2Z6fV6FBQU8L8fETVLHHaxF0tVZ3ftAgYMAKZOFYFH797A118Dn33W6MAjJSUFISEhNQIPAFAUBc8//zy775uIsLCwGkNmarUaoaGhLmoREZFjMfiwl6pVZ48fByZOBO65B/j5Z8DfH3j7beCXX4D772/wLWRZRnp6OiZPnozY2FjUN2JmMBgwdepUyLLc4HuS42k0GqSmpkL9Vyp9Jn8jouaOcz4ao7aqs3q9WEYLiLwcixcDHTo06lY6nQ7R0dH1BhyWZGRkICIiolH3J8eTZRkFBQWco0NETZItn98MPhrDmPK8LnZ4vLIsIyQkpN7AQ/VXe6qex4mL7o3La4moubDl85vDLo1hp6qz9dm9e3e9gUdMTAyKioqwdu1adt83EVxeS0Seij0fDfXnnyIF+qpVgKXkXrm5VlWdrU99wy2SJCEpKQmxsbGmfey+d39cXktEzQ2X2jqSXg+kpgIvvwycPXttv0olhlgkyXIw0gDGlOmWAg+VSoU5c+ZgxowZNT6sNBoNP8DcHJfXEpEn47CLLTIzRW/G88+LwKNPHyAtDQgKAm6/HXjvPZGlNCio1qqztqgtZfrChQtRVFSE5ORkflA1UVxeS0SejMGHNYqKgAkTgIgIYP9+4LrrRB2WffvE/sJCYM8ekc9jzx6xbYegoLYPqGeffZZBRxPH5bVE5Mk47FKXixeB5GTgrbeAS5fEkMrUqcBrrwHt2187z4qqs9Ywrnzw8fFBWVkZwsLCkJqaiqlTp0Kv1/MDqpmJiopCZGQk5+cQkcdh8GGJogD/+peovVJUJPYNHgy88w5w880OuaVOp8OUKVPMhlkkSUJqaioKCwv5AdVMcX4OEXkirnapbv9+YMYMYOdOsR0cDKSkAOPHW5fXowEsrXwwkiQJx44d4wcUERG5Neb5aIizZ8VE0ltvFYFHq1ZiKe3hw8Cjjzok8JBlGRkZGdi9e7fFwAMQKdJXrFhh93sTNZbx55fp+4nIVgw+rl4FVq4EwsKA1avFMtnx40XQ8eqrQJs2Drlt1QRTEyZMMGUntWT58uX8A09uhQnSiKgxPCv4qF55NiND9HRMnw6cOwf06yf2pacDWq3DmmHM31G1t0NRlFoDEGP+ByJ3UP3nlwUMichWnhV8GCvPrlwJjBsnApGDB4GAAJGpNDdXLKd1sNrydwDA6tWrmf+B3FpdCdKIiKzR/Fe7VK08m5Ym9q1fL76rVMDkyaLcfUCAQ5tRdRnt4cOHLZ6jKAp69erF5bXk1oz5Z6qnhmeATETWav6rXZxUebYulpbRWlK1tgfrs5A70+l0NQLkqKgoVzeLiFzIls/v5h98fPwx8NRTYmJpdS1aiF6QSZMaf59a1LWMtir+AaemhgEyEVXFwnJVTZoE9O4taq5Ut2ePXSrP1qWu+R1Gy5cvx7hx4/gHnJoUJkgjoobyrAmnxomcknPetizL2LhxY53nqNVqBh5ERORRPCP46NhRVJrt39/ulWdrk5KSgpCQEKxZs6bWcyRJqncyKRM5ERFRc2NT8JGYmIgBAwbA19cXHTt2xCOPPIK8vDyzcyIiIqBSqcy+YmJi7Npom2k0Dqs8K8sy0tPTkZ6eDlmWIcsyYmJiEBsbi9qm0yxcuBDp6ek4duxYnXM8mMiJiIiaI5smnA4fPhyPPfYYBgwYgKtXr2L+/Pk4ePAgDh06hLZt2wIQwUePHj3w2muvmV7Xpk0bqyePury2iw10Oh2io6NrDTIsqbqipS6WJqpa+1oiIiJnc9iE023btpltr1+/Hh07dkRubi4GDx5s2t+mTRsEBQXZcukmR5blBgUe1ubsqCuRE4MPIiJqyho156OkpAQAEFAtQdfHH3+M9u3bo2/fvkhISMDFixdrvUZFRQVKS0vNvpqC/Px8mwKPmJgYFBYWWr2U1pjIqSomciIiouagwcGHwWDAzJkzcdddd6Fv376m/Y8//jg++ugjZGRkICEhAR9++CEmT55c63USExPh7+9v+goODm5ok5wqLCyszmJwRpIkYcmSJVi9erVNPRYajQapqalQq9UAbOs1ISIicmcNTjL23HPPYevWrdi1a1edH4g7duzA0KFDUVBQgO7du9c4XlFRgYqKCtN2aWkpgoOD3XLOR9UU6UePHsWOHTuQmppaaw9ITEwMFixY0KiAgYmciIioKXB4krHp06fjiy++wHfffVfvB+LAgQMBoNbgw9vbG97e3g1phlPVlSJ96tSpUKlUWLt2LfR6PSRJQlJSEmJjYxt9XyZyIiKi5samng9FUfDCCy9g8+bN2LlzJ8LCwup9zQ8//IC7774bv/zyC/r161fv+e642qW+FOnGVSgA2EtBREQeyWE9H9OmTcOGDRvw+eefw9fXF8XFxQAAf39/tG7dGkeOHMGGDRvw4IMPIjAwEPv378esWbMwePBgqwIPZ5JlGbt37wYAdOvWDUePHgUA3HnnnQBgGl4pKyvDxo0b60yRblyFEhERwaCDiIioHjb1fNQ2wXLdunV46qmncPz4cUyePBkHDx5EeXk5goODMXr0aLz00ktuleejvvwcKpXKIbk7iIiImiuH9XzU94EcHByMzMxMWy7pVMbejvryc9gSeFiTIp2IiIiuaf5Vbf9S14RRW6lUKqxatQqBgYEIDw9n4EFERGQDjwg+ZFm2W+BhzLdhbbIwIiIiMucRwYelVOW2kCQJ8fHxuP/++7mShYiIqJEalV69qbCUqlySJKxevRrp6en48ccfkZ6ejpiYGFNGUUmS8OCDD0KSJBgMBiQlJeHIkSMMPIiIiBqpwRlOHcVRq110Oh2mTp0KvV5f59CJMaNo27ZtMWjQIFaVJSIisoLDM5w2RVFRUYiMjKw3CZgxo2hGRgaryhIRETmAxwQfgG2pyo1DNdV7PlhVloiIqHE8Ys5HQ7CqLBERkWN4zJyPhmJVWSIiovpxzocdsaosERGRfXHYhYiIiJzK44IPWZaRkZEBWZZd3RQiIiKP5FHBh06ng1arxZAhQ6DVaqHT6VzdJCIiIo/jMRNOZVmGVqtl0jAiIiIHsOXz22N6PizVdzEmDSMiIiLn8Zjgw1J9FyYNIyIicj6PCT6YNIyIiMg9eMycDyMmDSMiIrI/JhmrA5OGERERuZbHDLsQERGRe2DwQURERE7F4IOIiIicisEHERERORWDDyIiInIqBh9ERETkVAw+iIiIyKkYfBAREZFTMfggIiIip2LwQURERE7F4IOIiIicisEHERERORWDDyIiInIqBh9ERETkVAw+iIiIyKkYfBAREZFTMfggIiIip2LwQURERE7F4IOIiIicisEHERERORWDDyIiInIqBh9ERETkVAw+iIiIyKkYfBAREZFTMfggIiIip2LwQURERE5lU/CRmJiIAQMGwNfXFx07dsQjjzyCvLw8s3MuX76MadOmITAwED4+Phg7dixOnTpl10YTERFR02VT8JGZmYlp06YhOzsb33zzDa5cuYIHHngA5eXlpnNmzZqFLVu2YNOmTcjMzMSJEycwZswYuzeciIiImiaVoihKQ1985swZdOzYEZmZmRg8eDBKSkrQoUMHbNiwAePGjQMAHD58GL1790ZWVhYGDRpU7zVLS0vh7++PkpIS+Pn5NbRpRERE5ES2fH43as5HSUkJACAgIAAAkJubiytXrmDYsGGmc3r16oWQkBBkZWVZvEZFRQVKS0vNvoiIiKj5anDwYTAYMHPmTNx1113o27cvAKC4uBheXl5o166d2bmdOnVCcXGxxeskJibC39/f9BUcHNzQJhEREVET0ODgY9q0aTh48CDS0tIa1YCEhASUlJSYvo4fP96o6xEREZF7a9GQF02fPh1ffPEFvvvuO2g0GtP+oKAgVFZW4vz582a9H6dOnUJQUJDFa3l7e8Pb27shzSAiIqImyKaeD0VRMH36dGzevBk7duxAt27dzI73798fLVu2xPbt20378vLyUFRUhPDwcPu0mIiIiJo0m3o+pk2bhg0bNuDzzz+Hr6+vaR6Hv78/WrduDX9/f0RFRWH27NkICAiAn58fXnjhBYSHh1u10oWIiIiaP5uW2qpUKov7161bh6eeegqASDI2Z84cfPLJJ6ioqEBkZCRWrVpV67BLdVxqS0RE1PTY8vndqDwfjuCpwYcsy8jPz0dYWJjZPBoiIqKmwGl5Psg+dDodtFothgwZAq1WC51O5+omEREROQx7PlxMlmVotVoYDAbTPrVajcLCQvaAEBFRk8GejyYkPz/fLPAAAL1ej4KCAhe1iIiIyLEYfLhYWFgYJMn8P4NarUZoaKiLWkRERORYDD5cTKPRIDU1FWq1GoAIPNasWcMhFyIiarY458NNyLKMgoIChIaGMvAgIqImx5bP7walVyf702g0DDqIiMgjcNiFiIiInIrBBxERETkVgw8iIiJyKgYfRERE5FQMPoiIiMipGHwQERGRUzH4ICIiIqdi8EFEREROxeCDiIiInIrBBxERETkVgw8iIiJyKrer7WKsc1daWurilhAREZG1jJ/b1tSrdbvg48KFCwCA4OBgF7eEiIiIbHXhwgX4+/vXeY5KsSZEcSKDwYATJ07A19cXKpXKrtcuLS1FcHAwjh8/Xm+5X0/HZ2U9Pivr8VlZj8/KNnxe1nPUs1IUBRcuXECXLl0gSXXP6nC7ng9JkhxeWt7Pz48/nFbis7Ien5X1+Kysx2dlGz4v6zniWdXX42HECadERETkVAw+iIiIyKk8Kvjw9vbGwoUL4e3t7eqmuD0+K+vxWVmPz8p6fFa24fOynjs8K7ebcEpERETNm0f1fBAREZHrMfggIiIip2LwQURERE7F4IOIiIicymOCj5UrV6Jr165o1aoVBg4ciB9//NHVTXK5V199FSqVyuyrV69epuOXL1/GtGnTEBgYCB8fH4wdOxanTp1yYYud57vvvsOoUaPQpUsXqFQqfPbZZ2bHFUXBK6+8gs6dO6N169YYNmwY8vPzzc75888/MWnSJPj5+aFdu3aIiopCWVmZE9+F89T3vJ566qkaP2vDhw83O8cTnldiYiIGDBgAX19fdOzYEY888gjy8vLMzrHm966oqAgPPfQQ2rRpg44dOyI2NhZXr1515ltxOGueVURERI2fq5iYGLNzPOFZAcDq1avRr18/U+Kw8PBwbN261XTc3X6uPCL42LhxI2bPno2FCxfip59+ws0334zIyEicPn3a1U1zuT59+uDkyZOmr127dpmOzZo1C1u2bMGmTZuQmZmJEydOYMyYMS5srfOUl5fj5ptvxsqVKy0eX7JkCd555x2899572LNnD9q2bYvIyEhcvnzZdM6kSZPw66+/4ptvvsEXX3yB7777DlOmTHHWW3Cq+p4XAAwfPtzsZ+2TTz4xO+4JzyszMxPTpk1DdnY2vvnmG1y5cgUPPPAAysvLTefU93un1+vx0EMPobKyErt378b777+P9evX45VXXnHFW3IYa54VAERHR5v9XC1ZssR0zFOeFQBoNBokJSUhNzcXe/fuxZAhQ/Dwww/j119/BeCGP1eKB7jjjjuUadOmmbb1er3SpUsXJTEx0YWtcr2FCxcqN998s8Vj58+fV1q2bKls2rTJtO+3335TAChZWVlOaqF7AKBs3rzZtG0wGJSgoCAlOTnZtO/8+fOKt7e38sknnyiKoiiHDh1SACg5OTmmc7Zu3aqoVCrl999/d1rbXaH681IURXnyySeVhx9+uNbXeOrzOn36tAJAyczMVBTFut+7//znP4okSUpxcbHpnNWrVyt+fn5KRUWFc9+AE1V/VoqiKPfee68yY8aMWl/jqc/K6LrrrlP+8Y9/uOXPVbPv+aisrERubi6GDRtm2idJEoYNG4asrCwXtsw95Ofno0uXLrjhhhswadIkFBUVAQByc3Nx5coVs+fWq1cvhISEePxzO3r0KIqLi82ejb+/PwYOHGh6NllZWWjXrh1uv/120znDhg2DJEnYs2eP09vsDnbu3ImOHTuiZ8+eeO6553D27FnTMU99XiUlJQCAgIAAANb93mVlZeGmm25Cp06dTOdERkaitLTU9H+5zVH1Z2X08ccfo3379ujbty8SEhJw8eJF0zFPfVZ6vR5paWkoLy9HeHi4W/5cuV1hOXv7448/oNfrzR4oAHTq1AmHDx92Uavcw8CBA7F+/Xr07NkTJ0+exKJFi3DPPffg4MGDKC4uhpeXF9q1a2f2mk6dOqG4uNg1DXYTxvdv6WfKeKy4uBgdO3Y0O96iRQsEBAR45PMbPnw4xowZg27duuHIkSOYP38+RowYgaysLKjVao98XgaDATNnzsRdd92Fvn37AoBVv3fFxcUWf/aMx5ojS88KAB5//HFotVp06dIF+/fvR1xcHPLy8vDpp58C8LxndeDAAYSHh+Py5cvw8fHB5s2bceONN2Lfvn1u93PV7IMPqt2IESNM/+7Xrx8GDhwIrVaL9PR0tG7d2oUto+bmscceM/37pptuQr9+/dC9e3fs3LkTQ4cOdWHLXGfatGk4ePCg2Twrsqy2Z1V1TtBNN92Ezp07Y+jQoThy5Ai6d+/u7Ga6XM+ePbFv3z6UlJTgX//6F5588klkZma6ulkWNfthl/bt20OtVteY1Xvq1CkEBQW5qFXuqV27dujRowcKCgoQFBSEyspKnD9/3uwcPjeY3n9dP1NBQUE1JjRfvXoVf/75p8c/PwC44YYb0L59exQUFADwvOc1ffp0fPHFF8jIyIBGozHtt+b3LigoyOLPnvFYc1Pbs7Jk4MCBAGD2c+VJz8rLywuhoaHo378/EhMTcfPNN2PFihVu+XPV7IMPLy8v9O/fH9u3bzftMxgM2L59O8LDw13YMvdTVlaGI0eOoHPnzujfvz9atmxp9tzy8vJQVFTk8c+tW7duCAoKMns2paWl2LNnj+nZhIeH4/z588jNzTWds2PHDhgMBtMfSE8myzLOnj2Lzp07A/Cc56UoCqZPn47Nmzdjx44d6Natm9lxa37vwsPDceDAAbNg7ZtvvoGfnx9uvPFG57wRJ6jvWVmyb98+ADD7ufKEZ1Ubg8GAiooK9/y5svsUVjeUlpameHt7K+vXr1cOHTqkTJkyRWnXrp3ZrF5PNGfOHGXnzp3K0aNHlR9++EEZNmyY0r59e+X06dOKoihKTEyMEhISouzYsUPZu3evEh4eroSHh7u41c5x4cIF5eeff1Z+/vlnBYCybNky5eeff1aOHTumKIqiJCUlKe3atVM+//xzZf/+/crDDz+sdOvWTbl06ZLpGsOHD1duvfVWZc+ePcquXbuUsLAwZeLEia56Sw5V1/O6cOGCMnfuXCUrK0s5evSo8u233yq33XabEhYWply+fNl0DU94Xs8995zi7++v7Ny5Uzl58qTp6+LFi6Zz6vu9u3r1qtK3b1/lgQceUPbt26ds27ZN6dChg5KQkOCKt+Qw9T2rgoIC5bXXXlP27t2rHD16VPn888+VG264QRk8eLDpGp7yrBRFUeLj45XMzEzl6NGjyv79+5X4+HhFpVIpX3/9taIo7vdz5RHBh6IoyrvvvquEhIQoXl5eyh133KFkZ2e7ukkuN2HCBKVz586Kl5eXcv311ysTJkxQCgoKTMcvXbqkPP/888p1112ntGnTRhk9erRy8uRJF7bYeTIyMhQANb6efPJJRVHEctuXX35Z6dSpk+Lt7a0MHTpUycvLM7vG2bNnlYkTJyo+Pj6Kn5+f8vTTTysXLlxwwbtxvLqe18WLF5UHHnhA6dChg9KyZUtFq9Uq0dHRNYJ/T3help4RAGXdunWmc6z5vSssLFRGjBihtG7dWmnfvr0yZ84c5cqVK05+N45V37MqKipSBg8erAQEBCje3t5KaGioEhsbq5SUlJhdxxOelaIoyjPPPKNotVrFy8tL6dChgzJ06FBT4KEo7vdzpVIURbF/fwoRERGRZc1+zgcRERG5FwYfRERE5FQMPoiIiMipGHwQERGRUzH4ICIiIqdi8EFEREROxeCDiIiInIrBBxERETkVgw8iIiJyKgYfRERE5FQMPoiIiMipGHwQERGRU/1/3v+20U+ltokAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ypre = Xnew.dot(theta)\n", + "plt.plot(Xnew1, ypre, '*-r', label='model')\n", + "plt.plot(t,y, '.k', label='data')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Polynomial model \n", + "$$ Temp = \\theta_0 + \\theta_1 * t + \\theta_2 * t^2$$" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 2.28848082e+01, 1.35240024e-01, -1.89756565e-04])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X = np.c_[np.ones(len(t)), t, t*t]\n", + "theta = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)\n", + "theta" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOzklEQVR4nO3deXhU5d3/8feZgUQgJJiwBJwQ0KSgIioYMa4U0IjiYxWorbQuTQlU8JF9UevSWuEBFGgfQYJ5pIqI2JZaULGAIS4sQpCCIpjwI4YjqywZCBIgc35/TDJkyDohmZlkPq/rykUy52Ry5zAkH+7zvb+3YVmWhYiIiIif2AI9ABEREQktCh8iIiLiVwofIiIi4lcKHyIiIuJXCh8iIiLiVwofIiIi4lcKHyIiIuJXCh8iIiLiV00CPYDzuVwu9u7dS8uWLTEMI9DDERERkRqwLIvjx4/ToUMHbLaq5zaCLnzs3buXuLi4QA9DREREamHPnj04HI4qzwm68NGyZUvAPfjIyMgAj0ZERERqwul0EhcX5/k9XpWgCx+lt1oiIyMVPkRERBqYmpRMqOBURERE/ErhQ0RERPxK4UNERET8KuhqPmrCsizOnj1LcXFxoIfS6DVt2hS73R7oYYiISCPS4MLH6dOn2bdvHydPngz0UEKCYRg4HA4iIiICPRQREWkkGlT4cLlc7N69G7vdTocOHQgLC1MjsnpkWRaHDh3CNE0SExM1AyIiInWiQYWP06dP43K5iIuLo3nz5oEeTkho06YNeXl5nDlzRuFDRETqRIMsOK2ubavUHc0siYhIXdNvcREREfErhQ8RERHxK4WPRqZ3796MGjWqxucvWLCAVq1a1dt4REQkOJhOk8zdmZhOM9BDaVgFp3Vu0yaYMAGmTYPrrgv0aEREROqM6TRZm78WDNh6YCtTPpuCy3JhM2ykD0gntUdqwMYW2uHjjTcgMxPefFPhQ0REGo2MzRkMXTYUC6vcMZflYti/fktKYSyOW+4OwOgaw20Xy4LCwpq/ffMNfPYZfP45LF7sfo6333Z//Nln7uM1fS6r/F9qZXr37s3jjz/OqFGjuPjii2nXrh3z58+nsLCQRx99lJYtW5KQkMCHH37o+ZysrCyuv/56wsPDad++PZMmTeLs2bOe44WFhTz00ENERETQvn17XnrppXJft6ioiHHjxnHJJZfQokULevXqxZo1a2p9uUVEJLht/H5jpcGjVLEBuf/8Pz+OylvDn/k4eRIutPvmoUNw882+f96JE9CiRY1P/+tf/8qECRP44osveOedd/jd737H0qVLue+++3jyySeZOXMmv/71r8nPz+fo0aPcddddPPLII7zxxhvs2LGDoUOHctFFF/Hcc88BMH78eLKysnjvvfdo27YtTz75JJs3b+aaa67xfM2RI0eyfft2Fi9eTIcOHVi6dCl33nkn27ZtIzEx0ffvWUREAsZ0muQcziEiLIITp0+QGOP+OZ5zOIdE8yQfzR3L0C7fVhk8AGwuSFiaBUM2u/8j3bo1xMf741sAwLAsH/777gdOp5OoqCgKCgqIjIz0Onbq1Cl2795N586dueiii9wPFhZeePioLR/CR+/evSkuLubTTz8FoLi4mKioKO6//37eeOMNAPbv30/79u1Zt24dy5Yt4+9//zvffPONp9fGnDlzmDhxIgUFBZw8eZKYmBgWLlzI4MGDAThy5AgOh4O0tDRmzZpFfn4+l156Kfn5+XTo0MEzln79+nH99dfz4osvsmDBAkaNGsWxY8cqHHeF11xERPyiNGwkxiTyUe5HpC1Pw2W5vM4xMNxhwwIDsKprz2TB9JUwbp3hPYN/gXGgqt/f52v4Mx/Nm7tDgC+2bKl4puOzz6DMrEGNvrYPunfv7nnfbrcTExPDVVdd5XmsXbt2ABw8eJBvvvmG5ORkryZfN910EydOnMA0TY4ePcrp06fp1auX53h0dDRdunTxfLxt2zaKi4v5yU9+4jWOoqIiYmJifBq7iIj4j+k0mb1+Ni+vfxmX5cLAHRQqChaeWQ6Dyuc7LPdxmwumroRx60ofBJo0gQUL6vpbqFLDDx+G4dOtDwCaNXP/abOBy3Xuz2bNfH8uHzRt2tTrY8MwvB4rDRoul3eqra0TJ05gt9vJzs4u1xpdG8WJiASPsjMci79azISVE7xunVil0xo+MlwwZ6uDnu2uoTCqOQmvLsHhPO+kDRugR48L+wZ81PDDR220bQuxsRAXB6mpkJEBe/a4Hw8Sl19+OX//+9+xLMsTSj7//HNatmyJw+EgOjqapk2bsmHDBjp27AjA0aNH+fbbb7ntttsAuPbaaykuLubgwYPccsstAfteRETErezy186tOrP76G4+3vgO87/7B6562M1ibKs7Gb60ZCHD5s0wbUn5/3gHQGiGD4cD8vIgLMw9c5KWBqdPQ3h4oEfm8dhjjzFr1iwef/xxRo4cyc6dO3n22WcZM2YMNpuNiIgIUlNTGT9+PDExMbRt25annnrKa9+bn/zkJwwZMoSHHnqIl156iWuvvZZDhw6xevVqunfvzt13B2aJlYhIKKpq+WttZjWqY8PgidT55x4Iov94h2b4AO+gYRhBFTwALrnkEj744APGjx/P1VdfTXR0NKmpqTz99NOec6ZPn86JEye45557aNmyJWPHjqWgoMDreV5//XVeeOEFxo4dy/fff0/r1q254YYbGDBggL+/JRGR0FPSzNJ8fixDP656+atPXGCzGbiw3LnFKik0LantsLtg3rVP44h0nPucIPqPd8Nf7SL1StdcRMRb2foMR6TD62PAsxR299HdsOB1Or+9gk+H3MzYFp/Vyde3uSD92t+T0ieN3CO5JBS1gLvvJjchmhZ330fh+0tJyD2CY81md+Dwk9Ba7SIiIuInGZszPMtdDQz6/3AxK1ofxVUyo+FZ9lqqJTAUMD7zzErUlFFyctnns7lg/WuQtOxnEOk4N7Px9R4cpTMaI18MulKC8zX8DqciIiJ+YDpNrz4bFhYfxBzxBI/Sx8oxyvxZ2b0GFxglx2wYjEseR/7ofObfPA17SU2oHRvpX3UiyRVbvk4jPNwdPCAoSwnOp5kPERGRGsg5nFOuwZfPhaIl58+9ay49nS3I+++HwIDkPYBhkHuxRcLC93Hc1B+A1L7jSOl+H7kn8kmIScTR8pKgn9WoCYUPEREJeV51HN/u9xSJ5jiae2o5dhza4fOtk8p0bdOVpPYJJB0pWX0yzb36xLFnD8Rf5XWuo81lONpcdu6BBh48QOFDRERC3Iy1M5i4aqKnjmPsj9fQruhLJq5eg8uwvOs4yqwoqbHzzrcbdhKiEyAyeFaf+JtqPkREJHRs2gR9+sCmTZhOk+HLhjN+5XivOo4Zzb5k/O3gKinCKFfHUbZ2ozSTuM4ViNqw8eTVj7Pk31Esyb6MpyL6Yys5z27YmTdg3rlC0QZWq1FXNPMhIiKh4403IDOTjHcmMTTi48r7blQ3s2HAzBVwUz4UhhskHLbgg/fJvaQZCdEJ7nDRfzqEhTHYMBhesIfcA9+QEHuFd++NEHVBMx9Tp07FMAxGjRrleax3794YhuH1Nnz48Asdp4iIiM9Mp0nm+rcxP/vA3V78nXcwIyGt+eoLavhld8GgpleT9Myr9G59HY7msTjir6J3p94Vzmo4ouLo/ZM7FDxK1HrmY+PGjcybN89rp9ZSQ4cO5Q9/+IPn4+Y+7v4aKnr37s0111zDrFmzAj0UEZEGz/z0fXJmPk3i6Bdw3HK3V08OmwvSl0HqQcjpBK4L+K+3zbAx7+5XcDw3LORqNepKrS7/iRMnGDJkCPPnz+fiiy8ud7x58+bExsZ63qrrdCbVW7NmDYZhcOzYsUAPRUQk6MxYO4P41QPoc/UW4lffw1Orn/LqyeGyQdo9YEbCpvZU3m+jiskQA4O5d83lu1HfkXr98JCs1agrtQofI0aM4O6776Zfv34VHn/rrbdo3bo13bp1Y/LkyZw8ebLS5yoqKsLpdHq9iYiI1Mh33zH9nSfcRaMlWcBlWLz46YvlenK4bPDCLTDpdsrVdAzvOZw9v/iC6esjPMWh57Ow6Nqmq26d1AGfw8fixYvZvHkzU6ZMqfD4gw8+yMKFC8nMzGTy5Mm8+eab/OpXv6r0+aZMmUJUVJTnLS4uztch1ZrpNMncnYnpNOv9axUWFvLQQw8RERFB+/bteemll7yOv/nmm1x33XW0bNmS2NhYHnzwQQ4ePAhAXl4eP/3pTwG4+OKLMQyDRx55BIAVK1Zw880306pVK2JiYhgwYAC7du2q9+9HRMSfzE/fJ/P+azE/ff/cY06TuQM7MeGbP5f/hEoKRuf3rPiWywPdHsDRJYlx7/3Ad6PzWTJoCTbD+0TPElm5YD7VfOzZs4cnnniClStXVrrJWFpamuf9q666ivbt29O3b1927drFZZddVu78yZMnM2bMGM/HTqfTLwHE616gYSN9QDqpPVLr7euNHz+erKws3nvvPdq2bcuTTz7J5s2bueaaawA4c+YMf/zjH+nSpQsHDx5kzJgxPPLII3zwwQfExcXx97//nYEDB7Jz504iIyNp1qwZ4A41Y8aMoXv37pw4cYJnnnmG++67jy1btmCzaSW1iDR8M9bOYOLq8biuBmP1ANKODQMs0jenY93j23O5bO725WVbonuFivBwHOFxDI6Kw1nkZNjyYRRbxeWXyMoF8WlX23/+85/cd9992O12z2PFxcUYhoHNZqOoqMjrGLh/OUZERLBixQpSUlKq/Rr+2NXWdJrEz4r3mpKzG3byRuXVywvrxIkTxMTEsHDhQgYPHgzAkSNHcDgcpKWlVVhwumnTJpKSkjh+/DgRERGsWbOGn/70pxw9epRWrVpV+rV++OEH2rRpw7Zt2+jWrdsFj1272opIwHz3HdPXv8yEHRXMbFSliiZgdsPO1H5TmbRqkleoqOw/n6bTdO8cW7p8VipVb7va9u3bl23btnk99uijj9K1a1cmTpxYLngAbNmyBYD27dv78qXqVUX9+YutYnKP5NbLi2vXrl2cPn2aXr16eR6Ljo6mS5cuno+zs7N57rnn+M9//sPRo0dxudzjy8/P54orrqj0uXNycnjmmWfYsGEDP/zwg9fn1UX4EBEJBNNpsvauTkwchE8FAoYLBn4DSy+HYpu7SNQwDFyWyyto/KLbL2oUKhxld46VOuNT+GjZsmW5X2gtWrQgJiaGbt26sWvXLhYtWsRdd91FTEwMW7duZfTo0dx6660VLskNlMSYRGyGrdzMR6Du5RUWFpKSkkJKSgpvvfUWbdq0IT8/n5SUFE6fPl3l595zzz3Ex8czf/58OnTogMvlolu3btV+nohIIJlOk7X5a8GAG4+0wPHsSzBtGuZPYpm9fjYvr3sZ1899e06bBetbTyIpbzXm5jxy336FhC7JAOWChkJFYNVph9OwsDBWrVrFrFmzKCwsJC4ujoEDB/L000/X5Ze5YI5IB+kD0v12L++yyy6jadOmbNiwgY4dOwJw9OhRvv32W2677TZ27NjB4cOHmTp1qqfeZdOmTV7PERYWBrhvc5U6fPgwO3fuZP78+dxyyy0AfPbZZ/XyPYiI1AXTaTJ7/WxeWvfSuSZfFgxrDrzza9IjdtSq9ZcNG+n/NY+kHr+FkRaO06dxlFn+6oh0eBYZJMYkKngE2AWHjzVr1njej4uLIysr60Kf0i9Se6SSkpDil3t5ERERpKamMn78eGJiYmjbti1PPfWUpyC0Y8eOhIWF8Ze//IXhw4fz1Vdf8cc//tHrOeLj4zEMg+XLl3PXXXfRrFkzLr74YmJiYkhPT6d9+/bk5+czadKkevs+REQuxIy1M5iwckKFe6XMSwLYUeXnGy6wDDz1HAYGaT3S6HtpX5Ljks/9HK+g74a/FxlI1UJ6OYQj0uHdCrceTZ8+nVtuuYV77rmHfv36cfPNN9OzZ08A2rRpw4IFC3j33Xe54oormDp1KjNmzPD6/EsuuYTnn3+eSZMm0a5dO0aOHInNZmPx4sVkZ2fTrVs3Ro8ezfTp0+v9exERqZEym7hN/3w641eOr1VLc5sLlmRfRn67Kez5+Gr3hm0/nUv+6HxevedVBl85uMqf46bT9G44ZrkYtnyYX9osSMV8Wu3iD/5Y7SI1p2suIr4ynSY5h3NInP0mjtmvYz7xKB0vXlCr4GE37My7839JTSppZW5ZPrcyz9ydSZ83+pR//OFMenfq7fOYpGL1ttpFRESkIqWBI3v7SiZu+h9cuDCiYHJvsH+zEOtG34KHDRtjksfwxA1PeM9q1KKVebAtMhCFDxERuUBl6ynK9tiwbPDibYBxpsLP+1WH/kS89yHzerrPBXddx9jEX/PEf71YZ7fE/b3IQKqn8CEiIr7btAkmTMB8fixpmefqKco196qg2ZcNG1P7TWV8/C/hmSSecrZj3f1J8HEmydudONa8CHUcDEoXGazbsw4LixvjbqzT5xffKHyIiEiNeeo5Fr6JIzOTnGta4YpyVf+JZSwetJjBV7q7PZOXhyMsjMGGAU9413N4vlYdLY39KPcjrXgJEgofIiJSLdNpMvvff+Dlr1/DheWp53B8thTuotJ25uezG3aS45LPPVC2fqNMPUddL42tbMVLSkKKbr8EQIMMH0G2QKdR07UWkYzNGQxdNtRrtcq5eo7SB/AOIBXsr2LDqFGtRX0EBX9vqyFVa1Dho2nTpgCcPHnSs6ur1K/SNu0V7dsjIo1UST1HabvztOVpFS+TNSp+327YmdL7jyR1vIEWYRHkHd0NZ8+QfOltNfpFXx9BQStegkuDCh92u51WrVpx8OBBAJo3b45h1HCuT3zmcrk4dOgQzZs3p0mTBvVSEREflKuteOMNzOxM1s57nDejv8fVvOY1HTNTZjLoikFeISHpkiSfxlMfQUErXoJLg2oyBu7bAPv37+fYsWP+H1wIstlsdO7c2bO3jIg0LmVrKwwM0i75L3j/fdK7n/Usf60pu2Enb1RenfxCz9icUS4o1EVxqOk0/bKtRijypclYgwsfpYqLizlzpuK141J3wsLCPHvQiEgjcN4tlfhZ8eVucVTHsEr2WCnDhkH6PfPrdPWIgkLDEhIdTu12u+oQRER89cYbkJkJb77J7Lub+hw8bNhY/3AWhZypVT2HL7TtfePVYMOHiIhUz3Sa5Gz/lIgTZ9j9417Y9FdujIR9H8znpYt/rPESWcBz+yOp882ex3yt5xABhQ8RkUarwrbnKcAdADUPHgYwNnlc+X1WRGpJ4UNEpBE6v1dGZctiK2MAaXmt6fvtGZL/byWOLprhkLqj8CEi0liUKSadfWSxT/UcNsPG1L5T6dSiAzRpSnLHG3G0vMTn7etFakLhQ0SkgSrtzxERFsGJ0ydIXPgmZGeybNYQZiR868NtFYP1qesrrt9Q8JB6oPAhItIAzVg7g4mrJnrNbhhRYI0GjG99eq5pt09T4aj4lRo4iIg0MNM/n874lePL3VaxbFQ622FgMPeO2QzvMQy74W5TYMPGtH7TGHfjuHoesYi3BttkTEQkZJzXGKzjzI4V77VSifN3hVXzLqkPIdFkTESksSm7xwpwbr+VksZg5sI5LOnV0rfgga1cPYead0mgKXyIiASBsjUcRsm9EwvLvd/KvnC4G+ZHvY7rWyrcrr4i7pbn6arnkKCj8CEiEmDTP5/OhFUTPB+XndmwsJjX7ZT3Jxh4AkjZoOI57II5n7ZkwNzV6s8hQUkFpyIiAWR++j4TV06o/sTzlQSPDb/dwPx75nuKSO2Gnfn3zmf4h4dCNniYTpPM3ZmYTjPQQ5FKaOZDRKSemU6TtflrwYDOrTqz++huz/vLlj2P1aJ2z2thUXimkNQeqaQkpKiIFO+W8ucX2krw0GoXEZF6lLE5g6HLhvpUJFpTdsNO3qi8kA4bZZlOk/hZ8V5LkHWN/MeX39+67SIiUk82fr+xboOHBUbJU5XuMKtfqufkHM4p1/uk2Com90hugEYkldFtFxGROlS6XDZ7XzYTVk7wOXgYFlhlVrLYsPFK//8lpkVrkh03wOnT5BbuCfnbKxVJjEnEZtjKzXwkRCcEcFRSEYUPEZELVBo4Vu9ezZTPpvi0oVtZdhdMvfIJJu34X4qtYs/sxvk1C442l9XFsBsdR6SD9AHpDFs+zOv6KaQFH9V8iIhcgLIFjjVStkdHmfdtLkhfBqmvZWMmtFXx6AVQB9fAUIdTERE/MJ1mjYOH4YI570PPH1uR9+h9cO01dBr9PHmdWkGfviT/4wsc+w5A27bqQHqBdP2Cn2Y+RERq4PzW52vz1/LmtjdZ/u3yGn3+uM9h+sqSD0p/7BYVQVgYGIb7sdOntYW9NFia+RARqUNlb60YGD4Xkdpc8MQGoEkTWLDg3IGyQcMwFDwkZCh8iIhU4fxbKzUJHoYLMNyrVuwumLcMHE4gewP06FG/AxZpABQ+RESqUFHviMoYLnjnX01JTrof3nmH3BiDhMMWjhM2oHYrYEQaI4UPEZEqVNQ7oiJ2F8w7fCODP/w7nD0Ly7JwtI6DiamQkQF79kDbtn4atUhwU/gQEcG7oPT8lRJDrx3KvM3zKvw8wwVj18ITX4DDuRb+N9Z9IC/vXDFpWpqKSUXKUPgQkZA3Y+0MJq6a6CkoTeuRRp9L+7D1wNYqm4Y9mwm//bKknqNJE1i44NxBFZOKVEpLbUUkpE3/fDoTVvm+pb3dBXmzSoIHQHa2ikklpGmprYhINUynybIdy2odPOYtN3A4LbDZwKViUhFfKHyISMi44E3fMHjnp3NI/s0zOKI7wasqJhWpDYUPEQkJPu/Bcj4Lpt0xjcE3DoevH1UxqcgFsAV6ACIi9W3j9xtrFjxc4DUZUvK+zQXTWv+ScTeOcz8QHu4OHqBiUpFa0MyHiDRKZbe5f/HTF6u9xWJzwfrXoP0JWFey0rbTMSgMg4SFH+C4qX/9D1okRCh8iEijUTZwVLVE9nw2F6Rviyfp+adh6FAG7ygpIi0tJm3Wrp5HLhJaFD5EpFGoTU2H4YI5n7ZkwMMv4Hh2JOzdC7GxEBcHqSomFakv6vMhIg2e6TSJnxVfq2LSzAXQe3eZH4Pa5l6kVtTnQ0QatdLbKxFhEew+ups3t71Zs+BhAca5D+0uSHhutvc56kwqUu8UPkSkQfH59kpJ4LC54P7tsPQKKLaVNAq79vc4fvbf9TpeESnvgpbaTp06FcMwGDVqlOexU6dOMWLECGJiYoiIiGDgwIEcOHDgQscpIoLpNH0KHjYXPJkFme9dzHez4N1/2MibBZl/NcibBakdf1aPoxWRytQ6fGzcuJF58+bRvXt3r8dHjx7NsmXLePfdd8nKymLv3r3cf//9FzxQEQltptNkyddLahQ8DBcsWQLfzQnjT7c9S+93NuBoHgs9e+KY9iq9W1/n/liFpCIBUauC0xMnTtCjRw/mzJnDCy+8wDXXXMOsWbMoKCigTZs2LFq0iEGDBgGwY8cOLr/8ctatW8cNN9xQ7XOr4FREStVm6azdBfOWQeqXJQ+U/ohTIalIvar3gtMRI0Zw9913069fP1544QXP49nZ2Zw5c4Z+/fp5HuvatSsdO3asNHwUFRVRVFTkNXgRCV217dVhuGDsWnjiizJb3C9YcO4EFZKKBA2fw8fixYvZvHkzGzduLHds//79hIWF0apVK6/H27Vrx/79+yt8vilTpvD888/7OgwRaYRq06vj2Uy48hAkm2W2twfYsEFb3IsEKZ9qPvbs2cMTTzzBW2+9xUUXXVQnA5g8eTIFBQWetz179tTJ84pIw+JrMSm4b7H89ksYvB0cx0vW0Nq0ZZVIsPPpX2l2djYHDx6kR48eNGnShCZNmpCVlcWf//xnmjRpQrt27Th9+jTHjh3z+rwDBw4QGxtb4XOGh4cTGRnp9SYiocN0miz5agm/e/93Ne/VQUltx9Z4HAv/5e5Ket118Oqr0LOn+2MVk4oELZ9uu/Tt25dt27Z5Pfboo4/StWtXJk6cSFxcHE2bNmX16tUMHDgQgJ07d5Kfn09ycnLdjVpEGrTSuo7sfdlMWDmh2k3fyvbqmPQJ3H6gGQlDHsfxtxfBboe8PG1xL9KA+BQ+WrZsSbdu3bwea9GiBTExMZ7HU1NTGTNmDNHR0URGRvL444+TnJxco5UuItL4+VrX4QkceZBwpLSu40d4eho89T/uk1RMKtKg1HmH05kzZ2Kz2Rg4cCBFRUWkpKQwZ86cuv4yItIA+VLXYQDvLKmgkBTKr2QRkQZFG8uJSL0pvb2SGJMIQPqmdP746R+r/Ty7ZTBvOaRmV/LjKTtbK1lEgow2lhORgKvVFvfA2P9E8MTqE+7Zjn79YNUq9woWl+vcnyLSoCl8iEidq+ntFbthZ8qJXnR6fy20bUPy5kM4nCegc2dY/ApcdRUkJUFcHKSmQkYG7NmjlSwiDZzCh4jUuZzDOTWa8Xjq0kf45bhFOA4A2w+5azke/TVMmABdu7pP0koWkUZHNR8iUmulNR0RYRHsProbDOjcqjObvt/EYx8+VvUnl1k+m152LxbP8aD60SQi1VDNh4jUu9rUdHiUBA8Alw2G3QMpuyrZk0VEGh31IRYRn/nUCr1kAsOGjWFt+/PMl5Ge4FGq2Aa50SUfbNgAQ4bU6XhFJLho5kNEfFbTmg4ADJh57AYGHW2P47mlmJHwwtXuGY9SdhckHDWguk6nItIoKHyISI2VrfGwGbYaBRC7Cwb933pPozDHwEdJv7Mnw1Y+QbFV7N6jpdWvcfxkh1ayiIQIFZyKSI2UrfGwGTZ+3f3XLNy6kGKr2PvEMvUcVRWTmk6T3P3bSWh3OY6oOHeBqVayiDRYKjgVkTp1fo2Hy3KxcOtC1qWuo/BMIS2atiDvWB4AndZuJ2/2c2BV0Bq9TDGpI9KBI9Jx7pj2ZBEJGQofIlIl02mSvim93C2WYquYwjOF9O7UG4CkS5IgJwfe/AtJX1fyZBs2qC26iCh8iEjFTKfJ7PWzeWndSxVueW+3IGFPIXQCioth5kz4/e/h1Cm46CL3n2qLLiIVUPgQkXIyNmcwdNnQCkMHlGz89i8Lx9F/Q3Qn+M1v4Isv3Af79YM//AHuv19t0UWkQio4FREvptMkflZ8lStZlqyIZPB6J7RoAUVFcPYsRETArFnuIGIY7sdL26KrmFSk0VPBqYjUiuk0WfL1kiqDh90FydtLqkgLC88dOHHCPctRqmzQUDGpiJSh8CEiQM3apdtcMG/ZeStYQC3RRcQnCh8iIcx0mqzNX8vhHw8z8sORFQYPGzaG9hhK36aJJD/1Ko4vc8s/kVaxiIgPFD5EQlR1RaUAM1NmMqjLfTjmvwO/f9JdtwHn6ji0ikVEakHhQyQEmU6z2uBhN2wMuqgHjrt/CevWuR/s0we2bYNOnbSKRURqTeFDJESU7suSGJNIzuGcKoMHFkzNicdx453w448QGeleyfLII+7Zj9JVLGlpWsUiIj5T+BAJAWWLSQ0MHuz2YNWfYMB1n++GH4FeveDll+HGG93HtIpFRC6Q+nyINHI16dtxPrsL8madt6oluH5UiEiQ8eX3t81PYxKRAMk5nFNl8DAw+FVYEvaSU+znL6dt0gQWLqz/gYpIyNBtF5FGLjEmEZthqzSAWFikvvMtU3ZDbjQkHDlvxkPLaEWkjil8iDQiZYtKAdbmr+XjvI+p6u6q3QUJuwtwtE3AkZvrXj6LNoMTkfqj8CHSSNSkQykAFmC437W5YN5ycAwbD8OGwc03Q1wc5iP3k7NsAYk5R3BoGa2I1DGFD5FGYOP3G2sWPAAMeDYTrjwEyUVtcPzpL/DAA+5jeXlkfP0macuH4brBhS3ZRvrBj0h1pFb9nCIiPtBqF5EGqvQWy+rdq3nx0xer7ttRRlUrWSpaGWM37OSNysMR6ajD0YtIY6NdbUUauRrfYjlPhStZymwIV9HKmGKrmNwjuQofIlJnFD5EGhjTafocPAwXjF0LT3xR9UqWilbG2A07CdEJdTF0ERFA4UOkwamub0cpGwZDvw6n79enSN5nx3G0uNqVLI5IB+kD0hm2fBjFVjF2w868AfM06yEidUrhQ6QBMZ0mhwoPVd63w4KnOj9Mv68KSUj/Gw7nKbjiClg8Ex5+GOLiqt0QLrVHKikJKeQeySUhOkHBQ0TqnApORRqIGWtnMHHVxEpnPWwWTP03jM9pDT/84H7wscdgxgxo1gyKis5tCGdZ2hBOROqUCk5FGhHTafJC1gvM2zyvwuMG8E6PKSQPewHHvkLgB2jVCp59Fu67zx08QBvCiUjQ0MyHSBDL2JzB0GVDq11Gm7kAeudVcjC4/omLSCOljeVEGoHSVS3VBQ+7y70fSznaEE5EgpRuu4gEqZqsainXt6MsbQgnIkFK4UMkyJTtXFoRGwaTdsdxe1a+ewfaW+6GL98/t3xWG8KJSJBT+BAJIlV2LrVg+KGOPLXciSM/H1q0gLlz4ac/haSkGi2jFREJBgofIkGi2s6lBjzwQT6OfKBLl3PBAyAv79wy2rQ0LaMVkaCmglORIGA6TZZ8vaTKGg+vwtKdO6FPn3MHw8PdwQO0jFZEgp5mPkQCpLS2I3tfduXNwyzAqH5DOBGRhkThQyQAarIrrd0ymPJvi6R97hmPqjaEExFpSBQ+RPysJrvSztzWgUEr954LHNVsCCci0pCo5kPEj0ynSfqm9GprOwat3IsjrDW88QbExkLPnvDqq+4/Y2O1kkVEGjTNfIj4SZWt0s+v7eh+M7z9Njgc8POfayWLiDQqCh8i9aS0oDQxJhGg0uBhd8GUjw2STMtd2/Grx2D2bHdRKWhDOBFpdBQ+ROpB2YJSA4PBVwyudI+Wt/8Gg7eXOTZnDrzyip9GKiLif6r5EKlj5xeUWlgs2b6kwnPtLkg2yzxQshmc6TTJ3J2J6TQr/DwRkYZMMx8idWz2+tnVbggHYKtoU7gNG8jgS9JmxeOyXNgMG+kD0kntkVp/AxYR8TOfZj7mzp1L9+7diYyMJDIykuTkZD788EPP8d69e2MYhtfb8OHD63zQIsHKdJq8tO6lqk9ywdxl8N0sSN1S0pXU5v6naP54wGvWxGW5GLZ8mGZARKRR8Sl8OBwOpk6dSnZ2Nps2baJPnz7ce++9fP31155zhg4dyr59+zxv06ZNq/NBiwSj0mW0ldV2eNiga4s491La667zWkKb0/R4uVmTYquY3CO59ThyERH/8um2yz333OP18Z/+9Cfmzp3L+vXrufLKKwFo3rw5sbGxdTdCkSBnOk1mr5/NS+teqnIZbSm7ZZDw7mqI6lhuCW1i0SFsK2xeAcRu2EmITqj/b0RExE9qXXBaXFzM4sWLKSwsJDk52fP4W2+9RevWrenWrRuTJ0/m5MmTVT5PUVERTqfT602kocjYnEHHmR2ZsW5GpctoB21313cA2DGY91/zcbRNrHAzOEekg/QB6dgNu/t8w868AfNwRDr89S2JiNQ7w7KsauaIvW3bto3k5GROnTpFREQEixYt4q677gIgPT2d+Ph4OnTowNatW5k4cSLXX389//jHPyp9vueee47nn3++3OMFBQVERkb6+O2I1L/S/h0RYRHckHFDlcWlS5bA4O1gRkJudMkeLQXV/5MznSa5R3JJiE5Q8BCRBsHpdBIVFVWj398+h4/Tp0+Tn59PQUEBf/vb33jttdfIysriiiuuKHfuxx9/TN++fcnNzeWyyy6r8PmKioooKiryGnxcXJzChwSd0tsrL69/uUarWewuyJtVwU60Q4bU5zBFRALCl/Dh81LbsLAwEhLc95979uzJxo0bmT17NvPmzSt3bq9evQCqDB/h4eGEq2OjBLkqW6NXoLJltNqJVkSkDvp8uFwur5mLsrZs2QJA+/btL/TLiARMadOwmgSPX30Tzn9tKyLZBMdxA7C0E62IyHl8Ch+TJ0+mf//+dOzYkePHj7No0SLWrFnDRx99xK5duzz1HzExMWzdupXRo0dz66230r179/oav0i9Mp0mS75eUqPbLACpG4ro3fwKCD8EXTpBaipkZMCePdqJVkSkhE/h4+DBgzz00EPs27ePqKgounfvzkcffcTtt9/Onj17WLVqFbNmzaKwsJC4uDgGDhzI008/XV9jF6lXZfdnqQm7CxJ63w+vvAl2u3aiFRGphM8Fp/XNl4IVkfpiOk3iS1qcV8SwwCq5q4LhDh7zIh8kdczCc8tnRURCSL0WnIqEgur2Z3nn/Wa0+eFHWpyGwtaRJDz2NI47f67gISJSAwofImWYTpNlO5YxY92MSs+xuyD52x/PrWTZ64ThE4AJEFwTiSIiQUnhQ4QatEgvYa9oCS2c6+EhIiLVUviQkFeTHh4G8M46B8nrzPLBA9TDQ0TEB7Xe20WkMahJDw8bBvNXNWfwRyaOpjElD9q8/xQRkRrTT04JWTXp4WED1s+3SP3sJFx/PXz4IcTGQs+e8Oqr7j9jY9XDQ0TEB7rtIiFpxtoZTFw1sergYUH6vyDpe+DRR2HOHLjoIsjLUw8PEZELoPAhIWf659OZsGpCpcd/9U1T/mvbGXeL9BM2GDcGRoxwBw/wDhqGoeAhIuIjNRmTkGI6TTrO7FhljUfmAuidV8GB4PqnIiISVHz5/a2aDwkpa/esrXYpbcKR8x5s0gQWLqzfgYmIhBDddpFGz3Sa5BzOYfXu1bz46YuVnldpDw8toxURqVMKH9KoVbc5nA2DSXs6c/vq/0fCkZLgYbOBy3XuTxERqVO67SKNVmkPj6pWtCz+PJY/Zfw/eh9ohuN/5moZrYiIH2jmQxqtnMM5VS+ldUHyhn1wySXwr3+5b608+qiW0YqI1DPNfEijZDpNDhUewmZU8hK34H9WgePyXrBx47majvDwczvTahmtiEi90MyHNDrVNRCzuWDqShh38V3w1FPu2Q2psdIC3sSYRByRjkAPR0QaIIUPaTRMp8kLWS8wb/O8Co8bLnjnb7ibhzkBPoAPPnAfVA+PGilbwGszbKQPSCe1R2qghyUiDYxuu0ijkLE5g44zO1YaPAAsG7Q5ed5SWvXwqLHzC3hdlothy4dhOs0Aj0xEGhrNfEiDZjpN1uavrXZnWqikgZh6eNRYRQW8xVYxuUdydftFRHyi8CENVnU9PACwAKNMA7ETNkA9PGojMSYRm2Hzut52w05CdEIARyUiDZFuu0iDVJMeHjYXPJkFmbtvI+/+T0jdpx4eF8IR6SB9QDp2ww64g8e8AfM06yEiPtPGctJglF1lkXM4hz5v9Kn03J9vg5dWguO/n4bnn3fPdBQVnevhYVnq4VFLptMk90guCdEJCh4i4uHL72/ddpEGoewtFgODtB5p2DBwVVDnYXPBSx/bcTw3HUaPPnegbNBQD49ac0Q6FDpE5IJo5kOCnuk0iZ8VX/4WS0k9R9n3S2s7Ur8sfTyoXt4iIo2WZj6kUam0TbpR5l0L3nm3TA+PJk1gwQJ/DVFERHyg8CFBr6JVFucr18NDS2hFRIKWVrtIUCstMp1882SMslMd5/H08LDpJS0iEuw08yFBq7I9WgwMd0OxsnUe2+JxTJsMGRmwZ4+W0IqIBDGFDwlK0z+fzoRVEyo8ZlgW77wLnU40ofCZSST81yM4Wl/qXsGSlqYltCIiQU7hQ4KO6TSZuGpipcddBrSxtyRp4ftwyy3eB7WEVkQk6OkGuQQV02my5OslVe7TYndBwrTXygcPERFpEDTzIUHDa6+Wsj08oPweLX94AKyfB2ikIiJyIRQ+JCiU26vFwBM4bC6Y9Ancnude0eI42QQWLgjcYEVE5IIofEjAmU6T9E3p5ft4GDBzBQzaXqZ/B0C2eniIiDRkCh8SUBmbMxi6bGjFNR4WnLWB43jJNIjNBq7KG42JiEjDoIJTCZiN32+sPHgAGDCpH5g3d4dXX4WePSE2Vj08REQaOM18SEBUOeNRRrENcv86E0fnn6qHh4hII6GZD/G70uLS6oIHgN2wkxCT6P5APTxERBoFhQ/xu0p3qcW9O62tZI2t3bAzb8A8HJEOfw5PRETqmW67iF+ZTpN31s8v97jhgjnfdGLA0BlwySXkNj9FQnSCgoeISCOk8CF+U2mdhwXTVsHwtXnw7iAAHFb1t2RERKRhUviQemc6Tdbmr628zsOA6/aWvN+kCSxY4M/hiYiInyl8SL3yapleCbvL3bkUgA1qICYi0tip4FTqTbmW6RXw7NVyQi9FEZFQoZ/4Ui9Mp8nYj8ZWGTyGf30ReZlXkzpMDcREREKJbrtInatpA7EHXngPR+Lt7v4daiAmIhIyNPMhdaqmDcTshp2E2CvcwQPUQExEJIQofEidmv3vP1Z5qwXUPExEJNTptovUGdNp8tK29Aojrd0FU1ZC0j5I+E+egoeISAhT+JA6k3M4B6uC4PHzbfDSSnCcLOnhoeAhIhLSfLrtMnfuXLp3705kZCSRkZEkJyfz4Ycfeo6fOnWKESNGEBMTQ0REBAMHDuTAgQN1PmgJPqbTZMfBbzDOK/WwuUqChxN3D48hQwIyPhERCR4+hQ+Hw8HUqVPJzs5m06ZN9OnTh3vvvZevv/4agNGjR7Ns2TLeffddsrKy2Lt3L/fff3+9DFyCR8bmDDrO7MhjK0ZgGVBaa2p3Qbp6eIiIyHkMy7qwTTSio6OZPn06gwYNok2bNixatIhBg9z7c+zYsYPLL7+cdevWccMNN9To+ZxOJ1FRURQUFBAZGXkhQxM/MJ0mHWd2LLe6xeaC9WsvJ2nQE5CRAXv2wMaN4NAtFxGRxsiX39+1/i9pcXExixcvprCwkOTkZLKzszlz5gz9+vXznNO1a1c6duzIunXrKn2eoqIinE6n15s0AJs2QZ8+rF0xv8JltS4bFKa/AsOGuW+35OUpeIiICFCLgtNt27aRnJzMqVOniIiIYOnSpVxxxRVs2bKFsLAwWrVq5XV+u3bt2L9/f6XPN2XKFJ5//nmfBy6BYzpNcha9yGoyeXF7Jhjlz7EbdhJiEt0fqIeHiIiU4XP46NKlC1u2bKGgoIC//e1vPPzww2RlZdV6AJMnT2bMmDGej51OJ3FxcbV+PqlH331HxubXSNv6Iq4oF9xKhcHDZtjUx0NERCrlc/gICwsjISEBgJ49e7Jx40Zmz57NAw88wOnTpzl27JjX7MeBAweIjY2t9PnCw8MJ1/+Kg57pNFl7VyfSBrlvqQAVBo9nb32W3/b8rYKHiIhU6oKXIbhcLoqKiujZsydNmzZl9erVnmM7d+4kPz+f5OTkC/0yEkAZmzOInxXPAz8vEzwqYMNQ8BARkWr5NPMxefJk+vfvT8eOHTl+/DiLFi1izZo1fPTRR0RFRZGamsqYMWOIjo4mMjKSxx9/nOTk5BqvdJHgU7pXS3Ut0wH+5/ZpCh4iIlItn8LHwYMHeeihh9i3bx9RUVF0796djz76iNtvvx2AmTNnYrPZGDhwIEVFRaSkpDBnzpx6Gbj4R87hnMqDhwUY7mW1U698gnE3jvPr2EREpGG64D4fdU19PoLL9M+nM2HVhEqPz/w6jkGbT+FYs1lLaUVEQpgvv7+1t4tUyHSaLNuxjImrJlZ6jt2wM2j+5zguaqultCIiUmMKH+Jt0yYyXv4VQ7t8W2HzsFJ2w+5eThulZdEiIuIbhQ/xYi6cw9DEnZXGDhs2Fg9aTHJcsopLRUSkVhQ+BL77Dn74AQyDnKylWD+r+DSbYSN9QDqDrxzs1+GJiEjjovAh0KmT592IDmC4wDqvn4cNG+tT15N0SZJ/xyYiIo2O9joXWLgQmjRhxo1ww29LgkeZ+y42DNLvSVfwEBGROqGZD8FMSeaF37RhXvt951qmG+4ZkDndJzPg9sdU3yEiInVG4SPEZWyYy9APH8PqUP6YZYOuLTspeIiISJ3SbZcQZu7bSdqHj2FVsEEcuDuXJsRf699BiYhIo6fwEaJMcztjn78JVyXBA+B/+ryIo4vqPEREpG4pfISSTZugTx8y3hpLx9euZEn7wxWeZsPGtH7TGHfbZD8PUEREQoFqPkKIuXAOaw9kkvZtZrmltKV+fuXPeemOl1TnISIi9Ubho7EraSCWsec90qJex/Xzyk+1YVPwEBGReqfw0dh16oQZCWmjwFXFTTbPXi0KHiIiUs9U89HYLVxIThtblcFjeM/h5I3KI7VHqv/GJSIiIUvho7G7/noSXRdjc1V+ygPdHtCMh4iI+I3CR2O2YwfmXTczO+FwpbvU2g07CdEJfh2WiIiENtV8NFZff82M0b2Y8GBh+ZUtFmCozkNERAJD4aMx+s9/mD7uRibcdPLcXi1lGTCzzzQGXf1LBQ8REfE73XZpLEoaiJkL/sySYTcx8cZKggfuGQ8FDxERCRTNfDQWb7xBxrFM0nZn4upf+Wm61SIiIoGm8NGQlTQQwzAw//kGaY9W3ctjeM/hPHXrUwoeIiISUAofDVmnTp53czpVHjxs2Jjabyrjbxrvl2FJ7ZhOk5zDOSTGJCogikijpvDRkC1cCA8/DMXFRJwGm8s7gNgwWDzoHZLjkvXLLMhlbM4gbXkaLsuFzbCRPiBdTd9EpNFSwWlDFh8PTZsy40a44bclwaOkoYfdsJF+z3wGXzlYwSPImU7TEzwAXJaLYcuHYTrNAI9MRKR+KHw0VJ9+CnfeyfRrTzH+9jIzHgYYLvjLlRNISUgJ6BClZnIO53iCR6liq5jcI7kBGpGISP1S+GiIPvkE+vdnY1QhE++g3JJaywaPfTWV+FnxZGzOCMgQpeYSYxKxGd7/FNV5VkQaM4WPBsR0mmS+Nwvz53cy4+pCeg0Fq5JeHqDp+4bCEekgfUA6dsMOaDm0iDR+KjhtCDZtIuPlX5HW5VtcWDAM92xHFcGjVOn0vX6RBbfUHqmkJKSQeySXhOgE/X2JSKOm8NEAmAvnkJa4E09VQBXzVQYGVplt5DR933A4Ih0KHSISEnTbJVh99x1kZ8PmzeSsXlJl8zBwh44vfvsF8++Zr+n7BsR0mmTuztStMREJKZr5CFZlGohFdHCvYCm3O20Z026fRtIlSSRdkqTp+wZCvT1EJFRp5iNYLVwIdjsZ17p7eFhleniUZcPGtH7TGHfjOM9jjkgHvTv1VvAIYurtISKhTDMfwerSSzFjmpJ2T7FXDw8s9582bIxJHsMTNzyhkNEAVdXbQ3+fItLYKXwEow0bICWFnJhT5Ws9DJh5xRgGpYzWL6kGrLS3R9kAouJgEQkVuu0SbDZtgpQUOH6cxPhrsXn/5xi7CwZ1/4WCRwOn3h4iEso08xFEzM8/JGf4YCJaFHLi1m4kznub9D2ZDFsxkmKr2P0L6u7/xdElKdBDlTqg3h4iEqoMy7IqKGMMHKfTSVRUFAUFBURGRgZ6OPVv0yaYMIGMwQmk7Z9/bnM4A88KCP2CEhGRYOfL72/ddgm0N97AzM48FzzA07m0dAUEoNUrIiLSaOi2SyB89x388APmqYPkZC3gUByVNhHTCggJVqbTJOdwDokxiXp9iohPFD4CoVMnMq6FtHvAdT/gAsOqfJO4TXs30btTb3+OUKRKapAmIhdCt10CwFww2x08Sq++raTMo5Lqm0mrJqn5lAQNNUgTkQul8BEAOV3bVti/AwueSRxa7vzSWy8iwaCqBmkiIjWh2y5+Unp/PKLgJIcmj8K4pfxeLZYNurW8TM2nJKipQZqIXCjNfPhBxuYM4mfF0+eNPlz/zwE8cNsB9zYt591msbsg+Sd91HxKgpoapInIhVKfj3pmOk3iZ8WXm6YuZWBgYbl/gN/5v6ReP9zzeertIcFMr1ERKcuX39+67VLPKro/fr4lg5aQHJfs9QPcEenQD3QJanqNikht6bZLfdm0Cfr0IfHbH7BVMbdkYdGmRRv9EBcRkZCh8FFfSjqX5jz1OyZ/QrkN4kqpUE9EREKNbrvUpZLOpRgGM3b8HxNHgct22LNXi4FB/4T+rNi1ApflUqGeiIiEJJ9mPqZMmUJSUhItW7akbdu2/OxnP2Pnzp1e5/Tu3RvDMLzehg8fXqeDDlqdOsF11zF9ZE/G31hYbq8WC4uPdn3E+tT1ZD6cSd6ovGq7QppOk8zdmWrgJCIijYZPMx9ZWVmMGDGCpKQkzp49y5NPPskdd9zB9u3badGihee8oUOH8oc//MHzcfPmzetuxEHGdJqszV8LBty4YDb7fj+aibe7PIHjfMVWMYVnCmvULl0trEVEpDHyKXysWLHC6+MFCxbQtm1bsrOzufXWWz2PN2/enNjY2LoZYRDL2JzB0GVDsco27PgNlQYPqHmNR2UtrFMSUnSbRkREGrQLKjgtKCgAIDo62uvxt956i9atW9OtWzcmT57MyZMnL+TLBCXTaZYPHlBx8Cg5xZcaD7WwFhGRxqrWBacul4tRo0Zx00030a1bN8/jDz74IPHx8XTo0IGtW7cyceJEdu7cyT/+8Y8Kn6eoqIiioiLPx06ns7ZD8qucwznlg0cFDAsmb27O7b9fQEKX5BrPWqiFtYiINFa1Dh8jRozgq6++4rPPPvN6PC0tzfP+VVddRfv27enbty+7du3isssuK/c8U6ZM4fnnn6/tMAImMSbR0520MgYGG367nqQ2V0N4uE/PX9rCetjyYRRbxVoZIyIijUat2quPHDmS9957j08++YTOnTtXeW5hYSERERGsWLGClJSUcscrmvmIi4sLyvbqns3hwiLYfXQ3H+d9THr2vErjx/TbpzPuxnEX/DXVwlpERIJdvbVXtyyLxx9/nKVLl7JmzZpqgwfAli1bAGjfvn2Fx8PDwwn3cVYgEMquPPFiwbCNYFzXg/n2/1BsFWPDxtR+Uy84eIBaWIuISOPj08zHY489xqJFi3jvvffo0qWL5/GoqCiaNWvGrl27WLRoEXfddRcxMTFs3bqV0aNH43A4yMrKqtHXCMaN5arbHM5uGeSN/g4MQ7MUIiISkupt5mPu3LmAu5FYWa+//jqPPPIIYWFhrFq1ilmzZlFYWEhcXBwDBw7k6aef9u078JOyt1FOnD5BYkxihaFh9vrZVW4OV2xY5H7zOb1v+IVCh4iISDVqVfNRn/w18zFj7QwmrproFSoMDCbfPJmr210NBnRu1ZndR3fzi7//osrCUrsL8maBoyCoLqWIiIjf1NvMR0NXOtOxevdq/vTpn8odt7B48bMXfXpOmwvmfWDDMeeNuhqmiIhIoxYy4aPSgtFaMFww532I+RGSTXBkboQePepglCIiIo1fSISP81uVXwi7C+Yth9TNgM0Grgt/ThERkVASEuGjolblvrK5YPGnbUnOK8bR+lJ4NRUyMmDPHmjbto5GKiIi0viFRPioqFV5KRs27ky4kxW7VlQaUGwumLqxFYP/uskdNMLCwDAgLQ1On/a5e6mIiEgoC4nwUVGr8il9p5B0SZKnJ0dpJ9EWOd+RN38aPPAA//nXa0zptAeXDSb1chJ96N+kxpXZ0t4wFDxERER8FFJLbWvUqvy//xv+8hfMKxzEDzJxldn3127YyRuVp14eIiIi59FS20pU2qr8u+/ghx/cMxmLFwOQc9I7eMC5Le0VPkRERGovpMJHpTp1KvdQ4hF3rcf5Mx/a0l5EROTC2Ko/JQQsXAhNvHOYwwnpy9xLawFtaS8iIlJHNPMBMGQIbNkCM2Z4PZz6JaT85QNyL2mmzeJERETqiMIHwKJF54KHYYBleRqIOZq1w9FJ3UtFRETqim67rFgBDz/sfr95c+jZE1591f1nbKwaiImIiNSxkJv5KN1cLjEmEcd2EwYOhLNn4Ze/dHcsvegiNRATERGpRyEVPspuLmfDRvqqZqSePAkpKbBggbtzaSk1EBMREakXIXPbxXSapC07t7mcCxfD+hRi3nYN/P3v3sFDRERE6k3IhI+cwzm48N67pdgGubOfgxYtAjMoERGRENT4b7uUdC9NPHWqfNMwbCQ0bRe4sYmIiISgxh8+SrqXOoD0a2HYPe4ZD7sL5i1z4Xgu2b20VkRERPyi8YePhQvhkUfg7Fl307BdkBsNCUfAcbIJLFwQ6BGKiIiElMYfPoYMgcsvd/ftwN023eEsOZa9AXqogZiIiIg/hUzBKeDuWlr2TxEREfG70Pgt3Latu1upupeKiIgEXOO/7QLgcEBenruXh7qXioiIBFRohA/wDhrqXioiIhIwoXHbRURERIKGwoeIiIj4lcKHiIiI+JXCh4iIiPiVwoeIiIj4lcKHiIiI+JXCh4iIiPiVwoeIiIj4lcKHiIiI+JXCh4iIiPiVwoeIiIj4lcKHiIiI+JXCh4iIiPiVwoeIiIj4lcKHiIiI+JXCh4iIiPiVwoeIiIj4lcKHiIiI+JXCh4iIiPiVwoeIiIj4lcKHiIiI+JXCh4iIiPiVwoeIiIj4lcKHiIiI+JXCh4iIiPiVwoeIiIj4lU/hY8qUKSQlJdGyZUvatm3Lz372M3bu3Ol1zqlTpxgxYgQxMTFEREQwcOBADhw4UKeDFhERkYbLp/CRlZXFiBEjWL9+PStXruTMmTPccccdFBYWes4ZPXo0y5Yt49133yUrK4u9e/dy//331/nARUREpGEyLMuyavvJhw4dom3btmRlZXHrrbdSUFBAmzZtWLRoEYMGDQJgx44dXH755axbt44bbrih2ud0Op1ERUVRUFBAZGRkbYcmIiIifuTL7+8LqvkoKCgAIDo6GoDs7GzOnDlDv379POd07dqVjh07sm7dugqfo6ioCKfT6fUmIiIijVetw4fL5WLUqFHcdNNNdOvWDYD9+/cTFhZGq1atvM5t164d+/fvr/B5pkyZQlRUlOctLi6utkMSERGRBqDW4WPEiBF89dVXLF68+IIGMHnyZAoKCjxve/bsuaDnExERkeDWpDafNHLkSJYvX84nn3yCw+HwPB4bG8vp06c5duyY1+zHgQMHiI2NrfC5wsPDCQ8Pr80wREREpAHyaebDsixGjhzJ0qVL+fjjj+ncubPX8Z49e9K0aVNWr17teWznzp3k5+eTnJxcNyMWERGRBs2nmY8RI0awaNEi3nvvPVq2bOmp44iKiqJZs2ZERUWRmprKmDFjiI6OJjIykscff5zk5OQarXQRERGRxs+npbaGYVT4+Ouvv84jjzwCuJuMjR07lrfffpuioiJSUlKYM2dOpbddzqeltiIiIg2PL7+/L6jPR31Q+BAREWl4/NbnQ+qO6TTJ3J2J6TQDPRQREZF6VavVLlK3MjZnkLY8DZflwmbYSB+QTmqP1EAPS0REpF5o5iPATKfpCR4ALsvFsOXDNAMiIiKNlsJHgOUczvEEj1LFVjG5R3IDNCIREZH6pfARYIkxidgM778Gu2EnITohQCMSERGpXwofAeaIdJA+IB27YQfcwWPegHk4Ih3VfKaIiEjDpKW2QcJ0muQeySUhOkHBQ0REGhxffn9rtUuQcEQ6FDpERCQk6LaLiIiI+JXCh4iIiPiVwoeIiIj4lcKHiIiI+JXCh4iIiPiVwoeIiIj4lcKHiIiI+JXCh4iIiPiVwoeIiIj4lcKHiIiI+JXCh4iIiPhV0O3tUrrPndPpDPBIREREpKZKf2/XZL/aoAsfx48fByAuLi7AIxERERFfHT9+nKioqCrPMayaRBQ/crlc7N27l5YtW2IYRp0+t9PpJC4ujj179lS73W+o07WqOV2rmtO1qjldK9/oetVcfV0ry7I4fvw4HTp0wGaruqoj6GY+bDYbDkf9bi0fGRmpF2cN6VrVnK5Vzela1ZyulW90vWquPq5VdTMepVRwKiIiIn6l8CEiIiJ+FVLhIzw8nGeffZbw8PBADyXo6VrVnK5Vzela1ZyulW90vWouGK5V0BWcioiISOMWUjMfIiIiEngKHyIiIuJXCh8iIiLiVwofIiIi4lchEz5eeeUVOnXqxEUXXUSvXr344osvAj2kgHvuuecwDMPrrWvXrp7jp06dYsSIEcTExBAREcHAgQM5cOBAAEfsP5988gn33HMPHTp0wDAM/vnPf3odtyyLZ555hvbt29OsWTP69etHTk6O1zlHjhxhyJAhREZG0qpVK1JTUzlx4oQfvwv/qe56PfLII+Vea3feeafXOaFwvaZMmUJSUhItW7akbdu2/OxnP2Pnzp1e59Tk311+fj533303zZs3p23btowfP56zZ8/681updzW5Vr179y73uho+fLjXOaFwrQDmzp1L9+7dPY3DkpOT+fDDDz3Hg+11FRLh45133mHMmDE8++yzbN68mauvvpqUlBQOHjwY6KEF3JVXXsm+ffs8b5999pnn2OjRo1m2bBnvvvsuWVlZ7N27l/vvvz+Ao/WfwsJCrr76al555ZUKj0+bNo0///nPvPrqq2zYsIEWLVqQkpLCqVOnPOcMGTKEr7/+mpUrV7J8+XI++eQT0tLS/PUt+FV11wvgzjvv9Hqtvf32217HQ+F6ZWVlMWLECNavX8/KlSs5c+YMd9xxB4WFhZ5zqvt3V1xczN13383p06dZu3Ytf/3rX1mwYAHPPPNMIL6lelOTawUwdOhQr9fVtGnTPMdC5VoBOBwOpk6dSnZ2Nps2baJPnz7ce++9fP3110AQvq6sEHD99ddbI0aM8HxcXFxsdejQwZoyZUoARxV4zz77rHX11VdXeOzYsWNW06ZNrXfffdfz2DfffGMB1rp16/w0wuAAWEuXLvV87HK5rNjYWGv69Omex44dO2aFh4dbb7/9tmVZlrV9+3YLsDZu3Og558MPP7QMw7C+//57v409EM6/XpZlWQ8//LB17733Vvo5oXq9Dh48aAFWVlaWZVk1+3f3wQcfWDabzdq/f7/nnLlz51qRkZFWUVGRf78BPzr/WlmWZd12223WE088UennhOq1KnXxxRdbr732WlC+rhr9zMfp06fJzs6mX79+nsdsNhv9+vVj3bp1ARxZcMjJyaFDhw5ceumlDBkyhPz8fACys7M5c+aM13Xr2rUrHTt2DPnrtnv3bvbv3+91baKioujVq5fn2qxbt45WrVpx3XXXec7p168fNpuNDRs2+H3MwWDNmjW0bduWLl268Lvf/Y7Dhw97joXq9SooKAAgOjoaqNm/u3Xr1nHVVVfRrl07zzkpKSk4nU7P/3Ibo/OvVam33nqL1q1b061bNyZPnszJkyc9x0L1WhUXF7N48WIKCwtJTk4OytdV0G0sV9d++OEHiouLvS4oQLt27dixY0eARhUcevXqxYIFC+jSpQv79u3j+eef55ZbbuGrr75i//79hIWF0apVK6/PadeuHfv37w/MgINE6fdf0Wuq9Nj+/ftp27at1/EmTZoQHR0dktfvzjvv5P7776dz587s2rWLJ598kv79+7Nu3TrsdntIXi+Xy8WoUaO46aab6NatG0CN/t3t37+/wtde6bHGqKJrBfDggw8SHx9Phw4d2Lp1KxMnTmTnzp384x//AELvWm3bto3k5GROnTpFREQES5cu5YorrmDLli1B97pq9OFDKte/f3/P+927d6dXr17Ex8ezZMkSmjVrFsCRSWPzi1/8wvP+VVddRffu3bnssstYs2YNffv2DeDIAmfEiBF89dVXXnVWUrHKrlXZmqCrrrqK9u3b07dvX3bt2sVll13m72EGXJcuXdiyZQsFBQX87W9/4+GHHyYrKyvQw6pQo7/t0rp1a+x2e7mq3gMHDhAbGxugUQWnVq1a8ZOf/ITc3FxiY2M5ffo0x44d8zpH1w3P91/Vayo2NrZcQfPZs2c5cuRIyF8/gEsvvZTWrVuTm5sLhN71GjlyJMuXLyczMxOHw+F5vCb/7mJjYyt87ZUea2wqu1YV6dWrF4DX6yqUrlVYWBgJCQn07NmTKVOmcPXVVzN79uygfF01+vARFhZGz549Wb16tecxl8vF6tWrSU5ODuDIgs+JEyfYtWsX7du3p2fPnjRt2tTruu3cuZP8/PyQv26dO3cmNjbW69o4nU42bNjguTbJyckcO3aM7Oxszzkff/wxLpfL8wMylJmmyeHDh2nfvj0QOtfLsixGjhzJ0qVL+fjjj+ncubPX8Zr8u0tOTmbbtm1eYW3lypVERkZyxRVX+Ocb8YPqrlVFtmzZAuD1ugqFa1UZl8tFUVFRcL6u6ryENQgtXrzYCg8PtxYsWGBt377dSktLs1q1auVV1RuKxo4da61Zs8bavXu39fnnn1v9+vWzWrdubR08eNCyLMsaPny41bFjR+vjjz+2Nm3aZCUnJ1vJyckBHrV/HD9+3Pryyy+tL7/80gKsl19+2fryyy+t7777zrIsy5o6darVqlUr67333rO2bt1q3XvvvVbnzp2tH3/80fMcd955p3XttddaGzZssD777DMrMTHR+uUvfxmob6leVXW9jh8/bo0bN85at26dtXv3bmvVqlVWjx49rMTEROvUqVOe5wiF6/W73/3OioqKstasWWPt27fP83by5EnPOdX9uzt79qzVrVs364477rC2bNlirVixwmrTpo01efLkQHxL9aa6a5Wbm2v94Q9/sDZt2mTt3r3beu+996xLL73UuvXWWz3PESrXyrIsa9KkSVZWVpa1e/dua+vWrdakSZMswzCsf//735ZlBd/rKiTCh2VZ1l/+8herY8eOVlhYmHX99ddb69evD/SQAu6BBx6w2rdvb4WFhVmXXHKJ9cADD1i5ubme4z/++KP12GOPWRdffLHVvHlz67777rP27dsXwBH7T2ZmpgWUe3v44Ycty3Ivt/39739vtWvXzgoPD7f69u1r7dy50+s5Dh8+bP3yl7+0IiIirMjISOvRRx+1jh8/HoDvpv5Vdb1Onjxp3XHHHVabNm2spk2bWvHx8dbQoUPLhf9QuF4VXSPAev311z3n1OTfXV5entW/f3+rWbNmVuvWra2xY8daZ86c8fN3U7+qu1b5+fnWrbfeakVHR1vh4eFWQkKCNX78eKugoMDreULhWlmWZf3mN7+x4uPjrbCwMKtNmzZW3759PcHDsoLvdWVYlmXV/XyKiIiISMUafc2HiIiIBBeFDxEREfErhQ8RERHxK4UPERER8SuFDxEREfErhQ8RERHxK4UPERER8SuFDxEREfErhQ8RERHxK4UPERER8SuFDxEREfErhQ8RERHxq/8P+U1S7QKWuxQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "Xnew1 = np.linspace(0,300,50)\n", + "Xnew = np.c_[np.ones(len(Xnew1)), Xnew1, Xnew1*Xnew1]\n", + "ypred = Xnew.dot(theta)\n", + "plt.plot(Xnew1, ypred, '*-r', label='model')\n", + "plt.plot(t,y, '.g', label='data')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Batch Gradient Descent\n", + "\n", + "$$\\theta_{new} = \\theta_{old}-\\eta \\nabla_{\\theta} $$\n", + "\n", + "$$\\nabla_{\\theta} = \\frac{2}{m} X^T (X \\theta -y) $$" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[24.218],\n", + " [23.154],\n", + " [24.347],\n", + " [24.411],\n", + " [24.411],\n", + " [24.347],\n", + " [24.314],\n", + " [24.347],\n", + " [24.347],\n", + " [23.896],\n", + " [24.476],\n", + " [24.637],\n", + " [24.669],\n", + " [24.669],\n", + " [25.056],\n", + " [25.088],\n", + " [24.991],\n", + " [25.088],\n", + " [25.217],\n", + " [25.281],\n", + " [25.313],\n", + " [25.668],\n", + " [25.668],\n", + " [25.636],\n", + " [26.022],\n", + " [25.926],\n", + " [19.126],\n", + " [26.248],\n", + " [26.248],\n", + " [26.055],\n", + " [25.152],\n", + " [26.699],\n", + " [26.989],\n", + " [26.957],\n", + " [27.021],\n", + " [27.118],\n", + " [27.247],\n", + " [27.344],\n", + " [27.666],\n", + " [27.183],\n", + " [27.795],\n", + " [27.892],\n", + " [28.021],\n", + " [28.311],\n", + " [28.214],\n", + " [28.504],\n", + " [28.536],\n", + " [28.762],\n", + " [28.826],\n", + " [28.858],\n", + " [29.245],\n", + " [29.181],\n", + " [29.374],\n", + " [29.6 ],\n", + " [29.567],\n", + " [29.793],\n", + " [29.761],\n", + " [29.89 ],\n", + " [30.147],\n", + " [30.147],\n", + " [30.438],\n", + " [30.599],\n", + " [30.728],\n", + " [30.856],\n", + " [30.76 ],\n", + " [31.018],\n", + " [31.114],\n", + " [31.34 ],\n", + " [31.533],\n", + " [31.501],\n", + " [31.727],\n", + " [31.469],\n", + " [32.017],\n", + " [32.081],\n", + " [32.113],\n", + " [32.5 ],\n", + " [32.403],\n", + " [32.403],\n", + " [32.693],\n", + " [32.726],\n", + " [32.887],\n", + " [33.016],\n", + " [33.048],\n", + " [33.08 ],\n", + " [33.37 ],\n", + " [33.37 ],\n", + " [33.499],\n", + " [33.725],\n", + " [33.789],\n", + " [33.821],\n", + " [34.047],\n", + " [34.079],\n", + " [34.144],\n", + " [34.305],\n", + " [34.434],\n", + " [34.434],\n", + " [34.659],\n", + " [34.756],\n", + " [34.659],\n", + " [34.691],\n", + " [34.917],\n", + " [34.981],\n", + " [34.981],\n", + " [35.271],\n", + " [35.4 ],\n", + " [35.336],\n", + " [35.239],\n", + " [35.594],\n", + " [35.626],\n", + " [35.819],\n", + " [26.796],\n", + " [35.948],\n", + " [27.408],\n", + " [36.174],\n", + " [35.304],\n", + " [36.271],\n", + " [36.528],\n", + " [36.561],\n", + " [36.689],\n", + " [36.657],\n", + " [36.979],\n", + " [36.979],\n", + " [37.044],\n", + " [37.205],\n", + " [37.173],\n", + " [37.237],\n", + " [37.205],\n", + " [37.302],\n", + " [37.656],\n", + " [37.56 ],\n", + " [37.592],\n", + " [37.882],\n", + " [37.882],\n", + " [37.817],\n", + " [38.043],\n", + " [37.173],\n", + " [38.269],\n", + " [38.365],\n", + " [38.397],\n", + " [38.591],\n", + " [33.016],\n", + " [26.022],\n", + " [38.913],\n", + " [38.945],\n", + " [38.913],\n", + " [38.945],\n", + " [38.945],\n", + " [39.235],\n", + " [39.203],\n", + " [39.268],\n", + " [39.3 ],\n", + " [39.493],\n", + " [39.042],\n", + " [39.59 ],\n", + " [39.622],\n", + " [39.654],\n", + " [39.815],\n", + " [39.88 ],\n", + " [39.912],\n", + " [39.912],\n", + " [40.009],\n", + " [40.009],\n", + " [40.234],\n", + " [40.234],\n", + " [40.234],\n", + " [40.363],\n", + " [40.524],\n", + " [40.524],\n", + " [40.557],\n", + " [40.557],\n", + " [40.653],\n", + " [40.814],\n", + " [40.557],\n", + " [40.911],\n", + " [40.879],\n", + " [41.072],\n", + " [41.169],\n", + " [41.104],\n", + " [41.072],\n", + " [41.104],\n", + " [41.137],\n", + " [41.523],\n", + " [41.33 ],\n", + " [41.523],\n", + " [41.523],\n", + " [41.62 ],\n", + " [41.813],\n", + " [41.781],\n", + " [41.846],\n", + " [41.813],\n", + " [41.942],\n", + " [42.136],\n", + " [42.136],\n", + " [42.136],\n", + " [42.136],\n", + " [42.104],\n", + " [42.168],\n", + " [42.361],\n", + " [42.458],\n", + " [42.232],\n", + " [42.49 ],\n", + " [42.361],\n", + " [42.394],\n", + " [42.426],\n", + " [42.394],\n", + " [42.716],\n", + " [42.748],\n", + " [42.813],\n", + " [42.651],\n", + " [42.813],\n", + " [42.748],\n", + " [42.941],\n", + " [43.103],\n", + " [43.135],\n", + " [43.103],\n", + " [43.038],\n", + " [43.135],\n", + " [43.264],\n", + " [43.425],\n", + " [43.328],\n", + " [43.328],\n", + " [43.457],\n", + " [43.457],\n", + " [43.521],\n", + " [43.683],\n", + " [43.779],\n", + " [43.683],\n", + " [43.683],\n", + " [43.715],\n", + " [43.973],\n", + " [43.94 ],\n", + " [44.102],\n", + " [44.005],\n", + " [44.005],\n", + " [44.005],\n", + " [44.23 ],\n", + " [44.359],\n", + " [44.424],\n", + " [44.392],\n", + " [44.327],\n", + " [44.327],\n", + " [44.424],\n", + " [44.521],\n", + " [43.779],\n", + " [44.682],\n", + " [44.714],\n", + " [44.649],\n", + " [44.649],\n", + " [44.746],\n", + " [44.778],\n", + " [44.907],\n", + " [44.972],\n", + " [42.2 ],\n", + " [44.939],\n", + " [45.036],\n", + " [44.907],\n", + " [44.327],\n", + " [43.876],\n", + " [45.004],\n", + " [45.197],\n", + " [45.294],\n", + " [45.358],\n", + " [45.326],\n", + " [45.229],\n", + " [45.358],\n", + " [45.101],\n", + " [45.423],\n", + " [45.391],\n", + " [45.713],\n", + " [45.681],\n", + " [45.616],\n", + " [45.713],\n", + " [45.616],\n", + " [45.713],\n", + " [45.713],\n", + " [45.713],\n", + " [45.745],\n", + " [45.648],\n", + " [45.971],\n", + " [45.938],\n", + " [45.938],\n", + " [45.938],\n", + " [46.067],\n", + " [45.971],\n", + " [46.035],\n", + " [46.132],\n", + " [46.196],\n", + " [45.938],\n", + " [46.164],\n", + " [46.261],\n", + " [46.261],\n", + " [46.229],\n", + " [46.261],\n", + " [46.229],\n", + " [46.229],\n", + " [46.357],\n", + " [46.551],\n", + " [46.519],\n", + " [46.551],\n", + " [46.583]])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y = np.array(df['0']).reshape(300,1)\n", + "n = 300\n", + "t = np.linspace(0,n-1,n)\n", + "X = np.c_[np.ones(len(t)), t]\n", + "y" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 8.40650403],\n", + " [-13.57147156]])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.random.seed(82)\n", + "eta = 0.00001 #lerning rate\n", + "n_iteration = 1000000\n", + "m = len(y)\n", + "theta = np.random.randn(2,1)*10\n", + "theta" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[25.5895366 ],\n", + " [ 0.07906986]])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "for iterations in range(n_iteration):\n", + " gradient = 2/m * X.T.dot(X.dot(theta)- y)\n", + " theta = theta - eta*gradient\n", + "theta\n", + "#array([25.70275643, 0.07850281])\n", + "#array([[25.53711216],[ 0.07933242]]) -> 42\n", + "#array([[25.53941259],[ 0.0793209 ]]) -> 82" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# BGD Visualization" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_gradient_descent(eta):\n", + " m =len(y)\n", + " theta = np.random.randn(2,1)\n", + " plt.plot(t,y,'.b')\n", + " n_iteration = 1000000\n", + " Xnew1 = np.linspace(0,n-1,n)\n", + " Xnew = np.c_[np.ones(len(Xnew1)), Xnew1]\n", + " for iterations in range(n_iteration):\n", + " if iterations % 100000 == 0:\n", + " #print(iterations)\n", + " ypre = Xnew.dot(theta)\n", + " style = '-r' if iterations > 0 else 'g--'\n", + " plt.plot(Xnew1, ypre, style)\n", + " gradient = 2/m * Xnew.T.dot(Xnew.dot(theta)- y)\n", + " theta = theta - eta*gradient\n", + " plt.xlabel('$x_1$', fontsize=18)\n", + " #plt.axis([0,300, 15,50])\n", + " plt.title(r'$\\eta$ = {}'.format(eta), fontsize=16) " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[25.5895366 ],\n", + " [ 0.07906986]])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHVCAYAAADSAqClAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACM5ElEQVR4nO3dd3iT1fsG8DspbYGWFsoqUMoeylSWdSCyERUFAcEBfgFBQBkyXYgLBGQ4QAUEHMhQpoO9lD0FRBDKaCsFZLSlha7k/P54fm9PQvdIk7T357p60bwZffMS7c05z3mOSSmlQEREROTCzM4+ASIiIqLMMLAQERGRy2NgISIiIpfHwEJEREQuj4GFiIiIXB4DCxEREbk8BhYiIiJyeQwsRERE5PIYWIiIiMjlMbAQERGRy2NgISIiIpfHwEJEDnHq1Cl8+umn6Nu3Lxo0aIAiRYrAZDLh/fffd+p5LV++HK1atUKpUqXg4+ODRo0aYcqUKUhKSsrweYmJifjkk0/w4IMPIiAgAEWLFkVQUBA6deqEpUuX5tPZExVeRZx9AkRUMM2ZMwezZs1y9mnYGT58OGbNmoUiRYqgdevW8PX1xZYtWzB27FisXbsWGzZsQLFixVI9LyIiAh06dMCJEydQpkwZPPDAA/Dx8UF4eDh27NgBHx8f9OzZ0wnviKjwYGAhIoeoX78+Ro0ahXvuuQf33nsvPvzwQ3z77bdOO59Vq1Zh1qxZ8PX1xfbt23HvvfcCAK5evYrWrVvjjz/+wFtvvYVp06bZPe/27dto164dTp48iXfeeQevv/46PD09U+6/desW/vnnn3x9L0SFEQMLETlE//797W6bzc6dgf7www8BAOPGjUsJKwBQpkwZzJ49Gw899BA+++wzvPXWW/D390+5f9KkSTh58iReeuklTJgwIdXrFi9eHI0bN3b4+RMVdqxhIXIDkyZNgslkwqhRo3D16lWMGjUKNWvWhLe3N8qXL4/+/fsjOjra2aeZp27fvo2PP/4Y9913H0qWLImiRYuiTp06GDNmDK5du5at1/r333+xf/9+AEDv3r1T3f/ggw+icuXKSEhIwK+//ppyPCkpCXPmzAEAjB49OhfvhohyiyMsRG7g4MGDAKTw8+6774avry8aNWqE4OBg7NixA/Pnz0dMTAyWLVvm5DPNGxcvXkTHjh1x7NgxBAQEoFmzZihRogQOHTqEqVOnYvny5di2bRuqVKmSpdc7fPgwACAgIADVqlVL8zFNmzZFeHg4Dh8+jF69egEADh06hKtXr6JixYqoWbMmjh07hhUrVuDixYsoVaoUHnroIXTq1Mnpo0dEhQH/KyNyA4cOHQIAzJ07F1OmTEFoaChWrlyJLVu2YN68eQCANWvWwGKxZOn1+vbtC5PJlO2vbdu2OeotplBKoUePHjh27Bj69euH8+fPY+PGjVixYgXOnDmD1157DefPn8eLL76Y5dc8d+4cACA4ODjdx1SuXNnusQBw9OhRAEBQUBDGjRuHRo0a4Z133sFXX32Fjz76CI899hiaNm2KsLCwnLxVIsoGjrAQubgbN26k/BKdNWsW+vbta3d/165d8eKLLyIhIQHJycnw8PDI9DUffPDBHJ1LYGBgjp6XHevXr8fOnTvRuHFjfPHFFyhSRP9vqkiRIpgyZQrWr1+PrVu34vjx46hfv36mr3nz5k0AgI+PT7qP8fX1BQDExMSkHDOmng4fPox9+/ZhyJAhePXVVxEYGJhy+/Dhw+jcuTMOHTpkV4xLRHmLgYXIxRmjKxUrVkxVyAroX8Zly5aFt7d3ll6zf//+ab6WK/jll18AAN26dbMLKwaz2YyWLVvi+PHj2LVrV5YCS04ppQBILUuvXr3w2WefpdzXtm1bbNy4EXXq1MHx48exZMkSPP/88w47F6LCjoGFyMUZgaVLly5p1kr89ddfAFBgVqqcPXsWAPDWW2/hrbfeyvCx//33HwCkFCPfaeHChQCAEiVKAADi4uLSfa3Y2FgAgJ+fX8ox43kAMHDgwFTPCQ4ORufOnfHTTz9h06ZNDCxEDsTAQuTijMDSvHnzNO83Vr+kd39a5s2bhz/++CPb5zJu3DjUrVs328/LDqvVCkCmrWrUqJHhY+vVqwcA+PHHH3HhwoVU9xuBpWrVqgCA8PDwdF/LuM94LABUr149ze9tGccjIyMzPFciyh0GFiIXZ6wQatq0aZr3G4GlWbNmWX7NP/74A4sWLcr2ufTt29fhgcUofu3SpQtGjRqVpeecP38+w/vvueceAFKTcu7cuTRXCh04cAAA7Hq03HvvvTCZTFBK4erVqynnZssY2TFqYIjIMbhKiMiF3bx5E2fOnEHx4sVx1113pfmYnASWhQsXQimV7a9WrVrlxdvKUKdOnQDInj9GDUluBQUFpVyfxYsXp7r/jz/+QHh4OLy9vfHoo4+mHA8MDEwpUN60aVOq5yUlJWH79u0AsjfCRUTZx8BC5MIOHz4MpRQaN26c5uqff//9FxcvXkTFihVRsWJFJ5xh3uvSpQuaNWuGffv24cUXX0ypU7F148YNfPHFF0hOTs7y677++usAgMmTJ6dMswEy6jJ48GAAwNChQ+263AJI6W47adIk7NmzJ+V4cnIyXnvtNZw9exYlSpTI1jJrIso+k8qrf8IQUZ6bMWMGRo4ciVdffTXNjQRXrVqFp556Cl26dMGqVavy/wQzcOjQoZQgAAChoaG4evUqgoKCUKlSpZTjK1euRIUKFeyee/HiRXTu3BlHjhxJ2VE5ODgYiYmJOHv2LI4dOwaLxYLbt2+jaNGiWT6nYcOG4ZNPPoGnpyfatGkDHx8fbN68GVFRUXjggQewcePGNDc/fP/99/HWW2+hSJEiaN68OQIDA3Ho0CGcP38exYoVw/Lly9G5c+ccXCUiyirWsBC5MGMkILP6FVecjoiJicHevXtTHY+IiEBERETK7YSEhFSPqVixIvbs2YOFCxdi6dKlOHr0KPbt24eAgABUrFgRgwYNwhNPPJGtsAJIH5sHHngAn3/+OXbt2oWkpCTUqFED48aNw4gRI+Dl5ZXm89588000b94cM2fOxN69e7F//34EBgaib9++GDt2rMPreoiIIyxEbq19+/bYuHEjNmzYgHbt2jn7dIiIHIaBhciNBQQE4MaNG7h+/TpKlSrl7NMhInIYFt0SuakzZ87gxo0bqFmzJsMKERV4DCxEbiony5mJiNxVtgLLO++8k2r3Vttis/j4eAwZMgSlS5eGr68vunXrhsuXL+f5SRMR0KtXLyil0uwrQkRU0GR7hKVevXqIjIxM+bJt7z1ixAisXbsWy5cvx/bt23Hx4kV07do1T0+YiIiICp9sL2suUqRImlvMR0dHY/78+Vi8eDFat24NAFiwYAHuuusu7NmzB/fdd1/uz5aIiIgKpWwHltOnT6NixYooWrQoQkJCMGnSJAQHB+PgwYNISkpC27ZtUx5bt25dBAcHY/fu3ekGloSEBLs+DFarFdevX0fp0qVhMply8JaIiIgovymlcPPmTVSsWDHNneVzK1uBpUWLFli4cCHq1KmDyMhITJw4EQ899BCOHz+OS5cuwcvLCyVLlrR7Tvny5XHp0qV0X3PSpEmYOHFijk6eiIiIXEt4eDiCgoLy/HWzFViMTckAoGHDhmjRogWqVKmCZcuWpdnOOivGjx+PkSNHptyOjo5GcHAwwsPD4efnl6PXJCKiQuzTT4E33wRMJsBoNeblBSQmAiVKADdv6j+N4wBgNgNWK1C0KBAfDxQvDty6Bfj7A6tWATY7eVNqMTExqFy5MkqUKOGQ189Va/6SJUuidu3aOHPmDNq1a4fExERERUXZjbJcvnw5zZoXg7e3N7y9vVMd9/PzY2AhIqLs2bABePtt+d7LC0hIAHx9gdhYwM8PiIkBfHwkrBQposNKkSJAcjJQrBhw+7YOK6VKARs3Ak2aOO89uRlHlXPkapIpNjYWoaGhqFChApo0aQJPT09s3rw55f5Tp04hLCwMISEhuT5RIiKiDIWGAs88I6Mkvr4SVkqUkLDi4yNhxdsbiIuT0Rdjt29PT/uwUqyYDiubNjGsuIhsjbCMGjUKjz/+OKpUqYKLFy9iwoQJ8PDwQK9eveDv749+/fph5MiRCAgIgJ+fH1555RWEhIRwhRARETlWbCzQpQtw44ae7jFGUooWlZDi4SEhBtDTRcaUUNGiElaMPwMCJKzcc49z3xelyFZgiYiIQK9evXDt2jWULVsWDz74IPbs2YOyZcsCAGbMmAGz2Yxu3bohISEBHTp0wOzZsx1y4kRERABkRKVPH+Cvv2R0xKhNMUJKfLw8zmKRPz085HtvbwkwRs2K8WdAALB5M9C4sdPeEqXmcpsfxsTEwN/fH9HR0axhISKizL33ntStGEHEttjWYNzn6QkkJaUOK8bt0qUlrDRq5Jz34sYc/fubewkREZH7WrNGF9larfKnUfTp4SF/enpKWPHysg8r3t4SVoziXIYVl8bAQkRE7unvv4HnnpPvPT1lVMXTU4KLl1fqkJKYqMOKEVKMGpYyZYAtWxhWXBgDCxERuZ+oKCmyNYpqjVByZzjJKKR4etqHlYYNnf2uKAMMLERE5F4sFqB3b+D0aT2tYzvNc2c4SUjQ4cT4s0gRCTdlywJbtwINGjj7XVEmGFiIiMi9vPkm8NtveplykSI6lGQUTmz/TE4GypWTsFK/vrPfEWUBAwsREbmPZcuAyZPle2OZcnKytNVPSpIQc+efyck6pBi3y5eXsFKvnvPeC2ULAwsREbmHP/8EXnxRvr+z/buxQshikfBi+6cRUoylzUZYufvu/D1/yhUGFiIicn1Xr0qR7a1bMlqiVOrQYrBa5T6rNXV4CQwEtm0D7rorX0+fco+BhYiIXFtSEtCjB3Dhgv3UTkahxbjPCC1Wq4SVrVuBunXz9/wpTzCwEBGRaxs1SoKG2azrUYypnvRCi9Ht1ggrFSrIyArDittiYCEiIte1cCHwySfyvTFaYluPYjanbsMP2IeVihUlrNSpk59nTnmMgYWIiFzTvn3AoEH2x6xW+7BiFNveyZgOqlRJwkrt2g4/XXIsBhYiInI9kZHAU09JXxVbJpN9WMloOsgIK7Vq5cspk2MxsBARkWtJSAC6dQMuXpRgYst2qietXZmNY0FBElZq1sy30ybHYmAhIiLXoRQwdCiwe3faoyjGVE9aYcV4fuXKDCsFUBFnnwAREVGKL74A5s2T79MKJsaqoLTCCqDDSvXqDj9Vyl8cYSEiItewYwfwyiv6dkZTPmkJDmZYKcAYWIiIyPnCwoCnn9b7AwFp91hJL6xUqcKwUsBxSoiIiJzr9m1ZEfTff/bHMxpNsWWElapVHXF25CI4wkJERM6jFDBgAHDoUNZHU2xVrQps386wUggwsBARkfNMnw58/718n5WAYqtaNRlZqVIlz0+LXA8DCxEROceGDcDo0Tl7bvXqDCuFDGtYiIgo/4WGAs88k/1RFUCHlcqV8/y0yHVxhIWIiPJXbCzw5JPAjRvZf26NGlKzwrBS6DCwEBFR/rFagT59gOPHs//cmjVlZCUoKM9Pi1wfAwsREeWfDz4AVqzI/vNq1WJYKeRYw0JERPljzRrg7bez/7zatYEtW2T3ZXJJERHAkSOO/RkMLERE5Hh//w08+2z2n1e7NrB1K1CxYt6fE+VIRASwa5d8X60asGyZrE63Wh37cxlYiIjIsaKigC5dpNg2O+rUkbBSoYJDTouyb/586fOXk8VducUaFiIichyLBejdGzh9OnvPq1tXalYYVlzG/v3OCysAR1iIiMiR3nwT+O237D3nrrukZiUw0DHnVIhFREh2rFVL1y8bx3x9gXPn5Fi1ajIgZhzbsgX46ivnhRWAgYWIiBxl2TJg8uTsPefuu+W3Y/nyjjmnQmzaNGDsWKk1MZslgNy4oY+5OgYWIiLKe3/+CfTtm73n1KsHbN7MsJIHbEdSAOD994Evv9T3W61A//559/PMZmDIEODTT/PuNe/EwEJERHnr6lXgiSeA27ez/pz69SWslCvnuPMqYNKbysmPVTsmEzB7NtCkCRAXJz39/PwYWIiIyF0kJQE9egBhYVl/Tv36Mg1UtqzjzquAmT8feOkl50zleHjIaE2/fvbHY2Ic+3MZWIiIKO+MHi1LkbOqQQMZWSlkYSWj4lfj2J39TmyLYJ0RVkwm4LXXgGHDnNNwmIGFiIjyxqJFwKxZWX98gwYyslKmjOPOyQXZjo4YIcDbG5g0SR9r3x7YsCH/VuWYTMD48UDjxnK7alWZ6vHxAc6fl2MhIc7dGcGklDMXKaUWExMDf39/REdHw8/Pz9mnQ0REWbFvH/DQQ0BiYtYe37ChjKwUsrASEQFUqeKcqRyzWfqozJ1r//PNZmDPHqBZs9y9vqN/f7NxHBER5U5kpHSyzWpYadSoUI6sRERIQWx+hBWTSb4ACSSjRgEXLgBffCHLmT085D4PD7md27CSHzglREREOZeQAHTtCly6lLXHN24MbNoElC7t0NNyBttVO7Gxeknx6dPAwYOO63cyZ46+nMZUTs2acvvMGfnediqnXz+gQ4e073NlDCxERJQzSgGvvCLzCVlxzz0SVgICHHte+SwiQkp37lxKbIxwOLLwwsMDeOyx9ENHRsfdJagYGFiIiChnvvhCCiKyooCGlWnTgDFj0g4lOQkqtiHHqDlp00aPnGzapItzjeXF7hY8cipXNSyTJ0+GyWTC8OHDU461atUKJpPJ7mvQoEG5PU8iInIlO3bI6EpW3HuvFNgWsLAydaqs4s7tCMqMGVKzvHWrtK8JC5PvjZqT7t2lxqRVK+lYe+GC3H/+fOpeKAVZjkdY9u/fjy+//BINGzZMdd+AAQPw7rvvptwuXrx4Tn8MERG5mrAw4KmnZCfmzDRpIsMCJUs6/LRyIyt9UWzt3y81Kbnl4QE8/XTq189o1MQdp3PyQo5GWGJjY/Hss89i7ty5KFWqVKr7ixcvjsDAwJQvLk8mIiogbt+WtvvXr2f+WDcJK9OmyVLj1q3lz/nz7Y8FB8tISkSEPH7+fKBFi5xP+Zj//zdvYZvSya0cBZYhQ4agc+fOaNu2bZr3f//99yhTpgzq16+P8ePH49atW+m+VkJCAmJiYuy+iIjIBSklcxB//pn5Y5s2lWkgFw4rERHAoEESRoxiWWNTQNtjSukAM3WqNH1LL6w895wOJGlRCliypHBO6eRWtqeElixZgkOHDmH//v1p3t+7d29UqVIFFStWxNGjRzF27FicOnUKK1asSPPxkyZNwsSJE7N7GkRElN+mTwd++CHzxzVtKiMr/v6OP6cM2La2v/9++6meWbOAjz/O3iiJ1QqMG5f20mSTCfjoIwk6rVoBAwemPWPm4eH8jrHuKludbsPDw9G0aVNs3LgxpXalVatWaNy4MWbOnJnmc7Zs2YI2bdrgzJkzqFGjRqr7ExISkJCQkHI7JiYGlStXZqdbIiJXsmED0LFj5r/hmzWTsOLk/3/Pny8rbGxPd9QoaYH/4Ye5K5Q1mzPvFBsRIX1ODhyQkGOxpL9pYEHh6E632Qosq1atwlNPPQUPo0UeAIvFApPJBLPZjISEBLv7ACAuLg6+vr5Yt24dOnTokOnPYGt+IiIXExoqDd9iYzN+nJPDim3jtpzWmAAyWpLecz08gMmTsxdCjPDiTk3acsLRv7+zNSXUpk0bHDt2zO7Yiy++iLp162Ls2LGpwgoAHDlyBABQoUKFnJ8lERE5R2ws8OijmYeV5s0lrJQo4bBTSauTrBEApk3TnWQzChwZMZsljAQE6Ckd274otuHkmWeyHkIK66qevJatwFKiRAnUr1/f7piPjw9Kly6N+vXrIzQ0FIsXL8ajjz6K0qVL4+jRoxgxYgRatmyZ5vJnIiJyYVYr0Ls38M8/GT8uH8KKbSAxGDsMX7smQcKQ3bBiNgMjRwLDhulgYdu6HpDvfXwkKEVEMIQ4Q552uvXy8sKmTZswc+ZMxMXFoXLlyujWrRvefPPNvPwxRESUH957D1i7NuPHODisRERIszTbQGJQSupR0pOVkZZBg4A33ki7D4rtsfXrZXWQ1SoB56uvCm4tiqvKVg1LfmANCxGRC1izRnZgzkiLFhJWfH1z9aPSa9CWVuFsVhmFsOfPy8bQc+far9oxpn9Gj87a+VWpYj+64+Ehr81RFs2laliIiKgQ+PtvoEePjB+TR2Fl/nw9cmEyAa+9Jj/6wAFgyJCcF85+9JHUADdrJq3t33hDT+sYuxlnNWycPp16KbPFIq/HwJJ/OMJCRERaVBTQoIFu65qWFi2kKZyPT45/jNEjpVevtPua5FR2Rk6yiiMsWePo39+52vyQiIgKEIsFePJJh4eV+fMlAPTsmf2wYjbLoqU7u8mazdJn5cKFvA0rgISSr76SkGL8rEmTGFbyG6eEiIhIjBkDbN+e/v333SdhJYsb2qZVm7J/v54Cyg5jushYyWP0NklriiejTQtzql8/4MYNvVJp3DhZ/szC2/zDKSEiIpINbnr1Sv/+bIaVO/uivPZazrvMptVJNj22NTF5uZqH00KZY9EtERE51p9/yq596clmWJk6VQZrDMbmgTlhhI6shJWICPvRG6tVGsB16JD7UMHCW+djYCEiKsyuXgVat057pz5AwsqWLUCxYum+hO0mg8WLy8hKdnl4SF1Is2YyzXP+vBzPzkaBjgwVtWql3kPIw0M3liPHY2AhIiqskpKA9u2B69fTvr9Fi1Rh5c76kNz0SjGZpN2Lr2/qZcZZGVG5kyNDhVF4a7TsN9r0c3Ql/zCwEBEVVgMHAocPp31fixbAtm1A0aIAJKjMmgVMn67rUoYMAT7/POe9UqZMAR57LGfPTYujQ0W/fvYt+xlW8heLbomICqMvv5S+9Gm5I6zkZhQFSN0i3xG9UmwVlt2RXY2jf38zsBARFTZ79khxSBpi67XAunHbYPUqivvvByIjpYwlJ83djNU9FSrkvMssuQ+uEiIiorwTGSlFtmnYg+Z4+K/tSHzeO9c/xpiOMWpRGFAotxhYiIgKi4QE4IEHgNu3U921F83wMHYgETkLKyYTMHs20KQJR1HIMRhYiIgKgYhwBe8eT6PsuXOp7tuHpmiJ37McVu6sSTFGU9j1lRyJgYWIqAAylh/7+gLLlgHe0z7A+/g51eP2owkexE4kwSvT1zSZgL17WZNCzsHAQkRUwNi2pweAdliP9Xgr1eMO4l48gF1ZCiuALENmTQo5CwMLEZEbSm+Dvzvb01fGBfyMTjDd8fyDuAch2G0XVsxmYPVqKXHZsgWYO1f6mRjLkEeNcvz7IkoPAwsRkZswQsrBg3pjQSNMNG0q0z+//67DSlHcxmE0ghfsu1ccRiPch71Ihqfd8ZEjdSO37t2BN95gPxNyHezDQkTk4u7sMps1CgdwL5rgiN3RP9EATXEwVVgxm4ELFxhMKOfYh4WIqBDLaZfZOXgpVVg5jrtTworJJEW0Viv3xbGV3lQbOR8DCxGRk9iu5DFWG1erBsTGyi/MyEipR8luWHkOizAQ8+yOXStbB02vHUGy1TMloHBfHHu2xcpms+xLxKXaroNTQkRETnDnSp68Ug9HcRSNYLY5llS1FjxPn0DEpSIMKOmIiACqVEm90/P587xWWcUpISKiAmb/fseEFV/E4BAa24WVmDLV4Hf6BFCkCIKC+Ms3PadPp/77sFhkBIrXzDUwsBAR5QPbFT5jxuR852NbJpNMXVgsgIfJikuewfBK1C+cXKEy/ML+AYrwf/WZqVVLruWdIyw1azrvnMieOfOHEBFRTkREAFu3Am++KdMNrVsDo0fnLKyYTLLM2MNDbnt4SJ+U8+flZ8Td1RQ+idH6CYGBKBJ2lmEli4KCpGbF9vqyENm1sIaFiMgB8rpGZepUadwWEZFGoexLL0l6MZQuDVy+rH/7UpaleX0pS1jDQkTkZrJTo2LbXRYAqlaVvX9mzEi7y2yqOpQlS+zDip8fw0ousM7HdTGwEBHlkG3PDkC+37wZ+PDDrE/72HaXNTRrBgwbloV/6Z8+DfTqpW8XLQpcu8awQgUSAwsRUQ7YTvmY/n+jnuxOsJvNEkzSkum/9BMSgNq19e0iRYCbN1mzQgUWi26JiLLpzg0GlcpaWDG6ywIyCPLVV7mYfiha1P6Fb99mWKECjZ9uIqI0ZNSiPa2eHekxmYA1a6SbrbFENtdFnV5e9rcTExlWqMDjJ5yI6A7TpundkE0m4LXXgB49dPv84sXleFZGVaZMSV2jkquiTn9/IClJ3+bIChUSXNZMRGRj6lRp7JZbxuqe0aNz/1opKleWoR/DpUtA+fJ5+AOIco7LmomIHMyY/omLk5GVnDKWKBvTP3m6PLZhQ/uwsmEDwwoVKgwsRFQo2bbKN6Z/csPojHrn9E+eePhh4Ngxffudd4B27Rzwg4hcFwMLERU6edmF1myW3m0hIQ5qOPb448COHfp2hw7AhAkO+EFEro2BhYgKlezulJxRca0xqtK9e96dn52ePYGff9a3g4KAdesc9MOIXBsDCxEVSBERwK5d8n21akBsbPa60JrNwJ49QIUKsgzZx0c2GgSkfX5cnIP3m+nbV3r0Gzw9gQsXHPTDiFwfAwsRFTjz5wMDBuRsV2RAj5w0aya3jVBi3Ha4AQOARYvsj126JCmKqJBiYCGiAmX//pyHFZMJWLrUgfUoWTF0KDBvnv2xffuAgADnnA+Ri2BgISK3Zaz08fWVpm5btki7+5yOrCgFlC3rxLAyfDjw+ef2xz77LB+HdohcV67GFydPngyTyYThw4enHIuPj8eQIUNQunRp+Pr6olu3brh8+XJuz5OIyM78+UCVKkDr1kDz5lKf+uWX2Qsrxr4+Bg8P3T4/340cCcyaZX+sZ09gyBDnnA+Ri8lxYNm/fz++/PJLNGzY0O74iBEjsHbtWixfvhzbt2/HxYsX0bVr11yfKBGR4c7NB7PLbJaW+XPnSkgBdN2KU0ZXxowBZsywP1a7NvDDD044GSLXlKMpodjYWDz77LOYO3cu3n///ZTj0dHRmD9/PhYvXozWrVsDABYsWIC77roLe/bswX333Zc3Z01EhVZEhCyeyUpYMZmA2bOBJk1kVY+PT+rVPR065MFmhLkxdqzsB2DLxwc4fDj1EBBRIZajwDJkyBB07twZbdu2tQssBw8eRFJSEtq2bZtyrG7duggODsbu3bsZWIgoW9KqUZk7N2thxRgx6dcv48cFBTmxZmX8eBnqudOff8oOi0SUItuBZcmSJTh06BD279+f6r5Lly7By8sLJUuWtDtevnx5XLp0Kc3XS0hIQEJCQsrtmJiY7J4SERUwERFSzjF9evanfYzdlYcNc2IQyYo33pDdEe+0di1Qo0b+nw+Ri8tWYAkPD8ewYcOwceNGFC1aNE9OYNKkSZg4cWKevBYRub9p06SkI7srfSZMAOrVc/KS5Kx6803pYHen11930GZERO7PpFTW/7ewatUqPPXUU/AwqtQAWCwWmEwmmM1mrF+/Hm3btsWNGzfsRlmqVKmC4cOHY8SIEaleM60RlsqVKztse2oici220z7z58s0TnZ5eEgXWpcPKgDw1luAzVR6ijZtgI0bWbdCbismJgb+/v4O+/2drRGWNm3a4JjtjqEAXnzxRdStWxdjx45F5cqV4enpic2bN6Nbt24AgFOnTiEsLAwhISFpvqa3tze8vb1zePpE5I7ycqdkp67uya70wkqlSsAvvzCsEGUgW4GlRIkSqF+/vt0xHx8flC5dOuV4v379MHLkSAQEBMDPzw+vvPIKQkJCWHBLRAByv1OyUaPSo0c+7OeTl9ILK97e0smW/3AjylCed7qdMWMGzGYzunXrhoSEBHTo0AGzZ8/O6x9DRG4mIkLqSYcMyV59yqBBwP/+pzcedIsalTu9/XbaYQWQaaCKFfP3fIjcULZqWPKDo+fAiCh/2NamLFsGfPxx9oKK2SyLaEaPdtw55ov0RlYAWQr16qv5ez5EDuJSNSxERFmRm2kfs1m61Lv8suSsyCisPPsswwpRNjCwEFGeyk7bfJNJHtumDVC1qpvVpGTmzTeBDz5I+7769YEFC/L3fIjcHAMLEeXInV1oAaBaNeD337MeVkwmWeEzd67sspxZV1q3kVFY8fcHNm8GPD3z95yI3BwDCxFlW16s9AH0861WYOBA2dfH7UdXMgorZrPsL1CuXP6eE1EBkOPdmomocMrpTslms4SSZcuAJUtSF+BaLLIJoVvLKKwAwMKFwL335tvpEBUkHGEhomw5fTr7YWXGDODpp/XoSUSEBBjb1/HwkPoVt/XGG2m32zcMHQo8/3z+nQ9RAcMRFiLKVEQEsHWr/FmrloSNrPLwsA8rgHz/1Vdyn/EYt+lWm5bXX884rDzwADBzZr6dDlFBxMBCRBmaPx+oUgVo3Vr+XL/ePmxkJKMg0q+fNIPbulX+dMuCW6UkrEyalP5jAgOlY15WLhgRpYuN44goTRERwK5dQK9eqadujK6zZ84APj76trE02cengC1RTotSMg2UUVjx9AQOH5ZtpIkKODaOI6J8FREhDVinT0+7VsUojm3VSoeRZs3y9RSdzxhZmTw548ctWcKwQpRHGFiIKMX8+cCAARm30Hf74tjcUgoYPx746KOMH/fGG0DXrvlzTkSFAAMLEaVM/7z0Uub7/YwYUYCneTKjFDBuHDBlSsaP69QJePfd/DknokKCgYWokMtOEzizWfb4KZSUAsaOBaZOzfhx1avLVFB2llIRUaYYWIgKmTtb6mc1rLj90uPcUAoYMwaYNi3jx/n4AOvWAVwwQJTnGFiICpHsjqaMHAn06FEIVvxkRClg1CipQs7Mjz9KoxoiynMMLEQFmDGaYvwOzUpYMZtlRiMkpJAGFFvZCSuTJgEdOzr+nIgKKQYWogLKdjTFZAI6d848rBjTPt275885ujSlZIgpKx1qu3eX+hYichg2jiMqgCIipCttdvf8WbaMYQWAhJURI6QhTWbq1wf27gWKF3f8eRG5MDaOI6Jsy8kGhR4eMg1U6CkFDB8OfPJJ5o8tWRL4+WeGFaJ8wHV3RAWQr2/mq2qfe04/plCvALKlFPDqq1kLK2YzsHKlDGURkcNxhIXIjd1ZVHv6NLB5s9R/ZjTC4uEhj5k0SdrsF9oVQLaUAl55Bfj886w9fuZM2Z+AiPIFAwuRm7pzibLJlHaXWpNJ/jTuM5vtR1Nsg4ptACpUAUYpYOhQYPbsrD2+b195PBHlGwYWIje0f3/qJcrplc8rJcW0hvSWK9sGILMZ+OoroF+/vD1vl2S1SviYMydrj2/WTB5rJEEiyhdcJUTkJoz9frZskTCR1f9yzWbgwoWMR0zSWlXk4QGcP1/AR1qsVmDIEOCLL7L2+HLlgMOHgYoVHXteRG6Iq4SIKEu7KKfno48yDx1prSqyWKS+pcAGFqsVePllSX9ZUaQIsGoVwwqRk3CVEJGLi4jIWVgxm2VT4VGjMn9srVqpVxV5eEgxboFktQKDBmU9rAAyCsN130ROwxEWIhdlFMCePJm1sJKbvX+CguR398CBMrJSoJc5W63yRufNy/pzhgwpJAU9RK6LNSxELsQIKVlZmgzo5cnNmuXN0uSIiAK+zNlqlcri+fOz/pyHHpK/EE9Px50XUQHAGhaiQiI7OymbTMBrrwHDhuVtsAgKKqBBBZAL278/sGBB1p8TFCQ7MDOsEDkdAwuRC4iIyHpYmTBBfu8W2GDhCBaLXLSFC7P+nKJFgdWrZWUQETkdAwuRC9i1K2thxcODYSXbLBapP1m0KHvPmz8fuPdex5wTEWUbAwuRkxj1KgcPAmPGZP74Al0I6ygWC/Dii8C332bveaNGAb17O+aciChHGFiInCCr9SpmMzBuHNCuXQEuhHUUi0Va6H/3Xfae1749MHmyQ06JiHKOgYUon2WlXmXOHKBuXYaUHLNYgD59gO+/z97zqlcHliyR4SwicikMLET5KCJC9vXJbCflxx5jUMmx5GQJK4sXZ+95Pj7AmjVAqVKOOS8iyhUGFiIHs61VGTs287DCOpVcSE4Gnn9eRkmy69tvgXr18v6ciChPMLAQOVBWalXyuvlboZWcDDz3HLB0afaf+/bbwFNP5f05EVGeYWAhymPGiEpcXOZhZcYM4OmnGVJyLTkZePZZmW/Lri5dpLkNEbk0BhaiPJSdbrUeHgwreSIpScLK8uXZf+5ddwHffJN650cicjkMLES5YIym1Kolt7MTVlirkgeSkoBevYCffsr+c/38pJMt9ywjcgsMLEQ5ZDuaYjIB3btnHFbMZmnvcWetim3oYYDJhqQk4JlngBUrcvb8pUt10iQil8fAQpQDd/ZSUSrj8gmzGdizR8KKLdvQYzYDX30lXeQpE4mJElZWrszZ8ydPBjp2zNtzIiKHytbE7Zw5c9CwYUP4+fnBz88PISEh+O2331Lub9WqFUwmk93XoEGD8vykiZxt1qysTf0AMv3z1Vepw8qdocdqBQYOlOOUgcREoGfPnIeVZ57J2l4IRORSsjXCEhQUhMmTJ6NWrVpQSmHRokXo0qULDh8+jHr/379gwIABePfdd1OeU7x48bw9YyIni4gAPv4488eZTDLrEBKS9lTP6dOpQ4/FApw5w6mhdCUmAj16SO1JTjRuLMNaJlOenhYROV62Asvjjz9ud/uDDz7AnDlzsGfPnpTAUrx4cQQGBubdGRK5gIgI2VEZAK5dkymgzCgFlC2bfvioVUumgWxDi4eH1LdQGhISpFBo7dq07zeZMv6LKVNGRmX4jygit5TjtXwWiwVLlixBXFwcQkJCUo5///33KFOmDOrXr4/x48fj1q1beXKiRM4yfz4QHCyzED17AoMHZ+15mYWPoCCZKjK2reHKoQwkJMga8OyEFdtRFLNZlj1XreqwUyQix8p20e2xY8cQEhKC+Ph4+Pr6YuXKlbj77rsBAL1790aVKlVQsWJFHD16FGPHjsWpU6ewIoMq/oSEBCQkJKTcjomJycHbIMo7dy5VHjAg43+4G51qr1yRRnAWS9bDR79+QIcOMg3ELrfpSEgAunUDfvkl/cekFVZsj82cCbRq5YizI6J8YlIqK4PbWmJiIsLCwhAdHY0ff/wR8+bNw/bt21NCi60tW7agTZs2OHPmDGrUqJHm673zzjuYOHFiquPR0dHwY38EykcREVJMO326Xqrcq1fme+gtWyYzFcZrMHzkofh4CSu//prxlE96IyxKAS++yLoVonwQExMDf39/h/3+znZguVPbtm1Ro0YNfPnll6nui4uLg6+vL9atW4cOHTqk+fy0RlgqV67MwEL5av78zEdS0uLhAZw/z3DiEPHxQNeuwG+/6fCRVjC5sxAI0I9r3hzYvh0oWjT/zpuokHJ0YMl1Hxar1WoXOGwdOXIEAFChQoV0n+/t7Q1vb+/cngZRjkRESFnEkCE5CyusOXGQ+HjZjHDduozDismkh8Ns71MKCAyUIluGFaICIVuBZfz48ejUqROCg4Nx8+ZNLF68GNu2bcP69esRGhqKxYsX49FHH0Xp0qVx9OhRjBgxAi1btkTDhg0ddf5EOZaTUZUJE4DOnWVjQ077OEh8PPDkk8D69ZmHFaX0CIvtY7y8pANuxYr5fvpE5BjZCixXrlzBCy+8gMjISPj7+6Nhw4ZYv3492rVrh/DwcGzatAkzZ85EXFwcKleujG7duuHNN9901LkT5dj+/dkPKx4eQP/+DCkOdfu2hJUNG1IHkjvZ3nfnYz7/XBrgEFGBkesalrzm6DkwoqyMrNz5D3pj+odt8x3o9m2gSxdg48aMR08MxjEPD1maZTx28GAJLESUr1y+hoXIXWSlXsXY86dCBVnt4+PD6Z98ceuWhJVNm1KPmmQ2wmKxAEWKAMnJQMuWsoSZiAocBhYq8Izlyh9/nPGoirH5oLHnDwNKPrl1C3j8cWDLFh1OjFGTO0dP7mQEmuRkoHJlaQ7n6Zn/74GIHI6BhQq0rE7/zJ4NPPYYQ0q+i4uTsLJ1a/phJSuhpVgxYNUqoFy5fH8LRJQ/GFioQMrqcmVjVIW1KU4QFycpcdu21GHFmOK580/j/jtrWubNA+6912lvhYgcj4GFCpSsTv8Aul7FmAKifBQXJ+vDt29PP6R4egJJSan/vDO8jBoF9O7t7HdERA7GwEIFRnb6qtxZr0L5KDZWwsqOHVkPK15eQGJi6j/btwcmT3b2OyKifMDAQgVCRATw0kuZ16q89BLQpo206GC9ihPExgKPPgr8/nvG0z/GSIoRWtIKKzVqAEuW6O2uiahAY2ChAmHWrLTrMQ2c/nEBN29KWPnjj7RrU9L7MylJ/kxMlMcnJsp689WrgVKlnP2uiCifMLCQ24qIAE6flnKIjz9O/3Gc/nEBN28CnToBO3emX0hr9FQxmez/BPSfycny57ffAvXqOee9EJFTMLCQW5o/X6Z3MhpVeewx4IUXOP3jdDExElZ27dI1KcYIim1IMf4y09uN2Qg2b78tGyMSUaHC1vzkdiIigCpVMp8CunCBQcXpYmKAjh2B3bvtw0paS5MBfZ/xWG9vICFB+qwYrftXrJC/YCJyKWzNTwQ9/ePrK/WamYWVr75iWHEE4++hVq0sXN/oaAkre/akDiuADivGCIpRTGuEE2NfBOPPu+4CvvmGYYWokGJgIZeXlekfA4trHcf27yHThnvR0UCHDsDevTqI2IYVY3TFCDLphZTixeVPf3/pZMtRV6JCi/9UIZdmLFfOSljx8GBxraPc+fdgtQIDB8rxVKKipD+KbVgxalUA+YtSCihaVMKKr6+EFV9fCSfFismfnp6yz5DJJMuXa9fOr7dLRC6IgYVcWmbLlQ0zZgDnz7PFvqOcPp3678FikR2t7RhhZd8+qT8xworxZE9PeaKPDxAfD5QoIb1ZiheXP4sUkfBi/AAAmDRJppaIqFDjlBC5nKwuVzZ4eABPP82aFUeqVSv13oMeHkDNmjYPunFDwsqBA7pY1nb1j3GsRAlZ5uzrK396e8tICqDrWooXl2M9ewJjxuTLeyQi18YRFnIp8+fLCqDWrWUT38zWsHl4AF9+ybDiaEFBMt1mNJVNdd1v3ADatZOwUrSoBBPb4tjixeWYn5+EFGNExWyWaSHjMRYLULKkhJVGjeQDYTLl51slIhfFZc3kVLarToDMlyubTMDSpUDVqjICU7Mmw0p+ioiQaSC76379uoSVQ4d08azJpOtWfH0lnPj7SzGuMdIC6O9LlpTppFKlJPyUKQPs3y9/0UTkFrismQos21UnJhPQvXvWlit3755/50j2goLuCIjXrwNt2wKHD+uwAujGcH5+0ovFz0/CirE/EKDvK10auHZNpopu3JDnLl/OsEJEdhhYyCnuXHWiFLBsWfqP53JlF3TtmoSVI0d0zQmgVwYZoyUlSkgwAXSQMUJKQID86ekpozCAVFC3auWMd0RELow1LOQUaa06SQ+XK7sg27Di46PDStGiElYCAiSsFC8uNSuABJeEBKBcOXm+r6+M0AAScpQC+vYFhg51xjsiIhfHwEL5LiIC+O+/rDUs5XJlF3T1KtCmjYQVo3cKoJcqly4tQaRoUT1FFBAgwaVsWeDKFRlRiY+X+8qWlddo3hyYM4dFtkSUJgYWyjcREcDo0VJY27Nn5iMsXK7sgoyw8uefupgWkNGTuDgpljWmeCwWGTUpX14CTKlSklQBqXdJTgYqVpRjgYHAypUScoiI0sAaFsoX8+cDAwZkvkzZwOXKLui//ySsHDume6kAevVPmTISaMxm3aW2QgUgMlJGX6Kj5fHlywOXL0tIuXhRpoNWrJDwQkSUDgYWcjijwDazsDJjBvDAA1yu7JKuXJGwcvy4Xt0DyFTP9es6rAByf1SUBJCLFyW8WK3yVbkyEB4uy5gvXZLHf/45EBLijHdFRG6EgYUcKiJCVv9w+seNXbkinfz++kuPpgA6pJQurcNKuXLyeGP0BJAAc+2aDiuenlKYCwCDBwP9++f/eyIit8PAQg6T1V2WOf3jwi5flrBy4oRu7gboaZ1SpSSMAHpEpUwZPXoSFCSpNTBQwgogozKXLwMtWwIzZ+bzGyIid8XAQnkuIgJYuxYYMiTtaSCzGRg5EujRg9M/Lu3SJQkrf/+te6oAui7F319PDQUHA2FhukEcAFSvDpw9K48zli8bxypXluZwnp75/76IyC0xsFCeyqy4dsIEmQFgQHFxly4BjzwCnDyp61QAPWLi6ytLli0WoFo14Nw5WeGjlHSyrVlTevh7eUlCTUyU/RdOn5bHrVol00dERFnEZc2UZ/bvz3wl0HvvAevX5985UQ5ERtqHFWNkJThYwkrx4jLPl5goIybnzsm8nr+/rByqVk3CCiBTQTduyHNPn5Zj8+cD997rnPdGRG6LgYXyxPz5QIsWma8EslqBgQPl9x65INuwUrq01KwoJSEkLExGR4wly8b0DiAjL5cvSx3LhQty7K675DkBAVKICwCjRgG9ezvlrRGRe2NgoVzL6rJlg8Wi/wFOLuTiRdnD59Qp6T4bFSUJs0YNGUXx8pL+K9HR0v3PCCt16khIKVVKalqsVqBBA6l98fKSr/h4oH17YPJkZ75DInJjDCyUa7t2pb8SyGRK3Wndw0NKHMiF/PuvhJV//pHakhs3JFnWqgWEhspfWtmy0jyuUiU9RFa/vgScokUBb2/pfFu3rjSXAyTsXLokf/7wg7wOEVEOMLBQrkybBjzzTOrjJpNsCxMWBsydq39PcQmzC4qIkLBy+rQOK8nJMnJy+rT8ZQYHS6gx2uxbLEDDhtJIzmyWv9BLl2T1jzHy0qSJjLL4+EiRbUCAM98lEbk5rhKibIuIkN9jmzcDH3yQ+n4jlBgbFvbrB3ToINNAXMLsYoywEhoqYeTGDVnlc9ddEjYAGWX55x+Z8klIkNVB9eoBR4/K/Q0bykaIJUvKfYmJQOPGwMGDcv+338pIDBFRLjCwULZkpRncDz8A3bvbHwsKYlBxOeHhUmAbGiq9Va5fl7Bx993SKA6QoHH8uCxj9vaWUZTataUoF5BK6717pU6lbFlJsjVr6ue//Tbw1FPOeX9EVKBwSoiybP/+zMOK2cxtYdxCWJgeWalQQUZWEhJk5MQIG40bS1gpWlSmii5d0lNDFgvQvLmEFQBo1EjCSunSsrQ5MRF44glpvENElAcYWChTERHA6NHyj+nM2ux/9BFHUlzehQsSVs6elWXIUVGyiqd+fdkvCACaNZNpniJFpGD27FkZQYmPl/bEjRoBBw7IY1u2lDTr6Snh5/JlmVL69ltJsEREeYD/N6EMzZ8v/6ieNi3jZcsmEzBlirTZIBdmhJVz5yRZRkdL3UmDBjqstGghAcRkklGWv/6S5cwlSkg/lZo1JcBYrbK99o4d8rz775cRGX9/KbL183PSmySigog1LJSurPZXMZuBPXvkH+Xkws6fl5qV8+dlNU9UlIyWNGgg00BKyXze7t3y+PvvB3bulPqU6tWBP/+UzrW3b8u0j+0oS9u2wKZNEnKWLJE6FyKiPMQRFkrXrFlZ22n5q68YVlze+fMysmKElZgYCR3160sBrcViH1YeeUTCiskktSp//ikjLGXKSA1L1apS05KQIMFm61Z53qRJQMeOznmPRFSgcYSF0hQRAXz8cdr3eXjI76VmzbhM2S2cOydhJSxMOtRGR8tXvXqy1jwpCbjvPl1A26aNrFkHpDvt+vVSy9K4MfD779JPxcdHwk/t2rLk2WIBevYExoxx0pskooIuWyMsc+bMQcOGDeHn5wc/Pz+EhITgt99+S7k/Pj4eQ4YMQenSpeHr64tu3brh8uXLeX7S5DgREfKP5bVr054K6tFDfk+NHi2/AxlWXNzZs8DDD0tYqVpVRlWioiSsXLggRbTNm0vPFKtVRlaMsPLoo3qnyvbtJax4ekrflb/+ktEWT0/g6lWZHpo/P3VbYyKiPJKtwBIUFITJkyfj4MGDOHDgAFq3bo0uXbrgr/8v1hsxYgTWrl2L5cuXY/v27bh48SK6du3qkBOnvDd/vvwDvHVrYPDg1PebzTLqwpDiJkJDJVWGh8vmhbGx0mvlrrskmcbGyq7Jf/0loywPPQT88Yc8t0MHwPjHSJcuwK+/yvedOwPbtklQMZ5bpowU2fr4OOFNElGhoXKpVKlSat68eSoqKkp5enqq5cuXp9z3999/KwBq9+7dWX696OhoBUBFR0fn9tQoG8LDlTKblZJxldRfHh5KzZvn7LOkLDtzRqmgIPnLq15dqXLl5Pu77lKqTBn5vlEjpUqVku9btFCqRAn5vlUrpYoWle8ffVT+8gGlunXTH4gePfQHY+tWZ79bInIBjv79neOiW4vFgiVLliAuLg4hISE4ePAgkpKS0LZt25TH1K1bF8HBwdhtFPKlISEhATExMXZflP8yK7D94Qfdap9c3JkzMg0UESE9VG7dkuXIdepIg7irV2VK6PJlud24sdS53LwphUnHjslUUcuWMuJisciIy88/y+t36wb8+KN8P2OGjOIQETlYtotujx07hpCQEMTHx8PX1xcrV67E3XffjSNHjsDLywslS5a0e3z58uVx6dKldF9v0qRJmDhxYrZPnHLP2BMoLi79AltAimzZvdZNnD4tdSj//isV0bdv63b6tt/Hxcn3depIAe6VKzJVdPUqcO2a1KmcPy+riZo1k32DEhIknGzeLOm2b19g6FAnv2EiKiyyPcJSp04dHDlyBHv37sXLL7+MPn364ITRyjsHxo8fj+jo6JSv8PDwHL8WZZ1tvcrjj6ffa4W7K7uRf/6RQPHvv7JhYUKCDi4WixTeVqsmf6nnz8sHwNtbRleCg6UF/7lzctzDQx5fvbq02Y+MBOrWlVGZqCgp1J0zh0W2RJRvsj3C4uXlhZo1awIAmjRpgv3792PWrFno2bMnEhMTERUVZTfKcvnyZQQGBqb7et7e3vD29s7+mVOOREQAu3ZlvieQyQQsXSojKwwrbuDUKRlZiYyUUZP4eCm2rV5dCmT//lv+IkuVAg4dkgZwQUHSa6VMGQk4mzfLkuW77gLWrZPH1q0rBbelS0uQWb9enrtypQQcIqJ8kuvGcVarFQkJCWjSpAk8PT2x2VgSCeDUqVMICwtDCOcTXIIxqtKzZ+YbGM6dKzsuM6y4AduwUreujIhcuCB/2b6+ElYCA2VZ86FDQMmSwD33SFjx8dHTPN7esgpo3ToJOU8+KWGlSBFZKbR+vRxfsUL2ICIiykfZGmEZP348OnXqhODgYNy8eROLFy/Gtm3bsH79evj7+6Nfv34YOXIkAgIC4Ofnh1deeQUhISG47777HHX+lEVZ2WkZYJt9t3PypISVS5dkZCQpSU/xlCsnf/GlS0tNyoYNQPHi0lNl2TIJIs88o/un/O9/Ms0DyIfl88/l+0GDgM8+k+9nz2ZBExE5RbYCy5UrV/DCCy8gMjIS/v7+aNiwIdavX4927doBAGbMmAGz2Yxu3bohISEBHTp0wOzZsx1y4pQ5o6j24EFpQJrZnkBGvQrDipv4+28JK5cvA3ffLXUqZ84AlSpJYPnjD9mAsGVLmcLx9JSA8vXX8vyXXpIAAkgomTtXvu/fXz/mhReARYvk+8GD5T4iIicwKZXZr7H8FRMTA39/f0RHR8OPu73m2Pz5WRtRAViv4pZOnJCK6cuXZT8gq1WOVawo00Jbtsh0z5NPAt9/L0NngwbpgDJ4MDBvnkwf9ekjjd+io+Xx+/YBFy9Ki/6wMEm9LVvK5oaenk5800Tkyhz9+5t7CRVAxi7LWQkrxqhK9+6OPy/KI3/9JWHlyhXZaRmQsBIYKD1Vfv1V6lF69ZJQAsjyY2OK53//kxCTmChLxLZvl7ASEiKFuhcvyvSS2SxhpXJlYPlyhhUicioGlgLo9OnMi2pXr5Z6TG5e6GaOH5ew8t9/Upfi4QEcPgyULSuBw5j6GTBA150MHSrTPRaLJNMNGySg3H+/jNCcPy+ricqXl5GWgABpPPfFF7ISaOVKqYchInKiXK8SItfj6yuhJD0jRwKPPcbNC93OnWHFy0vCSunSQNu2EizMZmDIED2aMmCAjKbcvi3FtqdOyRBc3boScvbtk1VDjz0mYaVIEQk4X3whz58/H2jSxFnvmIgoBQNLAWHssvzmm8B996U/wmI2A8OG5e+5UR44dkwKbP/7T6Z9ihYFDhyQXimPPy57J5hMkkY//1wqrJ97TqaHbtyQRm/JydKxtnx5CT6rV8tozIgRwCefyM8ZNw6YNk2+HzUK6N3baW+ZiMgWp4QKgIwKbE0m+bJa2bXWbR09KgHj2jXpn1KsmHT/8/eXpjrGaMhrr0lYSUoCunaV5WH//iujKdWqSWW1jw8wcCDw7rvynDffBD76SL7v3x/47jvZe6h9e2DyZOe8XyKiNDCwuLnMCmyVkt9TZcuyXsUt/fmnrNa5dg24914JHL//LsuV+/aVXSsBCStz5+qpn4sXZdlzpUpy+5NPJLG+8Qbw9tvynGHD5Dm3bgHt2smSaKOe5Ycf5PFERC6CU0JuLCIC+OqrzAtsQ0JYr+KWjhzRIytNmsiIyu+/S5HSoEE6rAwbJiMjRiGth4d0/ytZUmpYjOmeCROAKVNkaujpp4Hdu+VDVKeO7Oq8bZsEotWrpfCWiMiFcITFTc2fL7+LMuui89FHDCpu6fBhKaS9fl06+ZUsCWzcKIFi+HDggw/kcYMHS7Ht5ctS21KtmhTZFi0qoynjxsnjRo4EFiyQjQvvv1+Ka/ftkxqYF1/Uj/v2W+nrQkTkYhhY3IjRudbXN/OwYjZLCcKoUfl3fpRHDh2SsGIUywYEyP4+xYpJy+KJE+Uvv18/aRAXFiabF7ZsKaMpZrMEmrfflqXMzz0noynnzsl0T6tWwIcfykjM++9LmAHk8U895dS3TkSUHgYWN5HVzrVz5kiNJetV3NTBg1JPcuMG0KKFFB/9/LOMmLz5JvDOO/IheO45qW85eVLqVHr3liADSFiZMgWIi5Pgk5AggaVkSVkR9Mor+nEffij3P/GETBkREbkoBhY3kNXOtR4e0k6DQcVNHTggYSUqStamBwZKbxQvLwkjEybICqCnn5YPxYEDQJkyEkJGj5bXeOMNYOFCmSJq1EimiaZNkymgKVPksYDUwKxZI6uI7rpLpoIyat5DRORkDCxuILPOtYD8ruGSZTe2f7+s5omK0ps6Ge3wP/hARlbi46XnSkKCFMiWKCFBZvhwmSIaNEia8Zw6Je30+/TR0z1TpwLvvadHXZKT9dLoVatk1RERkQvjP6ncwIEDGd8/YQJw4YKUNJAb2rdPj6zcfz9QtaqElSJFpGr6/fd10PD3B9aulb2Cpk4Fxo6VUZfu3aWpnBFCJk6U+wCpe1m2TPYJql0b6NhR9hgymYAlS+QYEZGLY2Bxcfv36wUcafHwkH5fHFlxU0ZYiY4GHnxQlhcbPVCmTpXRleho4KGHJFh8953cN3Mm8NZbQGysLH0ODAR++kmmjz75REZWkpKksdzFi7qGZcIE/YGaNEnCCxGRG2BgcVEREVKW0KJF+tNB7Fzr5vbulbASE6MDiVFLMm2ajK5cuybLmh98EJg9W543c6bUo/z3n3S+bdcO+PRTue/TT2V0xaiDqV9fh5zPP5caluRkCTJjxjjrnRMRZRtrWFyIsWz54EH5XZLesmWzWUbyjVIHckN79kjNys2bshy5Th3pOmsyAdOnAx9/DFy6JJscdu0KjB8vz/voI5nOOXdORmMGD5aKbEBGYxYtAs6elX4sL78s3XABGa2ZPh24ckWKcefPl59FROQmGFhcRFaXLZvN0t22e/f8OS9ygN27gQ4dJKw8/LCMgnz+uQSIGTOAzz6TepM6deRDMXSoPO+tt4DffpPlzOXKSUDp00eS7eDBskGiUcMyfbosfTaKcQ8dkiRcpowU2fr4OPUSEBFlFwOLC8jqsmWzWf5h3qxZ/pwXOcCuXRJWYmOlgVujRrrF/vTpkkbPnJERkjFj9OjJq68CJ07o1UFz5kj3wIQEoEsX6Vg7e7YU6s6fL+364+JkH6Lq1eW1PDyk+LZqVSe9eSKinGNgcQFZWbZs1KswrLixnTulyDU2FvH3P4LL5Zuiyqypct/HHwPffCOhpFIlGT158UXpVNunj9SdGEW1X38tmx1evy51Ko8+KjswAzI6M2OGdL+tWVOmhXr0kPumTwceecQ5752IKJdYdOtkERGym3J6zGZpr3/+PJctu7U//kgZWblYtzU+3hWCKkslrOztPg348UfZP6hcOSmqHThQj55UqyajJyaT1LlMniwfiJo1ZemyMWU0dqxMN+3cKdNCn38uozBWq9SyGB1uiYjcEEdYnCijDQyffVZ+V7GwtgD4/XegUycgLg7xD7XF3N/vxwS8CwAYg4/QafkvAHbLtM6XX8o69Zs3ZTSkfXtgyBB5nenTJd0atSiffw4884zuw1KqlBTlenhI8e1rr+n9iObMYZEtEbk1jrA4yf79Up6Q3kqg77+X30Xr1+fveVEe27EjJaygXTtcrNUqJayMxwd4GNvxCLYiuXgJaak/dKheyjxggB4Vef11mS769VfZBPG776TQ9sYNmRbq0UOvJJo+XZZHHz8u/VlWrJC9iIiI3BhHWPKB7S7LsbHA5s2y51xGuy0DMpI/cKDMJHCUxQ1t3y71JbduyUhJ69ao/v9N297Cu2iCQ+iMX3ELxXDrk29RZtQo2dvn7rtlo8MePeRD0K+fBI65c2WO8JtvpM1+aKgU0E6aJC37lZIPTHS01Lt4esqflSo59zoQEeUBBhYHy+py5fRYLLJohIHFzWzbBnTuLGGlQwdp7jZqFADg0OMTUOfnf/C0+gkJ8MKuwd+j7WfvSKqtUkVWDT39tN5F+f77dQHTp58CK1fqOpVvvwWef16S8COPyM/q2lUeO3u2PJeIqADglJADZXW5MiDlBQMHpt4w18NDaivJjWzZokdWOnaU7/8/rMS88jrurRCJ59R3UGYPxM75Dm2PTgeOHAHKl5dpoRde0K36BwzQK4DGjZNdmBcvluXLixfLNND589JEzujLAsh0Uf/+znj3REQOwREWB8rKcmVAwsrevVK20KyZ/H6yWNh63y1t3izTM7dvS+3KY4+lFM1+hNHw+vQWRuArwGSCadFClF68QFYQ+ftL++KBA4HISKBePZk37NxZljT37i2N5F58UX7OnDmysuiPP2Sn5e+/l6BjdM6dOdN514CIyAEYWBwos12WDVOm6P4q/frJqP6ZMzKywrDiRjZtkrASHy+jKk8+CTVwIEwApmMEEuCNsZClzNc/mouAn3+WzrXFikn4GDsW+OcfIDhYeq089ZReLdS3r4QXQB4XHQ0sWCBDcosXA+++K8+tXFl2evb0dNplICJyBAYWB4mIyHiXZUB+10yenDJbkCIoiEHF7WzcKPUm8fESLLp1A/r1g0kpfIJXcBnl8BFkFc9QfILxfxwA1iyVYLF8uTSO27cPCAiQ2//7n+yyXK+eJNr27WX58tNPAw88IGveAVkRtHOnrB4qWlTqW8qVc+KFICJyDAYWB0lvOmjGDPl9ExfHEZQCY8MGCRDx8TLC0r27jIgohdjnBuHMdzXxCYYBAMZiMoJMkai05guZC/zmG5kKWrdORlpWrpQRlL/+AipWlKmep5+W5cstWkgKfuQRWRE0YIAsWx4+XM5j/nygSROnXQYiIkdiYHGQWrVkBMU2tHh4yO8ehpQCZP16CSsJCRJWevWSVTtWK9C/P3xbNMEn3w0AALyLtwCTGePUJHnul19KE7jvvtP7/Hzxhd4vaPVq6cty5owsX/76a6mJMTZNfOkl+ROQYbrevZ1yCYiI8gMDSx64s89KrVoSSr76igW0Bdq6dcCTT+oW+s89J4HF2P/nkUfkGICbA0aip19l1Pn4/zcz/OgjqUOZNk1uf/21FND+8IOsAPrpJymcNYpqV62SfYHOnZPNDL/6SoqdjB4vkyc74woQEeUbBpZcSqvPitksv09YQFuA/fabhJXERPnzhReAnj1lRc+zz0o9S48eKc3cSrS5D3WeeUaeO3YsUKGCPAeQGpWbNyXEAPKh2rlTpoM8PKSm5dNPpWuun59MG738sixnrl5dQo6HhxMuAhFR/jEplVm/1fwVExMDf39/REdHw8/Pz9mnk4oxmlKrltyuUiXtWhWzGbhwgSGlQPr1V1nBk5gof774osz1JSZKaOnTR4eZ55+XqZonnpCi2QED5L4uXSTcjBwJPPSQFOlarcD778uH6vnn5Wd99ZUM240cKR+qn3+WmpmZMwEfH2DPHqB+/Xx9+7b/DfDzTUQGh//+Vi4mOjpaAVDR0dHOPpVU5s1TymxWClDKZFKqRw/5Pr2vUaOcfcaU59auVcrLS/6Cu3ZV6rfflPL2ltvduim1ebNSxYrp2zt2KFW8uNzu0UOpnTv17WefVWrXLv34AQOU2r5dv/6YMUr9+qv+0E2frtSiRfoDtmJFvr992/8GzGa5TUSklON/fzOwZFF4uP4fdVa/PDzkeVRArFmjlKenDiMbN+qw8cQTSv3xh1K+vnL70UeVOnBAqZIl5XbHjkodPapU6dJyu0MHpf76S6kyZfTjT5xQKiBAv/6xY0r5+cntfv2U2rNHh6O33873t5/WfwP8jBORgYHFRWzZkr2wYnxt3ersM6c8sXq1Divdu8sHwhgpefRRpfbt0+GkdWuljh9XKjBQbt9/v1L//KNUcLDcbtZMqbNnlapRQ243aaLU+fNK1awpt5s3V+rCBaWqV5fbLVvK7UqVdDiyWPL9EqT33wA/40SklON/f3MvoQxERABbtwL79wMnT0rbjPRMmMB9gAqs1aulRiUpSQpphw6VmhRjhY7RQj8qCggJkaXJjz8OXLoENGwoxbNduwJhYUDt2lJE26uX7LZcrRqwYoXUrJw5I11uly+XgtyzZ+X+xYvl8f/+C9x1l2x4eOeHLR8YS/Vt8TNORPnGITEoF1xlhMV2rj6rUz/z5sn3xjHO7xcAK1fqkZWePaUGpUQJud2mjUzrVKwot++9V6nQUKXuvltu16wpIykPPSS3K1RQ6swZGSEBZPrn77+Veu45ue3nJ9NGAwbI7RIlZKTmpZfktr+/UqdOOfVy8DNOROnhlJATZFavYjLp++/8n3Z4uAyRc16/AFixQqkiReQv+plnpIbE319uP/ywTPNUrSq369VT6tw5mc4BJMScPq3Uk0/qMHLkiFKDB8ttb2+peZk4UX+QNmxQauZM/SH7+Wel5szRt3/91ckXRPAzTkRpcfTvb/ZhSUNmuywrBSxdCpQtm7q/CvcBKiBWrNB9VXr3BkaMkOmf6GjgwQel0VunTtILpWZNWW7cv7/eD2jDBumvsmoV4O0NrFkjXXFnz5a5xe+/l+dOmCA/b/ZsaTg3cqTcnjpVeq688orc/vBD+XkugJ9xInIGBpY7REToepX0OtR4eEipAv+nXUD99JOEFYtFmsC99hrQrp3s5xMSIjUkTzyhd1Zev16CxubN0u74t98k0c6dq3dT/vdfaRgHyIZS5coBbdvK7VGjgJYtZa8gq1X6unTvLlt4JyfLuRjPJSIqrBwybpMLzpoSCg+XvikmU8b1Kuw9UcAtW6aLNJ57TmpKypbVq3fCwpRq2lTXpJw6pVTfvnqaZ/NmpT77TH9gvvhCltcYdTAjR8pUkbG8uWtXpf77T68QevBBpW7ckJVDgFKNGikVG+vsq0JElCmXqmH58MMPVdOmTZWvr68qW7as6tKlizp58qTdYx5++GEFwO5r4MCBWf4Z+RFYwsPld0h4eOZBxWyWXmHLlslXVuftbX8GuYmlS3VYef55KXgtX14X1EZESKAAJHAcP67UiBG6BmXVKvmQGB+miROll4pR99K9u1JXrihVq5Ze3hwVJcugAaWqVFHq0iVdhFu6tNTFEBG5AZcKLB06dFALFixQx48fV0eOHFGPPvqoCg4OVrE2/wJ8+OGH1YABA1RkZGTKV3ZO3pFv2Agn2W0Al90+E+wG6oaWLNFhpU8fWb1ToYIe5fj3X6XattWrdQ4dUur99/WHZOFCSahGl9qXX5YPXOXKeuQkKkp6qgDSk+XiRaUGDZLbvr4ymvPxxzoAbdni5ItCRJR1LhVY7nTlyhUFQG3fvj3l2MMPP6yGDRuW49d01BueNy/z6Z6MlixnFbuBuqEfftB/aX37yuqfoCC5Xb++BIvHH5fbPj7STt922mfmTAkwxnLnbt2Uun5dqYYN5XbdukpdvSqjNsZy5WPHlPr0U70CaM0aWSVknMesWc6+KkRE2eLSjeOio6MBAAEBAXbHv//+e5QpUwb169fH+PHjcevWrXRfIyEhATExMXZfeS0iQnZUTq+INj1mM/Dll9krrk1rhZHFIj3ByAUtXiyFtUax61tvSTFsRIQ0aduwQVYIrV0LFC0qq4HOnpXmcQDw9tvSJK5TJ9lxuVUrWUHUowdw9CgQGChFuLNnS7GusftyZCQwfLi8xuTJQL16UlxrtQJ9++rVQUREJHKadCwWi+rcubN64IEH7I5/+eWXat26dero0aPqu+++U5UqVVJPPfVUuq8zYcKEVDUvyOOElp22+mazUgMHZq9exRZHWNzId9/pv6x+/aQ9frVqcrt2balZMQpqPT2lD8ratXrq6JVXlIqM1C32GzWSgtkXXtCjMQcPKvX99/ZFuCdP6rqWF15QKiZGRnKMwt7bt518YYiIss9lp4QGDRqkqlSposIz+U28efNmBUCdOXMmzfvj4+NVdHR0yld4eHieveHwcKmjnD07a3UrgwblTbBgN1A38O23+kPRv7+s/jGCR40a8kEYMkT/Jf70k1LbtilVtKheQRQVJcW4gDSQu3hRqbfe0s/59Velfv9d17W89ppS167potv775dw0q2b3A4MlJBEROSGXDKwDBkyRAUFBamzZ89m+tjY2FgFQK1bty5Lr51XbzijmhWTSTbLNUKF2azUlCm5+nGpsBuoC/vmG/3hGDBAQkLt2nK7WjXZaHDMGP1h+fZbGSkxalQef1ypmzelNT8gy57/+Uepr77SH7J58+yXLz/5pIQT4znBwUpdvqzUe+/pEZydO519ZYiIcsylAovValVDhgxRFStWVP/880+WnvPHH38oAOrPP//M0uPTesPGEuF9+7K2VHjfvowLbM1mvaSZoaKQWbhQfzgGDpRRkbvu0iHi3DndLh9Q6ssvZcVQmTJy++GHpS9Kz5562mf/fqV++UUn4LfflpEUIwQ1bSrPMdry+/go9eefUmhrnMvcuc6+MkREueJSgeXll19W/v7+atu2bXbLlm/duqWUUurMmTPq3XffVQcOHFDnzp1Tq1evVtWrV1ctW7bM8s+48w1PnZp6Osdkkt81S5fqEGP8OXVq1lYDZXepMhUACxboD8egQTLCYdSOBAXJxoXTpukPyYwZMtpiLE1u0kSmgV55RY+KbNgggaV4cb3KKD5eqVat5HblyhKKPv9cf3hXrZIQZIzYDB7s7CtDRJRrLhVY0iqOBaAWLFiglFIqLCxMtWzZUgUEBChvb29Vs2ZNNXr06Bz1YTlxIlpNmZL9ZchZ+WIRbCH09dc6rLz8snSXbdRIbleoIFM6xkaDgEzVXL6sR0nq1pWmbx9+qB+zeLHsxlyunNxu316phATp4wJIIDl6VKmNG/Xoy6RJUphrvG7LlkolJjr54hAR5Z5LBZb8YLxhINphYYVFsIXM/Pk6rAweLNM1RrFs+fKyamfRIv0hGTdOQsU99+iporAweR3jMTNnSm+VOnXkduPGSkVH65oUDw+lfvtNWveXLCnHnn9eqaQkpR59VI++XL7s7KtDRJQnGFhy+WUyyT+c9+1jvUqhNHeu/jAMHSpBpFkzuV22rFJ//aXU8uV63vGVV5SKi1PqoYfkdrlyEjrWrNGjJOPGKXXrllIPPKADzb//yoiL8bNmz5bmccZIyn33SdHt+PFyu2hRpQ4ccPbVISLKMwwsHE2hnLJdtfPKKzICEhIit0uXluman39WqkgROfa//0n9SefOctvPT6nDh2X1jrGc+cUXlUpO1kuRS5aUPYV27pTNDwHZ4DApSbfyr1xZ9ghaulSfz/ffO/vqEBHlqUIdWEwm+6XHr7+e+Y7KxuM4mlLIffml/lAMGybN2YyNC0uVkiCyebMOGb16SS1J795yu1gx6aFy/Lg8HpAgk5Sk1PDhctvLS3qznDmjVxF16SKBZuhQuV28uPysI0d0Ye6oUc69NkREDlBoA4vZHK3mzUt76XF4uN492ZjqeeMNbjhI/8+2eHb4cOmZ8vDDctvfX6Zidu6U5cVGyEhI0MuOixSRZcphYXpPofvuk6mi6dP1a//wg0z7GHUsTZrI8mXbn79ihRT4Vq0qt9u1k9BDRFTAFNrAcuJE1t8w2+FTitmz9YdgxAgJGa1b6ymevXslsPj5ybH27WUa6M03ddHTDz9IQa3Rn+Wuu+T28uV6eG/KFAk5xvLloCCpY9m8WQ8LfvCBhBPj51evLgW/REQFUKENLNl5w+ntFcReK4WM7Q7Kr70mhbHt28ttX1/ZZfnYMaUCAuRYy5YSaD7+WD9vzhwZJbnvPh1EwsJkesiYPho6VCmLRe8z5OsrjeD++UdPHz37rFJWq54+8vGRn01EVEAxsGQBR1jILqyMGiUrcozlw8WLK7VjhwSK8uXlWPPmUtdiu1T5ww+ljsUoui1VSmpY/v5bB5Enn5QalQ8+0POPv/4qq4+MqaEWLeTn2y6V/uknZ18hIiKHYmDJIm44WIh98okOBmPGyBTPE0/o4tmtW2UnZqNjbcOGMjXz00866Y4aJaMmRtO3YsWkziUyUqkqVXQdy61bSi1Zon/e55/LtI8xkhMUJM/Zu1ePyLz1lpMvEBGR4zGwZAP3BiqEZs3S4WHsWKkr6dpV9zrZuFFqS4ydmOvWlWZtGzfqXZT79ZPpm7FjdeJds0aKdY0Gc7VqSfGs7fLl4cPlHF59VY/kHDokgaVSJTn2xBMShIiICjgGFqL0zJihw8r48TKd06OHXnK8bp200zeKZ6tVk52Z9+zRK4SeflqmeGxf6+uvZdSkUye5XbasLF0ODdXLl594Qp5nu3z6p58kMN1/vy7W5eeYiAqJQhtYTpyIztLOzFRI2S4vfv11CRhGDxVPT2kId/26tMw3pmrOnpXCV6MepV07mT6y7VD74Ycy2tK/v54a2rtXXqtuXTl2771SmLtli2469957cl4vvaSXT5865dRLRESUnwptYDGZotlThdJmu6rnzTdlpMOoPSlSRHZDjonRK33KlZP9gkJDZaNDox7l5k2l1q+XgAPI1I7VqtS77+qC2jVrZNTkkUfsly+fPq1XG/XqJc8z+q+YTNLHhYioECm0gcW2NT9X/FCKqVN1WHnrLQkr/frpD8qPP0phrNEfpVQpacF/8aL0QQGUatBARkz27dNTQz17Sq3JggX2S5ytVmnHbyxfPnJEqagoPc3UrJn8vB079GjLpEnOvkpERPmOgYU9VcgwZYr+QEyYIGFi0CA9GrJkiUzxdOwox0qUkFBy7ZpS9evr5m0XL8p0jVGP0ratPG/9eh06xo2Tn/nhh/r1f/lFpp6M169USV4rLExGcYzgY7U69TIRETkDAwtHWEgppSZP1mHlnXckFBj79ZhMSn37rYSJp57SK3Z+/12mfYypoQoVZFro4kXdKr9JE5k+OnxYAo7R9M1isd+s8LPP5DyMRnDFiil18KCMrjRpIscaNZLaFiKiQqjQBhazOZo9VUhMmqSDw8SJElZGjNBhZcECmRp69lm9QmjjRhk1addOTw0dOybTOQ0byrGaNWWJ84ULurblkUekZmXXLr18edgwOY+5c/V5LF8u5/Hcc3K7dGmlzp1z4kUiInKuQhtYTpyIZk8V0h1lASmGtVqlOZxxbO5cOTZggC66XbNGAky3bnLMx0eWMt++rTdBLF9eRluuX1fq7rvlWP360rE2NFSWMgNKPf64vNa2bXq6aOJEOTej+NfDQ1YMEREVYoU2sLAPC6n339fB5L33JJi88YY+Nnu2HBs2TNeZLF0qx4xCXGO0JTlZN5QrUUKmgOLjdYCpVElqUW7c0MuX77lHppRCQ2UExbZGZcMG3SV31iznXiciIhfAwEKFk7G0GJBRFqWkdsU49skncsw2wCxYIGFi1CgdYH76yb4418tLRkMsFqWeeUYHmD//lMZzbdroABMRIY3fjBGYpk2lZiU0VPdy6duXRbZERIqBhQqjiRPtG7kpZT/aMn26HDNW8ACyp8+dx77+2v71TCapPVFKTysVKaLUpk32ozI+PjICk5ysN1CsWFH6r9y8qVccNW8u00xERMTAQoXMhAk6cEyeLMc++kgf++gjOWa7h9CUKXLMaNxmG2q++CJ1qLHd2fmbb+SYUdhrNkuXXKWUGjlSrwjav19CjVEXExgoIzBERKSUYmChwsJqVertt1MHE9sW/O+/L8fmzdPH3n5bji1eLCMogHS/Vcp+N2Zjx+SVK/XjjKmmZctSTzXZ/oylS+XYe+/JbU9P2QSRiIhSMLBQwWe1SqAwAsLUqXL8k0/sG8UppdT33+vA8dpr8txfftEreIYMkWPbtullyQMGyLHdu2UHZ0D2/Lnz2Kuvys/Yvl236zd+7po1+ufOnZvfV4iIyOUxsFDBZrXKiIgRTKZNk+O20zuvvy6PW7lSlhADUkRrtUpLfCNw9O4txbRHjijl5yfHnnxSGsr984/ubNu5sxw7e1Z3qH3sMalZOXtWP657d3m9v//WTeUGD3bq5SIiclUMLFRwWa0SRu6sO7Ft0DZ6tDxu3TpZ4QMo9cILEiQOHdLBpHNnWeVz9qzUlwBKPfSQrOq5fFmpGjX0Sp/YWFm+bOwH1LixFNNGRytVr54cu/depeLi5HG1a+vXS0hw5hUjInJZDCxUMFmtSo0fr4PJjBlyfOFCPfUyfLie3jFGUbp3l9GRU6d0c7eWLSWYXLmiVK1acqxBAwkbcXGymgdQqlo1pS5dsl++XLGidCdMTpZRFkC63hrHjFVClStL8CEiojQxsFDBY7UqNXasDiszZ8rx777TYWXoUHncnj2yS7IxipKQIA3egoP1SEhUlIyQNGsmx6pUkSXIyclKPfGEHAsIUOrkSXnN/v318uVDh+Rnjx4tx4oWVWrvXjlmjP4ULarUgQNOuVRERO6CgYUKljtb6xurcpYs0St6Bg6Uxx0+rFTJknKsdWvpeXLliu5EW6eO3E5IUKp9ezlWurQOJi+/rAOHsarHWCJtNiu1dq0cW7BAn8/ixXLMduXQd9/l91UiInI7DCxUcNh2oQWU+vRTOf7jj7qYtl8/qU85cUIXv95/v64xMXZGrlxZNi20WPSmh8WLy4iMUnp3Z5NJljcrJU3jjJ9ttNP/4w9dG2Mshz5yRF7LWIlERESZYmChgsFqlV/+RmD47DM5vmqVXpJsFNOeOaN3TzamfG7d0vv+lCmjR1GMXZuLFFHqt9/kNb//PnUw2bNH18EMHSrHzp3TdTDdusnP/u8/papWlWPt2km9DBERZYqBhdyf1aq7xgKyaaFS0lHW6HfSu7fUnISFSQ0KICt2/vtPimQff1yO+fkpdfCgPH/KlNQda7ds0a9pjI6cO6eXLxtLmmNipDAXkE0OY2PleOvWcqx6daWuXcvvK0VE5LYYWMi9Wa2y2scIFnPmyHHbZco9ekhYiIzUq3xq1ZLbFotSzz2na1G2b5fnL1yYunfLsWN6mXOPHvLcGzf05oWNGklQsVh0MW758hKSlNLn6eMjr0VERFnGwELuy2pVatgwHSy+/FKOb9qkp2e6dpURlKtX9aaCVapIiLBalXrlFT3lY+zx8/PPuuZl1Cg5FhGhVFCQ7pdy+7a8btu29suXldIrlLy9dc3LokX6PI2aFyIiyjIGFnJPVqu0ujdCwFdfyfGtW2UzQUCmeRISpEbFKKatUEFqWJTSewuZTFKXopS00jee//zzMloSHa1Uw4ZyrG5dmcqxWqUlv1GMa0wj2QYT4zX37tVt/I09h4iIKFsYWMj9WK1S2GoEA2PvnR07ZLoFkIZs8fFSO/LAA7qY9q+/5LEzZujnG7ssnzgh/VQApTp1khGUhAQ9ihIYKPUqSun6FpNJqdWr5djOnXoa6vXX5VhkpFKVKsmxJ56QAERERNnGwELuxWqVDQiNsDB/vhzfuVM3gGvfXqZsbt/WYaNkSem7opR9fYqxQ3N4uCxlBqRzbWys/KwXXtB1J8Yoyo8/pm5Kd/68Lrx96ikJJgkJsmTaGJnhZ46IKMcYWMh9WCy6WZvJpNTXX8vxvXv15oFt2sgS5YQE3Qrf11emepSy3+Bw5EgJJdev6z1+6tSRlUNK6U0TPTz0kua9e3V9jLFz882besqoUSO5rZTs2Awo5e8vrf6JiCjHGFjIPVgssoOyEVYWLJDjBw5IIACkj0pcnCxf7t5dr/zZtk0eu3mznrJ58UUJG7du6SmjihVlpEQpKeA1RlGMUZzz52XVjzFllJQk5/Xkk3pF0IUL8lhjN2iTSalffsnHC0VEVDAxsJDrs1iknb4RABYulOOHDytVqpQcf/BBGdmwWJTq00eOeXraj4wY9S1du0rYSErSy4/9/ZU6elQea7tKaMIEORYVpUdhGjaU5ctK6Q0WvbyU2rVLju3YoZvVTZqUP9eIiKiAY2Ah12ax6NU4JpOswlFKwkXp0nL8vvskQNju7+PhodSKFfLYv/7SxbRt2kgxrtUqbfqN5cc7dshj9+/XbfONUZjERL2XUIUKuq/Kt9/qUZhvv5VjYWG6lqVnT3k+ERHlGgMLuS6LRe98bDbrUPDXX7rlfbNmMvphu4+Q7TLlc+dkqgdQqkULXV/yxhv6dVeulGOhoTpstG8vQcVq1aM7xYvrXZV379ZLlceNk2O3bunl040aSeEuERHlCQYWck0Wix4BMZv1jsYnT+o6knvvlYJZpZR6553Uy5wjI5WqUUO34Tda4X/ySer+LVevKlW7thxr3FhP+UydqkPQqlVy7MIFfQ5dusi5Wq26Y27p0nr5MxER5QmXCiwffvihatq0qfL19VVly5ZVXbp0USdPnrR7zO3bt9XgwYNVQECA8vHxUV27dlWXLl3K8s9gYHEDFotMxxhhxRgtOX1aj5Y0aiQhQykdKmyXGV+/rlfuVKum1L//yvElSyR8AEq9954cu3VLLz8ODlbq4kU5vmKFfuz06XIsNlYCjVHLYozYfPyxnorassXhl4iIqLBxqcDSoUMHtWDBAnX8+HF15MgR9eijj6rg4GAVazO0PmjQIFW5cmW1efNmdeDAAXXfffep+++/P8s/g4HFxSUnK9W3rw4rixfL8dBQ3Rq/Xj2lrlyR459/rsPKBx/IsdhYHUACA3Vn240b9caFxpLk5GQpwjV6tRiN5fbt0x1vBw+Wx1os0mMFkKkjY0XRxo1yroDevZmIiPKUSwWWO125ckUBUNv/f0O6qKgo5enpqZYvX57ymL///lsBULuNPhuZYGBxYcnJeoWPh4eMhiglwSA4WDdgM0bUbBvAGZ1lExKU6tBBBxBj5c/Bg7qxXPfu8rOU0nsReXnpjQ/Pn5egY7t8WSld9+LlJY3qlJIgZRT09u3LIlsiIgdx6cBy+vRpBUAd+/+dbTdv3qwAqBs3btg9Ljg4WE03huzvEB8fr6Kjo1O+wsPDGVhcUXKy7N1jhJWlS+V4WJhM6QBSY2JM1yxdqkc1Xn1Vj5YY/VeKF9fLjM+c0cW0rVvLKiGlZJrHCDxGOIqK0pskNmigu9N+/71+rLFS6eZN/djmzaWzLhEROYTLBhaLxaI6d+6sHnjggZRj33//vfLy8kr12GbNmqkxY8ak+ToTJkxQAFJ9MbC4kORkXbDq4aHUsmVyPCJCqZo15XiNGnJbKaXWrtV9Tvr3l7Biuxmhp6dSGzbIYy9dUqp6dV1Ma/y9L1umA8jUqXIsKUmPzgQG6iZwe/boFUHG58xqVapbN/1Y49yIiMghXDawDBo0SFWpUkWFh4enHMtJYOEIi4tLTlbq2Wd1WDGm+yIj9aqdqlV1eNi4UYeH3r311M7YsbruxXiN6Gil7rlHF95GRsrxHTv0a7zyig48Ridd2+XLYWF6eujxx/XPe/99HY6M6SEiInIYlwwsQ4YMUUFBQers2bN2x3MyJXQn1rC4kKQkCR2AjJj8+KMcv3xZqbvu0qt2jCXCv/+um7o9+aT0SVFKqcmT9WjJvHlyLD5epn8A6dly+rQcP3FCd8d96ikdQIxVPrbLl2NjdeBp0EAvdV67Vq8eMpZQExGRQ7lUYLFarWrIkCGqYsWK6p9//kl1v1F0+6Pxi00pdfLkSRbduqOkJKWeeUaHFaMr7X//STgAlKpUSa/w2b9fKT8/Od6hg65Dsd3zx5jasa1l8fXVoyWRkUpVqSLHQ0JkObNS0jjOCCAffyzHLBY95VO2rA5Nf/+tN1p8+WUHXyQiIjK4VGB5+eWXlb+/v9q2bZuKjIxM+bpl/GJRMlUUHBystmzZog4cOKBCQkJUSEhIln8GA4sLSEqStvVGWDE6zV67Jv1VAGmBb4TWo0f1SpyWLWWDQ6Xse6oYq4SsVlmybEzXbNwox2/elEZzgFK1aukdmffv18uXBw3Sq3zeeku/xu+/y7EbN/Q01UMPyYokIiLKFy4VWNIqjgWgFhg78yrdOK5UqVKqePHi6qmnnlKRRm1CFjCwOFlSklI9eugwYEy/XL+uA0X58tLRVimlTp3SXWVbtNDTMr/9pnuq2AYNo7bEZNIrfxITlerYUY+WGKM2Fy7o+pQOHfTy5R9+0KM2xmcvOVmpRx+VY5Ury7QVERHlG5cKLPnBnQJLeLg0TbWpO3ZviYl6qsbTU6nVq+V4VJTsCWQECqN527lzullco0a6Df8ff+hRkWee0XUoc+fqoPHJJ3LMdpPD4sWlIZxSUpBrTD3ZLl/eu1epokXl+KhR+txff12OFS2qp5iIiCjfMLC4qHnzdJsRs1nXkrqtxESlnn5ah5U1a+R4TIzUkwCyB4/R6C0iQi9HrltXj2gcOaKUv79u6mZMy6xapS+YMT2klFITJ+qLuHatHEtK0iMutsuXIyJkKgpQ6rHHdBCyXQJt7GlERET5ioHFBYWH69+9xpeHhxuPtCQm6gJWLy8dHG7eVOrBB+V4qVJKHT4sxy9flpACSGgxepz884+eHnrwQV3L8vvvelTkf//T00MLFugL+MUXcsxqlWJZQEZp9u+X43FxeqflevX0iMuRI3pl0muvOfpKERFROhhYXNCWLfZhxfjautXZZ5YDCQl6/x0vL6V++UWOx8Up1aqVHPf319Ms16/rwtugIL06JyJCr/Bp3FgKYJVS6tgxacFvjIoYdSjr1+vmcuPH6/MxutuaTHplksWip6rKlFHKWE7/33/SAwZQql07/dpERJTvGFhcUIEZYUlIkH4pgDRq+/VXOX7rllJt2sjxEiWkk6xSMj3UooUuvD11So7/95/uy1Krlt5L6Px5vXvz/ffrEZfDh/W+Qc89p0dcVq3Sq4qmTdPnOWGCnqrasUOOJSXpPi7Vq8sKJiIichoGFhc1b56EFCOsuF0NS0KCUl266LDy229y/PZt3f7e11d3iY2LkyXLgCxh/v/9o1RMjFJNm+oRF2OH5P/+U6pOHTl+9906UFy4oOtQWrfWNS4HDuipnYEDdYhZulSnwvnz9fkPHy7HfHz0uRARkdMwsLiw8HCZBnLLkZUnntBhZd06OR4fr1TnznrFjjGaER+vQ4yfn54eun1bqUce0VM1f/8tx2Nj9UhM5cr6Al2/LuHFWPkTFSXHw8J0iGnfXnfI3b9f176MHKnPf9EiHWJ++smx14qIiLKEgYXyVny87LljLAFev16OJybqEZdixaRQxzhuTBsVLy5LlpWSKRnj8SVK6BCTmCirg4yRmBMn9M99+GHdIdcIMTExSjVsqItpjRATEaGnkx59VK8I2rtX7zP01lsOvlhERJRVDCyUd2xHUIoW1Tsm264S8vbW3WeTk5Xq1Usf37RJjlssSr3wgj5uVBtbLEo9/7wOPbt26eNGm38/P700OilJh5vy5fV0Ulycnma6+269IigyUsIOICNEFovDLxkREWUNAwvljdu3dSfYokV1KLFtw+/lpWtZLBbd0K1IEb3U2WpV6tVXdfGO0a9FKaVGj9bHf/459XFPTx16rFalBg/W4cZoGGe16vMpXVqp0FA5npCg1AMP6L4v/HwQEbkUBhbKvdu39UhGsWI6NCQnK/XsszpMpBVKzGZpzGYwGr0BSn37rT5u7KYMKLVwoT7+6af6+Dff6OMzZujly7Z1KO++q0OS7Trxl17SS6yN1UlEROQyGFgod27f1l1jixVTavNmOW6xKNW3rw4HxgaHSklflLTCxyef6ONGa32lpLuscXzyZH3cdpflDz7Qx1ev1senTNHHf/xRv85XX+njc+bocGP0iSEiIpfCwEI5Z7tE2baQ1mJRqn9/PX2zfLl+zgcf6NAwe7Y+/s03+vjEifr4unW6Adzw4Xo58q5deoWP7TLlgwf18uWXXrI/buw/NGyYfv0dO/TrT5qU55eIiIjyBgML5cytW7JE2FjdY0yv2La+N5tl52ODMU0DKDV1qj6+erVuOmMbSvbulT4ogBTnGkWwp05J/cmd3W1tly+3a6eXL1+8qItpbXdlDgtTqlw5Od6jh/65RETkchhYKPtu3ZJAYISVbdvkuNWq1Cuv6OkV2xqUr77SYeWdd/TxrVv1MuI+fXQoOXlSeq8Y4cNoAHf5st4UsVkz6cmiVPrLl2/dUqp5c11Ma3vc2DuoUSP9OkRE5JIYWCh74uKUattWd4Hdvl2OW61KjRihw8qCBfo5332na0pGj9YjGfv3S48VQHquGCMf//6r9w1q2lTCiFISKpo10+3yjRb9SUl6hVK5cnr/IatVL5sOCFDq9Gl9/Lnn9Eoh4/FEROSyGFgo6+Li9P46Pj66U63VqtSYMXoEZe5c/ZwVK/R0z+DBOqycOKGndVq3lnoYpWRTwwYN5HitWjKiopSEEqMhXenS9it5hg7Vy6mNfYmUUur993XRr1Ffo5ReceThYX+ciIhcFgMLZU1srG6T7+ur1O+/y3GrVak33ki7kPa332Q5MyArhozpnvPndU1Js2Z6BOXWLaUeekiOBwbqXZNt62KKFtX7Dyml1KxZ+mf/+KM+/tNP+vgXX+jjGzfqnSVnzcr760RERA7BwEKZi41VqlUrHVaM9vlKST1KWkuRt27Vq3h69NCt7y9dkpETo8vs1atyPDlZt+j381PqyBH9WpMm6ammFSv08TVr9FTTRx/p44cO6ZVCr7yij4eGytSQUS/DIlsiIrfBwEIZi43Ve/SUKGE/umG7RPnjj/Xx3bv16p7HHtMFszduKNW4sRyvUkX281FKgoPRuM3bWxfxKmXfg8U2EB06pH9G//46fERGyq7OgKxiMupibt5Uqn59Od68uZ6CIiIit8DAQum7eVOpli11WDH27lFKGrKl1czt0CHpFgso1aaNDgZxcUo9+KAcL19eF8AqpdSECXoExXZaZ/NmPaX02mv6eHi43riwbVu9fPn2bb2Lc506EpCUkjBj7GUUGKiDEhERuQ0GFkrbzZu6nsTPT0ZNDNOn67Dy3nv6+F9/6aXIDzyglwonJOjW/SVLKvXnn/o5s2fr15ozRx8/elR+rjGlZNS/xMToUZq777YPJcY2AKVKKfXPP/q1jOJbT0/7ESIiInIbDCyUWkyMHg3x87NfeWO7d8/bb+vjp0/rpm1Nm+p+J8nJerPBYsXsA8Py5boGZcIEfTw8XE/rtGypR2mSkvRu0LbLl5VS6sMP9cofY3sApWT/IuNn2LbjJyIit8LAQvZiYvSuxf7+0m3W8MUXOqyMH6/rRi5cUCo4WI7Xr68Laa1WaZtvjG6sW6dfa+tW2b0ZsG+tHxWlG8DddZdS167p5xhN6e5cvrxyZdqrlP7+W/d5efnlPLxIRESU3xhYSIuOVur++3VY2bdP3zdvng4Fo0bZF7kaq35q15bbBmOTQ5NJqaVL9fHDh/V0T9euegVRQoLUvRi1JufP6+fYboxouzfRkSO6+HbIEH38xg05H0CmtozCXyIicksMLCSio5UKCdF1Jvv36/sWLtTTKsOG6bDy33/SBt9Y9RMWpp9jW5RrOxUTGiph5M7pHqtVqeef10unDx3Sz1m7VvdOsS3wvXRJqcqVdfGtsSIoOVl3vg0K0s3niIjIbTGwkEzD3HefLlg9cEDf9/33OqwMGWI/dXPvvXK8YkWlzpzRz5k7V4cV2/4oly8rVbOmHG/YUBfMKqWbz3l42E8d2S5f7tdP//zbt3XAql1bqevX9XNef11PHdm+FyIiclsMLIVdVJReClyqlFIHD+r7li7VIxsvvaRX6ty8qaeOypaVNvuG5cv1c8aO1cdjYvRmg1Wryn5Bhi+/1AHn66/18YgIvXy5TRu9fNl2NKZkSfs2/cuW6df67ru8u05ERORUDCyF2Y0beifjgAD7aZifftJ7AP3vfzqs3Lql9xMqWdK+I+369bpvyksv6dGQhAS9YWKZMvYBw3a6x3YX55s3lbrnHl18azsaM3myHo3ZuFEfP3JEd7i17dtCRERuj4GlsLpxQ+98HBAghbCG1atlw0BARjJsi2KNZcW+vvYrdXbt0mHBthW/xaJ3TPbxsS/k3bdPP+d//9MBJzlZb3RYtqzeU8g4N2OK6rPP9PGrV2XkBlCqXTtdz0JERAUCA0thdP269EoBZOdj21GSn3/WoyS9e+vgkZSk1NNP634qtu3z//xTRlsApTp21CtyrFYp0gUkANnWpoSGSi8VQKkOHfR0j1L6OUWL2jes+/NPXc9iu0w5KUmP+lSvbr8UmoiICgQGlsLm+nVdS3JnWFm3TvdG6dFDj1JYLLpmxMvLPnicPq1X/dh2t1VKT93cWU9y9apecnzPPXq3ZqXsG9MtW6aPX76se73Y1rMopdTw4XoE59ixvLlORETkUhhYCpNr1/TKnjJl7Fvkb9qkd1fu2tW+wHXQIF0zsnKlfk5EhJ6GadTIvs7k66918Jg+XR+/dUsX7AYHK3Xxor7v5591PcuHH+rj8fG6mV3NmvYjKIsW6Z/z0095cJGIiMgVMbAUFteu6SLWMmVkrx7D1q0yzQNI7YjtlM5rr+nmb4sX6+dcvSp7+Rgh4tIlfd/atbpgd8wYfTw5WcKQUbBru7royBGpi7mznsVqVapPH93M7u+/9XP27pXdnQGl3norjy4UERG5IgaWwuDqVb1hYNmy9tMmv/+u60IefVRGMwxvv61HL+bN08dv3tSriypWtN/TZ+dOHX769LEPHq++qqeVtm/Xz4mIUKpSJbmvdWv7rrRGAzoPD1mFZIiM1M95/HG9iomIiAokBpaCzjaslCun1PHj+r5du/SoRvv2uuusUtLwzQgrs2bp47dv6/b5pUvLDs2Gv/6SXi5G+LGtM/n4Y/16tm36bZcv161r3wBuzRq9IuiTT/TxhAQ9RVS3rnTpJSKiAo2BpSD77z+pLQGUKl/ePlzs3av382ndWmpLDJ99psOFbS1JUpJSTz6plzXbLlEOC9M7LN93n33x7dKl+vWmTdPH71y+HBqq7zt6VIcp280RlZIeL8YUkW1PFyIiKrAYWAqq//7Tux6XL29fL3LwoF6G3LKlfbiwLZZ94w193GJRqm9fOe7trdSWLfq+a9ekuZsx4mHs1qyUTP0YK49efdU+eBire7y9ZbTHcOWKLuZ95BH7kZo5c3RNzS+/5P46ERGRW2BgKYiuXFGqQQP5xR4YaF+oeuSInrZ54AGZkjEsWaJX6Qwfbl9/MmKEriVZtUo/Jy5Or/qpVEmpCxf0fSdO6GD01FO6p4tS9qM4S5bo4/HxSj34oByvUcM+/OzYoRvaTZqUN9eKiIjcAgNLQXP5slL166cdVo4dkxVCxrSN7TVYs0aHgQED7EdC3ntPh4tFi/TxpCSlHntMr/qxLea9eFF2cAZkk0LbKadfftHB6IMP9HGrVakXX5Tjfn72o0JhYbrRXI8e9udHREQFHgNLQXL5slL16skv9QoVlDp5Ut934oT+hd+0qWx6aNiwQU/bPPts+iMhM2fq47bhomhRWW1kiInRhbS1asn0lMF2+XLfvvbBY9o0OW42K/Xbb/r4rVu62V2jRvZTWEREVCgwsBQUly7pvigVK9oXo548qbvR3nOP/UqcHTv0MuSnnrLfg+e773RYmTDB/ueNH6/DxerV+nhiorTnN1Yl2RbS/vuvLsx95BH75cs//6xXBN0ZjJ57Tq9Ksl1CTUREhYbLBZbt27erxx57TFWoUEEBUCttO6sqpfr06aMA2H116NAhy69fIANLZKQueq1USal//tH3nT4tAQaQIlzbmpB9+5QqUULu69jRvgeLbfO3V16xHwmZOTPt/ixWqzR9A2RTQ9tVRLGxustunTr2oen4cX0ed05HTZ+ua2c2b879tSIiIrfk6N/fZmRTXFwcGjVqhM8//zzdx3Ts2BGRkZEpXz/88EN2f0zBcekS8MgjwN9/A5UqAdu2AbVqyX3nzgGtWwMXLwL16gGbNgGlS8t9R48CHToAN28CrVoBK1YA3t5y3/btQPfugMUCPP88MHMmYDLJfUuWAMOHy/cffAD066fP5b33gK+/BsxmYOlSoFkzOW6xAL17A4cOAWXKAL/+CpQqJfddvQo8/ricx8MPA599pn/Wpk3AqFHy/ccfy3shIiJyhNykHaQzwtKlS5ccv2aBGmG5eFGWEQMy1XL6tL7v/Hld9Fq3rn3r/JMndT3LfffZbz548KAe7XjiCfslxRs26J2c7xx1sV0O/cUX9udprDDy9pZOuIaEBFlWDcguy7ajP6GhSgUEpO6YS0REhZLLTQnZPTmdwOLv76/Kli2rateurQYNGqSu2v6iy0SBCSwXL8rUCqBU5cpKnTmj7wsPlwBgFL3abjB49qxuad+4sf2GhX//rVcRtWpl3/l2/35dLNujh30r/HXr9Aqj11+3P8/Zs3WQ+eEHfdxqVapfP70iyLap3c2beqVT8+b250FERIWSo39/F8nrEZuOHTuia9euqFatGkJDQ/H666+jU6dO2L17Nzw8PFI9PiEhAQkJCSm3o6OjAQAxMTF5fWr5JzIS6NwZCA2VaaC1a4GyZYGYGLnv0UeBs2eBqlWB1asBHx+57+JFoGNH4N9/gdq1gZ9+kumbmBggPFymiK5eBRo3Br79FkhMlK/QUHlebKyetomNlXP580+gWzcgORno0QMYM0ZeDwA2bgSGDpXv33hDzsu4b/ZsYP58mf75+msgKEjuUwp44QXg+HF5T4sW6fMgIqJCy/i9rZRyzA/ITdpBGiMsdwoNDVUA1KZNm9K8f8KECamKdPnFL37xi1/84pd7foXarj7NQ3k+wnKn6tWro0yZMjhz5gzatGmT6v7x48dj5MiRKbejoqJQpUoVhIWFwd/f39GnV6DFxMSgcuXKCA8Ph5+fn7NPx63xWuYNXse8w2uZd3gt80Z0dDSCg4MREBDgkNd3eGCJiIjAtWvXUKFChTTv9/b2hrex+sWGv78/Pzh5xM/Pj9cyj/Ba5g1ex7zDa5l3eC3zhtmc7QXIWZLtwBIbG4szZ86k3D537hyOHDmCgIAABAQEYOLEiejWrRsCAwMRGhqKMWPGoGbNmujQoUOenjgREREVHtkOLAcOHMAjjzySctuYzunTpw/mzJmDo0ePYtGiRYiKikLFihXRvn17vPfee2mOohARERFlRbYDS6tWrTKsAF6/fn2uTsjb2xsTJkxgwMkDvJZ5h9cyb/A65h1ey7zDa5k3HH0dTSqj9EFERETkAhxTGUNERESUhxhYiIiIyOUxsBAREZHLY2AhIiIil+dygeXzzz9H1apVUbRoUbRo0QL79u1z9im5tHfeeQcmk8nuq27duin3x8fHY8iQIShdujR8fX3RrVs3XL582Yln7Dp27NiBxx9/HBUrVoTJZMKqVavs7ldK4e2330aFChVQrFgxtG3bFqdPn7Z7zPXr1/Hss8/Cz88PJUuWRL9+/RBr7ONUiGR2Lfv27Zvqc9qxY0e7x/BaApMmTUKzZs1QokQJlCtXDk8++SROnTpl95is/DcdFhaGzp07o3jx4ihXrhxGjx6N5OTk/HwrTpeVa9mqVatUn8tBgwbZPaawX8s5c+agYcOGKU31QkJC8Ntvv6Xcn5+fR5cKLEuXLsXIkSMxYcIEHDp0CI0aNUKHDh1w5coVZ5+aS6tXrx4iIyNTvv7444+U+0aMGIG1a9di+fLl2L59Oy5evIiuXbs68WxdR1xcHBo1aoTPP/88zfunTJmCTz75BF988QX27t0LHx8fdOjQAfHx8SmPefbZZ/HXX39h48aN+Pnnn7Fjxw689NJL+fUWXEZm1xKQjVFtP6c//PCD3f28lsD27dsxZMgQ7NmzBxs3bkRSUhLat2+PuLi4lMdk9t+0xWJB586dkZiYiF27dmHRokVYuHAh3n77bWe8JafJyrUEgAEDBth9LqdMmZJyH68lEBQUhMmTJ+PgwYM4cOAAWrdujS5duuCvv/4CkM+fR4fsUJRDzZs3V0OGDEm5bbFYVMWKFdWkSZOceFaubcKECapRo0Zp3hcVFaU8PT3V8uXLU479/fffCoDavXt3Pp2hewDsN/K0Wq0qMDBQTZ06NeVYVFSU8vb2Vj/88INSSqkTJ04oAGr//v0pj/ntt9+UyWRS//77b76du6u581oqpVSfPn1Uly5d0n0Or2Xarly5ogCo7du3K6Wy9t/0r7/+qsxms7p06VLKY+bMmaP8/PxUQkJC/r4BF3LntVRKqYcfflgNGzYs3efwWqatVKlSat68efn+eXSZEZbExEQcPHgQbdu2TTlmNpvRtm1b7N6924ln5vpOnz6NihUronr16nj22WcRFhYGADh48CCSkpLsrmndunURHBzMa5qJc+fO4dKlS3bXzt/fHy1atEi5drt370bJkiXRtGnTlMe0bdsWZrMZe/fuzfdzdnXbtm1DuXLlUKdOHbz88su4du1ayn28lmmLjo4GgJTN5LLy3/Tu3bvRoEEDlC9fPuUxHTp0QExMTMq/igujO6+l4fvvv0eZMmVQv359jB8/Hrdu3Uq5j9fSnsViwZIlSxAXF4eQkJB8/zw6fPPDrLp69SosFovdmwKA8uXL4+TJk046K9fXokULLFy4EHXq1EFkZCQmTpyIhx56CMePH8elS5fg5eWFkiVL2j2nfPnyuHTpknNO2E0Y1yetz6Nx36VLl1CuXDm7+4sUKYKAgABe3zt07NgRXbt2RbVq1RAaGorXX38dnTp1wu7du+Hh4cFrmQar1Yrhw4fjgQceQP369QEgS/9NX7p0Kc3PrXFfYZTWtQSA3r17o0qVKqhYsSKOHj2KsWPH4tSpU1ixYgUAXkvDsWPHEBISgvj4ePj6+mLlypW4++67ceTIkXz9PLpMYKGc6dSpU8r3DRs2RIsWLVClShUsW7YMxYoVc+KZEWnPPPNMyvcNGjRAw4YNUaNGDWzbtg1t2rRx4pm5riFDhuD48eN2NWmUM+ldS9saqQYNGqBChQpo06YNQkNDUaNGjfw+TZdVp04dHDlyBNHR0fjxxx/Rp08fbN++Pd/Pw2WmhMqUKQMPD49U1cWXL19GYGCgk87K/ZQsWRK1a9fGmTNnEBgYiMTERERFRdk9htc0c8b1yejzGBgYmKogPDk5GdevX+f1zUT16tVRpkyZlJ3feS3tDR06FD///DO2bt2KoKCglONZ+W86MDAwzc+tcV9hk961TEuLFi0AwO5zyWsJeHl5oWbNmmjSpAkmTZqERo0aYdasWfn+eXSZwOLl5YUmTZpg8+bNKcesVis2b96MkJAQJ56Ze4mNjUVoaCgqVKiAJk2awNPT0+6anjp1CmFhYbymmahWrRoCAwPtrl1MTAz27t2bcu1CQkIQFRWFgwcPpjxmy5YtsFqtKf/jo7RFRETg2rVrqFChAgBeS4NSCkOHDsXKlSuxZcsWVKtWze7+rPw3HRISgmPHjtkFwI0bN8LPzw933313/rwRF5DZtUzLkSNHAMDuc8lrmZrVakVCQkL+fx7zomI4ryxZskR5e3urhQsXqhMnTqiXXnpJlSxZ0q66mOy99tpratu2bercuXNq586dqm3btqpMmTLqypUrSimlBg0apIKDg9WWLVvUgQMHVEhIiAoJCXHyWbuGmzdvqsOHD6vDhw8rAGr69Onq8OHD6sKFC0oppSZPnqxKliypVq9erY4ePaq6dOmiqlWrpm7fvp3yGh07dlT33HOP2rt3r/rjjz9UrVq1VK9evZz1lpwmo2t58+ZNNWrUKLV792517tw5tWnTJnXvvfeqWrVqqfj4+JTX4LVU6uWXX1b+/v5q27ZtKjIyMuXr1q1bKY/J7L/p5ORkVb9+fdW+fXt15MgRtW7dOlW2bFk1fvx4Z7wlp8nsWp45c0a9++676sCBA+rcuXNq9erVqnr16qply5Ypr8FrqdS4cePU9u3b1blz59TRo0fVuHHjlMlkUhs2bFBK5e/n0aUCi1JKffrppyo4OFh5eXmp5s2bqz179jj7lFxaz549VYUKFZSXl5eqVKmS6tmzpzpz5kzK/bdv31aDBw9WpUqVUsWLF1dPPfWUioyMdOIZu46tW7cqAKm++vTpo5SSpc1vvfWWKl++vPL29lZt2rRRp06dsnuNa9euqV69eilfX1/l5+enXnzxRXXz5k0nvBvnyuha3rp1S7Vv316VLVtWeXp6qipVqqgBAwak+ocIr6VK8xoCUAsWLEh5TFb+mz5//rzq1KmTKlasmCpTpox67bXXVFJSUj6/G+fK7FqGhYWpli1bqoCAAOXt7a1q1qypRo8eraKjo+1ep7Bfy//973+qSpUqysvLS5UtW1a1adMmJawolb+fR5NSSmVvTIaIiIgof7lMDQsRERFRehhYiIiIyOUxsBAREZHLY2AhIiIil8fAQkRERC6PgYWIiIhcHgMLERERuTwGFiIiInJ5DCxERETk8hhYiIiIyOUxsBBRnti5cydMJhNMJhOWLVuW5mP27t0LX19fmEwmjB49Op/PkIjcGfcSIqI806VLF6xZswZ169bF8ePH4eHhkXLfqVOn8MADD+DatWvo06cPFixYAJPJ5MSzJSJ3whEWIsozkyZNgoeHB06ePInvvvsu5fjFixfRoUMHXLt2DY899hjmzZvHsEJE2cIRFiLKU/3798f8+fNRrVo1nDp1CnFxcWjZsiWOHTuGBx98EBs2bECxYsWcfZpE5GYYWIgoT/3777+oVasWbt++jRkzZmDlypXYsWMHGjRogB07dqBkyZLOPkUickOcEiKiPFWpUiW8+uqrAIARI0Zgx44dqFq1KtavX59mWImNjcU777yDxx57DIGBgTCZTOjbt2/+njQRuTwGFiLKc6+++irMZvnfS0BAADZs2IAKFSqk+dirV69i4sSJOHToEJo2bZqfp0lEbqSIs0+AiAqW5ORkDBw4EFarFQBw69atDGtWKlSogIiICFSqVAnx8fGsbyGiNHGEhYjyjFIK/fv3x88//4yyZcuiWrVqiI+Px4QJE9J9jre3NypVqpSPZ0lE7oiBhYjyzJgxY7Bo0SL4+vril19+wQcffAAAWLRoEU6cOOHksyMid8bAQkR5Ytq0aZg2bRo8PT2xYsUKNGvWDM888wwaNmwIi8WC8ePHO/sUiciNMbAQUa598803GDNmDEwmExYuXIh27doBAEwmE9577z0AwJo1a7Bz505nniYRuTEGFiLKlV9//RX9+vWDUgrTp09H79697e5/4okn0KJFCwDA2LFjnXGKRFQAMLAQUY7t3r0b3bt3R3JyMsaOHYvhw4en+TijlmXnzp1YvXp1Pp4hERUUXNZMRDkWEhKCuLi4TB/Xpk0bsKk2EeUGR1iIiIjI5XGEhYic7rPPPkNUVBSSk5MBAEePHsX7778PAGjZsiVatmzpzNMjIhfAzQ+JyOmqVq2KCxcupHnfhAkT8M477+TvCRGRy2FgISIiIpfHGhYiIiJyeQwsRERE5PIYWIiIiMjlMbAQERGRy2NgISIiIpfHwEJEREQuj4GFiIiIXB4DCxEREbk8BhYiIiJyeQwsRERE5PIYWIiIiMjlMbAQERGRy/s/dX9Chw4NZCMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "np.random.seed(112)\n", + "plot_gradient_descent(eta=0.000001)\n", + "theta" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOL0lEQVR4nO3de5zMdf//8cfMspvTLtZhaVliUcRVLrHVJaEk9VN0oLo66aCQU8ihRGrF5tRVLmrTdXUlqW+HS8dLRFc5JBElmxUxsZSy65DF7uf3x/uatbPHmdk57czzfrvtzX4+M/OZ935azdP78HrbLMuyEBEREQkQe7AbICIiIpFF4UNEREQCSuFDREREAkrhQ0RERAJK4UNEREQCSuFDREREAkrhQ0RERAJK4UNEREQCqkqwG1BUfn4++/bto1atWthstmA3R0RERNxgWRZHjhyhcePG2O1l922EXPjYt28fTZo0CXYzRERExAt79+4lMTGxzOeEXPioVasWYBofGxsb5NaIiIiIO3JycmjSpEnB53hZQi58OIdaYmNjFT5EREQqGXemTGjCqYiIiASUR+Hj8ccfx2azuXy1adOm4PETJ04wZMgQ4uPjqVmzJv379+fAgQM+b7SIiIhUXh73fLRt25b9+/cXfH3++ecFj40cOZJly5bxxhtvsHr1avbt20e/fv182mARERGp3Dye81GlShUSEhKKnc/OziY9PZ3FixfTvXt3ABYtWsS5557LunXr6NKlS8VbKyIiIpWexz0fO3bsoHHjxpxzzjnceuut7NmzB4CNGzdy6tQpevbsWfDcNm3a0LRpU9auXVvq9XJzc8nJyXH5EhERkfDlUfjo3LkzL7/8Mh999BHz589n165d/OUvf+HIkSNkZWURHR1N7dq1XV7TsGFDsrKySr1mamoqcXFxBV+q8SEiIhLePBp26d27d8H37du3p3PnziQlJbF06VKqVavmVQPGjx/PqFGjCo6d64RFREQkPFVoqW3t2rVp1aoVmZmZJCQkcPLkSQ4fPuzynAMHDpQ4R8QpJiamoKaHanuIiIiEvwqFj6NHj7Jz504aNWpEx44dqVq1KitWrCh4PCMjgz179pCSklLhhoqIiEh48GjY5eGHH+baa68lKSmJffv2MXnyZKKiohg4cCBxcXEMGjSIUaNGUbduXWJjYxk2bBgpKSla6SIiIiIFPAofDoeDgQMHcujQIerXr8+ll17KunXrqF+/PgCzZ8/GbrfTv39/cnNz6dWrF88//7xfGi4iIiKVk82yLCvYjSgsJyeHuLg4srOzNf9DRESkkvDk81t7u4iIiESK/fvhjjvgnXeC2gyFDxERkXCXmwszZkCrVvDPf8LDD8Pp00Frjsfl1UVERKQS+eADGDECduwwx507w7x5UCV4EUA9HyIiIuFoxw645hro08d837AhvPwyrFkDF10U1KYpfIiIiISTI0dg3Dho2xbefx+qVjXDLD/8YOZ72IP/0a9hFxERkXCQnw+vvgpjx4JzT7WrroI5c6B166A2rSiFDxERkcruq6/goYfAuYt8ixYmdPTpAzZbUJtWkuD3vYiIiIh3Dh6Ee+4xczjWroUaNSA1Fb77zsz3CMHgAer5EBERqXxOnYLnnoPHH4fsbHPutttg+nQ4++ygNs0dCh8iIiKVyfLlMHw4fP+9Ob7wQrN09pJLgtsuD2jYRUREpDL48Ue4/nq48koTPOrVg4UL4csvK1XwAPV8iIiIhLZjx8xwysyZplJpVBQMHQqTJ0OdOsFunVcUPkREREKRZcHSpaZGh8NhzvXoAXPnmhoelZjCh4iISKj55huzdPazz8xxs2bwzDNm2CVEV7B4QnM+REREQsWhQ/Dgg2YS6WefQbVqMHUqbNsG/fqFRfAA9XyIiIgE3+nTZvLopEnw++/m3E03mXkeTZsGt21+oPAhIiISTKtWmSGWrVvN8fnnm6Wz3boFs1V+pWEXERGRYNizB26+GS6/3ASPOnVM4bCvvw7r4AHq+RAREQmsP/6AtDRTBv2PP8wus/ffD088AfHxwW5dQCh8iIiIBIJlwdtvw+jRsHu3OfeXv5ghlj/9KZgtCziFDxEREX/77jtTEn3FCnOcmGh6P266KWxWsHhCcz5ERET85fBhGDECOnQwwSMmxqxo2b7dzPeIwOAB6vkQERHxvbw8eOklmDABfv3VnLvuOlMo7Jxzgtq0UKDwISIi4ktffGGWzn79tTk+91xTEv2KK4LbrhCiYRcRERFf2LcP/vpXuPRSEzxiY2H2bFMqXcHDhXo+REREKiI314SMadPMDrQ2G9x9Nzz1FDRoEOzWhSSFDxEREW9YFrz/vplQunOnOdelCzz7LPz5z0FtWqjTsIuIiIinMjKgTx+49loTPBIS4J//NPM9FDzKpZ4PERERd+XkmEqkc+aYzeCqVoWRI83y2Vq1gt26YhwO2LEDkpPN8Y4dULMmHD1qziUmBqddCh8iIiLlyc+HV16BcePgwAFzrk8fmDULWrUKbttKkZ4O991nmg5mKoplnXncbjcb6Q4aFPi2adhFRESkLBs2wMUXw513muCRnAzvvWe+QjR4OByuwQNcgweYx+6/3zw30BQ+RERESnLggFm1ctFFsH69Ga94+mmzA22fPsFuXZl27HANHqXJy4PMTP+3pygNu4iIiBR28iT87W8wZYqZ4wFw++0wfTo0ahTw5hSet+Gco+FwwJo15vvmzWHXLtfv//1v964dFQUtW/q+zeVR+BAREXH6z3/MBnDbt5vjjh3N0tmUlKA0Jy3NTDPJzzdzNKZPh4MHTZX2osMonoqKggULgjPpVOFDRERk504YNepMl0H9+pCaCnfdZT71A6DoypRp00w4cMrPh7FjK/Yedjs88ogpuNqypVa7iIiIBN7RoyZkpKWZ4ZYqVWDYMHjsMahd2y9v6QwZNWueGS7ZssU0w515Gt6w22HJEtOBE6zAUZjCh4iIRB7LgtdeM10JP/9szvXsaTaAO+88v71t0eWvgeAcXrnxxsC9Z3kUPkREJLJs2mR2nf38c3PcrJnZm6VvX1MMww+cE0QDGTxsNhg92kxhCYXejsIUPkREJDL8+qupRLpwoen5qF4dxo83n9DVqnl0qcKrTS6+2PxZUiXRXbtg5Up44QXfh45rrjGLcJo1g927zbnC34fKEEtJbJZV0fmyvpWTk0NcXBzZ2dnExsYGuzkiIlLZnT4Nf/87PPooHD5szg0YADNmQJMmHl8uPR3uvdd1tUnh6qFFK4lW1G23weLFruHFboeffgqtcOHJ57eKjImISPhauRIuuMBMIj18GDp0gNWrzXwPL4KHw1E8eIDrcUWCh812ZuTHbjf56JVXTGdNVJQ5HxVljkMpeHhKwy4iIhJ+fvoJHn4Y3nzTHNetC08+aZKD81PcQw7HmREbX5g/H+LjzffNmsGxY2cKfmVmui6FHTQIevUqfr6yUvgQEZHwcfy46S54+mk4ccJ0HzzwAEydagJIKYpWDHXu+gpm/sbGjWZhjK+CR1SUmbNRWogo6XxiYuUPHU4KHyIiUvlZFvzf/5nJo3v2mHOXXQbz5kH79mW+tKQ5HE6+nL/hvFYwK4uGCoUPERGp3LZuNetJP/3UHDdpYoqG3XhjuUtnN2woPXhA+cHj2mvhgw/MBm3Ot7KsM5VE//Qnc85ZnT1chk0qqkITTqdPn47NZmPEiBEF57p164bNZnP5Gjx4cEXbKSIi4ur33029jgsuMMEjJsZUJt2+HW66qSANOBzm4aJbx6enQ+fO3vdsREXB88+bpa2ffmo6XPbsMd//9JOZYnLjjebLOWTSrZuCB1Sg52PDhg0sWLCA9iV0Z917771MnTq14Lh69erevo2IiIirvDx48UWYOBEOHTLn+vWDtDQcVZuzY/2Z+Rpz58KsWWc2Zlu40EzedDhMwS9vg4fd7jp0UjhQKFyUz6vwcfToUW699VZeeOEFpk2bVuzx6tWrk5CQUOHGiYiIuPj8c7NsdvNmc3zeeWZeR48eLjvAljRXIz/fBI5evUwo8abol81mejvKmiwq5fNq2GXIkCH06dOHnj17lvj4q6++Sr169WjXrh3jx4/n+PHjpV4rNzeXnJwcly8REREXDgfccgv85S8meMTFmQSxeTOO1j0YPBjGjDkTKErr0cjPN7vFPvNM8cdsNrP8deLE0jeytSxo00bBo6I87vlYsmQJX3/9NRs2bCjx8VtuuYWkpCQaN27Mli1bGDduHBkZGbz11lslPj81NZUpU6Z42gwREYkEJ07ArFnkT3sS+x/HsWw2jg28h5pznoT69UlL83wJ7AsvlPz80aPBOUVx8GBYu9YUQi3cQxIVdaYWh3jPo/Lqe/fu5c9//jPLly8vmOvRrVs3/vSnPzFnzpwSX7Ny5Up69OhBZmYmLVq0KPZ4bm4uubm5Bcc5OTk0adJE5dVFRCKZZcGyZTByJPz4IwBfcDEPMY+v6cj995taHK++6t3l7Xb3ypWnp8P995tpJs4lsoMGefkzhTlPyqt7FD7eeecdrr/+eqIKVYfLy8vDZrNht9vJzc11eQzg2LFj1KxZk48++ohevXr5tPEiIhKGtm+HESPg448B2EcjxjCTxdwCuL/rbGk1OqKiYPp0sxTWnVDhcGiJrDs8+fz2aNilR48ebN261eXcXXfdRZs2bRg3blyx4AGw+X+Tgho1auTJW4mISJhzOM7s/nr0KLRqmM3Z6VOx5s3Ddvo0uUQzi1E8xQSOUsvt69rtJlwMHGhCw1dflRw0BgxwL1SEU2XRUOFR+KhVqxbt2rVzOVejRg3i4+Np164dO3fuZPHixVx99dXEx8ezZcsWRo4cSdeuXUtckisiIpHJZWUK+dzBP5jOI8BBbMC/uZZRzGInnk2wGDzYTBgtvAS2W7czQaNGDRN0HA6FimDy6a620dHRfPLJJ1x55ZW0adOG0aNH079/f5YtW+bLtxERkUrK4cBlZcpFrGcdXVjE3TTkIBm0ojcf0Jd/exQ8nDvAzp9f+r4oO3dCly7QvTskJZn5HBIcHs35CATN+RARCU+F91BpSBbTeYQ7+QcAOdRiKo8xj4c4RXSx19rt8Nxz8M03ZtjE+clls5lVKsOHl92L4XCYwFF05cru3er98BW/zfkQERFxh3M+R3Ky+XB3VhStYp3kIebxGFOJ5QgAi7iT8aRygJKLUxadEDpxolkGC2bPFHfCw44dxYuK5eWZoRiFj8BT+BAREZ9wBo6NG10rjd53HzRoAFfmf8gcRtCaHwD4kk4M41m+pHOp1yw6hwPM9zfe6FnbkpOLL69VzY7g8emcDxERiUzp6WZYo3v34pVGP1mQSacnruVDrqY1P3CABtzFS3RhHV/ZO3P11cUripY3h8NTiYlmXxfnoky7HVJT1esRLOr5EBERj5Q2pFJ0WKMGR5nIk4xiFjGc5BRVmMdDTOUxcohz6dVw1tKoUQOOHTuz/LXoe1XEoEFmI1xnr8wjj0DduioaFgwKHyIi4raim7c5h1Rcg4fFLSxmBmM5m30AfMyVDGcuGbQpeNbNN7suiS2puqgz1BTekdZbDseZtoP58/77zUZz6gEJLIUPERFxy8yZZh8VJ8syE0ELu5CNzOMhLmENADs5h5HMZhnXUrg6aXnzLYr2pvgiKGjSaejQnA8RESnXhg2m16A09fiFBdzHBjpxCWs4RnXG8xRt+Y5l/D+KBo8FC8r+wC8rKHjLOem0ME06DQ71fIiICFDyXI4dO2DFCnjqqZL3SanCKR7keaYwmdpkA/AqtzCOp8mKSiQ1FZo1M89t1sx1PkdZ/LE6xTnptOhGcer1CDyFDxERcZlfYbNB797w0UfFex8K684K5vEQbdkGwCb+xDCeZa39UpYscb8GR0n8FRQGDTJDN9ooLrhU4VREJMJt2GDKjpcVNApLYjfPMJr+vAXAr8QzkSd5kXuwRUX5dNt57ShbeajCqYiIuKVwyfPyVOM443iascygGiewoqLIvOJBvrtpCve0q8NAN4dUPKHN38KTwoeISJgrvHX9rl3m3MUXmz/vu8+d4GFxI2+QxsM0Za85dfnl2ObOJfn880n2V8MlbCl8iIiEscJzOYr685/LH2o5ny3M4yG6sRqA7NpNiXtxFvTrZyaHiHhBS21FRMJUaZVHnb76qvTX1uE3nmUom7iAbqwmL/osskc9TtzP30P//goeUiHq+RARCQOFl8mC+f71192fROo0+N48RtZYyDkvTaJKzm/m5A03EJWWRlxSkm8bLRFL4UNEpJJyOGDNGli5El544cwyWXBvAmlRl9k+Y+4XDxG97Rtzol07mDcPLr/cd40WQeFDRKRSKm2VijehI5G9zLSNZYC1BLYBtWvDE0+Y/eyr6GNCfE9zPkREKhmHw/3lsYXZbGaL+sGDTdGuGE4wyTaNnVXamOBhs5mqXjt2wNChCh7iN/rNEhEJISXN3Si8nbzDAUuXeh48XHaFtSye6PguNR4bRbX9u+A0cOmlZojlggt8+eOIlEjhQ0QkRBTdrh5MyHBuXQ9n5nZ4wm6HdeugUyfg++9h+HDqLV9uHjz7bLNd7YABWsEiAaPwISISAkrarr7w90W3rneXc0+UTsmHYeQU+Nvf4PRpiI6GMWPgkUdM9TGRAFL4EBEJsvK2qy/P/Plw9KjJEc5N2FJTTU9Hy3PySVy+CFqNh19+MS/o2xeeeQZatPDNDxCCiu7QK6FF4UNEJACcy2IBmjc/U+Z8y5bSt6t3V5s20K2bGTlx2YRt7Vro/9CZamKtW8PcuWZb1zBWuKqry1wXCRna1VZExM882bzNU1FRsHt3kX/d799vulJeecUc16oFjz9uVrBER/u+ESHE4YCkJNd5MSXeI/E5Tz6/tdRWRMSPNmzwffBwzgt1zuco+FDNzYUZM6BVqzPB4+67zfjDqFFhHzzA/KhFJ+Tm5ZkeIQkdGnYREfGBkpbIrljh3ZCK3e76AWq3w3PPQXw8pKSYcy7DKwAffAAjRpg3Bujc2SydveiiivxYlU5ycvH7FxVl7pWEDoUPEZEKKrpzrM3mfU/HzJlQp46p9eWcPLpgQfE5CwWh44cfYORIEz4AGjaEp5+Gv/7VfApHmMREM8ej6P3TkEto0ZwPEZEKKGmOgTfsdpg+3ax+dV63WO9GYUeOwLRpMHs2nDoFVauano9Jk0D/7yz//onPefL5rZ4PEZEKmDvXs+Axfz507GgmQAI0awbHjhX/kExMLOVDMz8f/vUvM6E0K8ucu+oqmDPHrGYRoIz7JyFB4UNExE1F53UsW2aqkrpr5kyzrwr8r9qop776CoYNM+VKwdTpmDMH+vRRdVKpVBQ+RETcUHheh6dzOpxDKg8/7OWbHzwIEybASy+ZN65RwwyvjBwJMTFeXlQkeBQ+RETK4XC4Tih1J3jY7abi6BVXVGDewalTZpnL5MmQk2PO3XabmVDauLEXFxQJDQofIiL/U1pJ7pJqR5TE2cPRqZMPJjouXw7Dh5uN4AAuvNAsnb3kkgpcVCQ0KHyIiFB8WGX0aPPZD7B9e/mvd9k5tiJ+/NG8+TvvmON69cxGLXfdZdaNioQBLbUVkYhX0eWyPtk/5Ngx020yc6apVBoVZcqhT55sCn+IhDgttRURcYNzmOX1170LHjYbPP88XHNNBYZYLMs0YMwY0yCAHj3MGt62bb28qEhoU/gQkYjiDBwbN5pSGd72dpRWedQj33xjls7+97/muFkzs9X99ddr6ayENYUPEYkYRcuge8NuhyVLzB4rXvd2HDoEjz5q0kt+PlSrBuPHm7W41ap53ziRSkLhQ0QiwoYNvgkeCxfCjTd6eYHTp03gePRR+P13c+6mm8w8j6ZNvW+YSCWj8CEiYcs5xOLJ7rJ2O/TrB2+9ZYKK3Q733mumYVSot2PVKnjoIdi61Ryffz48+yxcdpmXFxSpvBQ+RCSsFA4cqame9XQUXi7rs43J9uwxk0mXLjXHdeqYDeHuuw+q6H/BEpn0my8iYSMtzftJpM4JpM46HRXemOyPP8xwyvTp5nu73ezz/sQTEB9fgQuLVH4KHyISFmbOhLFjvXvt7Nlwww0+2gXVsuDtt2HUKPjpJ3Oua1dTnbRDBx+8gUjlp/AhIpWSc3ilZk2z2au3wSMqyofB47vvTFnUFSvMcWKi6Y656SYtnRUpxF6RF0+fPh2bzcaIESMKzp04cYIhQ4YQHx9PzZo16d+/PwcOHKhoO0VECqSnm4qk3bvDRRfBgw+69zq73QQNZ5Vy51BLhYPH77+b0NGhgwkeMTFm19nt2+HmmxU8RIrwuudjw4YNLFiwgPbt27ucHzlyJO+//z5vvPEGcXFxDB06lH79+vHFF19UuLEiEtkcDlizxrMlsyXtLuuzyaR5eWab+wkT4Ndfzbnrrze9HeecU4ELi4Q3r8LH0aNHufXWW3nhhReYNm1awfns7GzS09NZvHgx3bt3B2DRokWce+65rFu3ji5duvim1SISMbxZvWKzmZpdpW1nX+HJpABffGGWzn79tTk+91xTEv2KKyp4YZHw59Wwy5AhQ+jTpw89e/Z0Ob9x40ZOnTrlcr5NmzY0bdqUtWvXVqylIhJx0tLODK88+aT729qvX2+e362bj+ZyFPbzz3DbbXDppSZ4xMaaGavffKPgIeImj3s+lixZwtdff82GDRuKPZaVlUV0dDS1a9d2Od+wYUOysrJKvF5ubi65ubkFxzk5OZ42SUTCjMNhSmEsWODZ65wVSCu8rX1JcnNNyJg2zexAa7OZjV2efBIaNPDDG4qEL4/Cx969exk+fDjLly/nrLPO8kkDUlNTmTJlik+uJSKVX1qaWbniTjVSOLOzbHx8BSuQlsay4L33YORI2LnTnEtJMUtn//xnH7+ZSGTwaNhl48aNHDx4kAsvvJAqVapQpUoVVq9ezbx586hSpQoNGzbk5MmTHD582OV1Bw4cICEhocRrjh8/nuzs7IKvvXv3ev3DiEjl5HCYAqC33WaKgbobPKKi4IUXYPBgs9+Kz4NHRgZcfTX8v/9ngkdCAvzzn/D55woeIhXgUc9Hjx492Orcl+B/7rrrLtq0acO4ceNo0qQJVatWZcWKFfTv3x+AjIwM9uzZQ0pKSonXjImJISYmxsvmi0hl5JxEmpwMH39s9k5xN3CUtHrF53JyTCXSOXPMZnBVq5qiYRMnQq1afnhDkcjiUfioVasW7dq1czlXo0YN4uPjC84PGjSIUaNGUbduXWJjYxk2bBgpKSla6SIigOu29jab+5u9+T1wgGnUK6+YGu3O+kR9+pi5HsnJfnpTkcjj8wqns2fPxm63079/f3Jzc+nVqxfPP/+8r99GRCohh8O1Roc7wWPwYNPh4LfA4bRhAwwbZpbKgAkbs2eb8CEiPmWzLHc7OwMjJyeHuLg4srOziY2NDXZzRKQCCpdA37XLdCq89557r7XbzZ5sY8b4t40cOGCKgixaZI5r1oTHHjMVS6Oj/fzmIuHDk89v7e0iIn5ReHilLM7K485/BtlsMHq0+ez3a2/HyZPwt7/BlClmjgfA7bebxNOokR/fWEQUPkTE54oOr5Tlxhvh4Ydh925z7JflskV9/DGMGGH2XgHo2BGefda8uYj4XYU2lhMRARM2Pv3U/OlcNuvu3itLl0KXLqbzwS/LZQvbuRP69oWrrjLBo35900Xz5ZcKHiIBpJ4PEamQtDSzOMQZNtxdwVJYfj7cfz/06uWn8HH0qNkYJi3NDLdUqWImlz72GBSpyCwi/qeeDxHx2syZZkJo4V6O8oKHzQY33VT8fF6e2WnWpywLFi+G1q3hqadM8OjZ0+zDMmuWgodIkKjnQ0S84nCYHg93TZ4MbdueGd14803X0BIVZWp4+MymTWbX2c8/N8fNm5vA0bfvmVmuIhIUCh8i4rbClUl37PCsDPo997gOqSxcaIZa8vLM4wsW+GjI5ddfYdIk8waWBdWrw4QJZgmNj/akEpGKUfgQEbcUXjrrrMFht5c/sbS0YDFokJnjkZnpo6qlp0/D/PlmHodzf6kBA2DGDGjSpIIXFxFfUpExESmXwwFJScWHSaZPN2XP8/Jc63UErBy608qVpjDIt9+a4w4dzK6zXbv6+Y1FxElFxkTEZxwOM2JRtIcjL89s7Lp795neC/BhT4Y7fvrJFAl5801zXLcuPPmk2akuKioADRARbyh8iEip0tJg7NiS53Y4J4gmJroGjYCEjuPHzXDK00/DiROmq+WBB2DqVBNARCSkKXyISIlmzjTBozQjRwYoaBRmWfB//2e6YvbsMee6dYO5c6F9+wA3RkS8pfAhIi4cDlizpuxltHa7mWIRUFu3mjf99FNz3KQJPPMM3HCDls6KVDIKHyJSwJ3N4Hy6LNYdv/1mioTMn28mmpx1lumSGTfOLKMVkUpH4UMkghXd8r684DF4MEycGKDgkZcHL75o3vDQIXOuf38zEaVZswA0QET8ReFDJEK5u+U9nKnrMWaM/9sFmKqkw4bB5s3muG1bM6+jR48ANUBE/EnhQyQCubvlvd0OS5YEaJt7Z8PGjoXXXjPHcXFmBcsDD0DVqgFogIgEgsKHSARxDrP88ov7lUlvvDEADTtxwuy78uSTZhmtzWZqdUybZra9F5GwovAhEiE8GWYB0/ng9+BhWbBsmVm3++OP5tzFF8Ozz8KFF/r5zUUkWOzBboCI+J+7wyxOUVFndp/1m+3boXdvs8vsjz9C48bwr3+Z+R4KHiJhTeFDJALs2FF+8HCWyvD7UtrsbFMk7Pzz4eOPIToaxo+HjAy49VbV7BCJABp2EQlTzvkdyclmKa3NVnKZdDCBY+1aOHbMj/uy5OfDP/5hdpw7eNCcu/ZaM9fDuTGMiEQEhQ+RMOIMHCtWQGrqmd6O8oLHggXQqVPx6yQn+yiIrF9vls5u2GCOW7WCOXPMsIuIRBwNu4iEibQ0s+199+5m0UjhYZaSgofdbjaE3b0bBg06cz49/cx1kpLMsdeysuDOO6FLFxM8atUym8Zs3argIRLBbJZV2r+HgiMnJ4e4uDiys7OJjY0NdnNEQppzH5Z//xtefdX9182ebbZEKdqr4XCYwFE4uERFmYDiUQ/IyZMwb56p0XHkiDl3552mOyYhwYMLiUhl4cnnt4ZdRCqp9HRTCsPTfz7Y7SUHDyh5YmpeHmRmehA+PvwQRoyAH34wx506maWznTt71lARCVsadhGphBwO74IHwNNPlx4kkpNNOCksKsrN+aCZmWYC6dVXm+DRoAG89BKsW6fgISIuFD5EKhmHA5YudS942GxnVq7a7TBjhpnnUZrERFi40AQOcHPZ7dGjZqls27bw3ntQpYpZSvvDD3DXXcXTjIhEPA27iFQi7lQptdvNatYrrjjTY5GZ6f4S2kGDoFcvN15jWWaiybhxsG+fOderl1nF0qaNJz+WiEQYhQ+RSsDhMFXIhwwpvcfDZjMdDsOHFw8Mni6XTUws5zUbN8JDD5nZrgDnnGNCxzXXqEiYiJRL4UMkxLkzsXT+fPO57/edZ3/5BSZOhBdfNA2qXh0mTTJ7s5x1lp/fXETChcKHSAhzd2JpmzZ+Dh6nTsHzz8PkyaY8OsAtt5Q9e1VEpBQKHyIhbM2a8oOH26tRvPXJJ2YsZ9s2c3zBBaaGx6WX+vFNRSScKXyIhBhnafONG2Hs2LKf69dN4HbvNpNI3nrLHMfHw1NPmRmpzuUwIiJeUPgQCSHurmaZPt3U7vLLJnDHj5vhlBkz4MQJEzQefBCmTIE6dXz8ZiISiRQ+REKEw1F+8Jg8Ge65x089HZYFb7xhCoHs3WvOXX65GWJp184PbygikUrhQyQEOAuHlRU8oqL8GDy2bDFLZ1evNsdNm5qt7vv109JZEfE5hQ+RICk8t2PcuPKDh1/mdhw6BI89Bn//u2nAWWeZCmVjxphltCIifqDwIRIE7sztiIoym8D6ZW5HXp6poz5pEvz2mzl3441mu/ukJB++kYhIcQofIgHmztyO0ra894nPPjNDLN98Y47btTPzOi6/3A9vJiJSnHZ8Egkgh8OsXi2vx8MvwWPvXhg4EC67zASPOnXMVvebNil4iEhAqedDJEDcKZPul7kdJ05AWpoZwzl+3Ewgvf9+eOIJqFfPh28kIuIehQ8RP3JOKq1Z0wy1lBY87r8fBgzw8dwOy4J334VRo2DXLnPu0kvNEMsFF/joTUREPKfwIeIHDgfMnWtWq5Y1xAKmaNikScVDhzO4JCd7EUi2bTMl0T/5xByffbaZTDpggJbOikjQac6HiI+lp5syGWlp5QePqCiz6KRouEhPN4tOunc3f6anu/nmhw+bHWbbtzfBIzra7EK7fbuZ76HgISIhwKPwMX/+fNq3b09sbCyxsbGkpKTw4YcfFjzerVs3bDaby9fgwYN93miRUOVcyVLeZnA2mykkunu32SqlpGs4g0t+vhmWcTjKuGB+vkkorVrBnDlmKW3fvqYHZNo0M+4jIhIiPBp2SUxMZPr06SQnJ2NZFv/4xz/o27cvmzZtom3btgDce++9TJ06teA11VWoSCLIjh3l93aACR/Dh5c8nFLSNfLyIDOzlOGXtWth2DBTrQygdWsz5tOrl8ftFxEJBI/Cx7XXXuty/OSTTzJ//nzWrVtXED6qV69OQkKC71ooUgk4HLBmjSkYareXH0Dy80sPE8nJxa8RFWUmo7rYt89UI33lFXMcG2s2fxk61Ay3iIiEKK/nfOTl5bFkyRKOHTtGSkpKwflXX32VevXq0a5dO8aPH8/x48fLvE5ubi45OTkuXyKViXOOx803m81f3en5KDFM/E9iopkH4ty1vtjy29xcs+Ns69Zngsfdd8MPP5iVLQoeIhLiPF7tsnXrVlJSUjhx4gQ1a9bk7bff5rzzzgPglltuISkpicaNG7NlyxbGjRtHRkYGb731VqnXS01NZcqUKd7/BCIBVngVCpRdu8Nuh3XrzKZxs2eb4RN3ankMGmRGTTIziyy/ff99GDHCPADQubNZOnvRRb768URE/M5mWeVNjXN18uRJ9uzZQ3Z2Nm+++SYvvvgiq1evLgggha1cuZIePXqQmZlJixYtSrxebm4uubm5Bcc5OTk0adKE7OxsYmNjPfxxRPwrLe3MJnA2G/TpA++9V/ZrPv0UunUzoaVYmHDXDz+YVSwffGCOGzY0vR+33WYSjohIkOXk5BAXF+fW57fH4aOonj170qJFCxYsWFDssWPHjlGzZk0++ugjerk5+c2TxosE0syZMHasZ6+JijIrWrwuHHbkiFmtMns2nDoFVauano9Jk8wcDxGREOHJ53eFi4zl5+e79FwUtnnzZgAaNWpU0bcRCSqHw/R4eKJCpdLz8+Ff/zJvmpVlzl11lVlG27q1FxcUEQkdHoWP8ePH07t3b5o2bcqRI0dYvHgxq1at4uOPP2bnzp0sXryYq6++mvj4eLZs2cLIkSPp2rUr7du391f7RfzO4TATQN3pI5w82QzFHDtWgVLpX31lls6uW2eOW7Y0PR99+qhImIiEBY/Cx8GDB7n99tvZv38/cXFxtG/fno8//pgrrriCvXv38sknnzBnzhyOHTtGkyZN6N+/P5MmTfJX20X8ylki/Zln3AseUVFwzz0VGGI5eBAmTICXXjJvWKMGPPqoGWaJifHyoiIioafCcz58TXM+JBSUtwOtzeb6mN1uekeKVit1y6lT8NxzptvEudT8ttvg6aehcWMvLigiEngBnfMhEm7cKZH++uuQkmKKi4L53qsej+XLTanT7783xxdeCM8+Cxdf7MXFREQqB4UPEc7U7qhZs/wN4aKizoSNG2/08g1//BFGj4Z33jHH9epBaircddeZ6mIiImFK4UMiXnq660ZuZbHbK7CCBcxM1NRUk3Byc03QGDoUHn8catf28qIiIpWLwodEtKI7yJbmmmvg9tsrMLxiWWasZsyYM9vT9uhhZrT+b18kEZFIofAhEcvhMCMf5QUPux3mz69Ab8fmzfDQQ/Df/5rjZs1g1iy47jotnRWRiKS6zBKR0tLMZnBLl5b9vKgos4rFq+Bx6JDZaa5jRxM8qlWDqVNh2za4/noFDxGJWOr5kIjjTpl0u91sEDt8uBfB4/RpMzHk0Ufh99/NuZtuMm/ctKlXbRYRCScKHxJRNmwou0y6zXZmGa1XvR2rVpkhlq1bzfH555uls5dd5k1zRUTCkoZdJGKkp5sd6Eur3xEVBS+8YJbPehw89uwxvRuXX26CR506pnDY118reIiIFKGeDwl7DgesWVN24bDBg2HiRC9Cxx9/mOGU6dPN93a7udjUqRAfX+G2i4iEI4UPCWvl1fCw2UwV8zFjPLywZcFbb5nlMj/9ZM517Qrz5kGHDhVqs4hIuFP4kLBVXg0Pu91sHNupk4cX/u47M69j5UpznJhols/cdJNWsIiIuEHhQ8KOc5jl22/LruExapSHweP3300l0ueeg7w8s9PsmDHwyCNmB9oI4ixHn5xcgfonIhKxFD4krJS3G62T3W6W0bolL89scz9hAvz6qzl3/fXwzDPQvHmF2lsZFR7KqtBuviISsbTaRcLGhg3uBQ+PCod98YXpHrnvPhM8zj0X/vMfM98jAoNH0aGs/Hy4//4zFeNFRNyh8CFhobxltE6zZ8Pu3W78S/3nn+G22+DSS2HTJoiLgzlz4Jtv4IorfNTqymfHjuJDWXl5kJkZnPaISOWkYRep1NxZRusUFQU33FBOj0durkko06aZHWhtNpNUnnwSGjTwadsro+RkM9RSOIBERUHLlsFrk4hUPur5kEorPR2SkuDmm8vfHC4qylQ8LzV4WBYsW2Z2mB0/3gSPlBT48ktTeUzBAzD3b+FCcz/BjfsqIlICm2WV9+/FwMrJySEuLo7s7GxiY2OD3RwJMc5VFjVrQpcuZdfveP55s6fbsWPmX+alfkBmZMCIEfDRR+a4USNT/OPWW80/86UYh8MMtZR5X0Ukonjy+a1hF6k0yisYVtjo0abQaJlycuCJJ8xcjtOnoWpVs/524kSoVcsXTQ5biYkKHSLiPYUPqRTKKxhWWLnLaPPz4ZVXzA5zBw6Yc336mLkeyck+aa+IiJRO4UMqhZJWWZSk3DkIX34Jw4aZP8GEjTlz4OqrfdVUEREphwa0pVJITi6/cnmZy2gPHIC77zbrcb/80kwamTHDlEFV8BARCSiFDwl5zuW0t9xS+nNKXUZ78qSpRNqqFSxaZM7dfjv88IMpjR4d7bd2i4hIyTTsIiHL4YC5c012KLwmy2ZzPS51qOXjj83kj4wMc9yxIzz7rFlCKyIiQaPwISGprD1abDZ4/XVo1qyUZbQ7d5pVK//+tzmuXx+mT4c779TSWRGREKDwISHHubKltAo0+fkmTxTbkfboUUhNNdvbnzwJVaqYyaWPPQa1a/u72SIi4iaFDwkpDgcsXVr2ypZi5bwtC157zczh2LfPnLviCrOK5bzz/NlcERHxgsKHhAx3iojZ7UXmd2zaZHo3vvjCHDdvbpa9/L//V/7yGBERCQqFDwm6wpvDlRQ87HYz/6NHDzNXNDER+OUXmDTJ7LtiWVC9OkyYYEqbnnVWwH8GERFxn8KHBFV5vR2TJ8M99xTq6Th9Gp6db+ZxHD5szg0caGp2qN63iEiloKn/EjTulEx/4gmzYhaAlSvhggvgoYdM8OjQAVavhsWLFTxERCoRhQ8Jmrlzyy+Znp8PT923m+N9bjDjLt9+C3Xrwvz5sHEjdO0amMaKiIjPKHxIUDgcpnhYWapxnMk8zrf551L9g/8zkz+GDDEbvQwebJa9iIhIpaM5HxIUa9aUXscDLPrzfzzDaJLYA8CJlG6c9fe50L59wNooIiL+oZ4PCbi0NBgwoPh5mw0+StvKTy168CY3ksQe9tCEFYOXctYXKxU8RETChHo+JKBmzoSxY4ufr2f/jVXdJtN23HzIy8OKOYufBoyj6sSx9EiuHviGioiI3yh8SEA4a3mMG+d63k4e9/Ai82pMJGblIXOyf39saWk0a9Ys4O0UERH/U/gQv3LuTDtrVvGVLZfwOc8yjAvYDEeAtm3Nk3v0CEZTRUQkQBQ+xG/S0swQS9GJpWfjYAZjuYXXADhRrTZnTZ8CDzwAVasGoaUiIhJICh/iFyXN7YjhBKOYxUSepAbHycfG1s730mHZNLNNrYiIRASFD/G5DRuKzu2wuJZlzGYkLfgRgC+4mOPTn+WKcRcGpY0iIhI8WmorPpWeDp07nxlqacP3fMRV/Ju+tOBHfqYxt/Aql9k/59xbFTxERCKRwof4jHOvFsuCWLJJYzRbaE8v/kMu0aQyntZksDTqFhYstGk7FhGRCKVhF/EJhwOWLgUrP5+7eJlUxtOQgwD8m2s5MHYWfx3WkpRMaNlS+8CJiEQyj3o+5s+fT/v27YmNjSU2NpaUlBQ+/PDDgsdPnDjBkCFDiI+Pp2bNmvTv358DBw74vNESWtLTISkJlo5exzq68BKDaMhBMmhFH9sHNPry39z7dEsSE6FbNwUPEZFI51H4SExMZPr06WzcuJGvvvqK7t2707dvX7777jsARo4cybJly3jjjTdYvXo1+/bto1+/fn5puIQGhwMeu3c/6fl3so4ULmIDOdRiNGmcz1Yun9GbTp2C3UoREQklNssqfXsvd9StW5eZM2dyww03UL9+fRYvXswNN9wAwPbt2zn33HNZu3YtXbp0cet6OTk5xMXFkZ2dTWxsbEWaJv528iSZw+bSYOETxHIEgEXcyXhSOUACAJ9+ano7REQkvHny+e31hNO8vDyWLFnCsWPHSElJYePGjZw6dYqePXsWPKdNmzY0bdqUtWvXlnqd3NxccnJyXL4k9P36yoccb3E+LReOJZYjfEknOrOOu1lUEDyiosz8DhERkcI8Dh9bt26lZs2axMTEMHjwYN5++23OO+88srKyiI6Opnbt2i7Pb9iwIVlZWaVeLzU1lbi4uIKvJk2aePxDSABlZrKnw7XUu/1qqjt+4AANuJNFdGEdX9K54GlRUbBggeZ3iIhIcR6Hj9atW7N582bWr1/PAw88wB133MG2bdu8bsD48ePJzs4u+Nq7d6/X1xI/OnIEHnkEq21bmm55j1NUIY3RtOIH/sGdWIV+lWbPht27YdCg4DVXRERCl8dLbaOjo2n5v770jh07smHDBubOncvNN9/MyZMnOXz4sEvvx4EDB0hISCj1ejExMcTExHjecgkMy4JXXzW10vfvxwZ8RC9GMIcM2hR7elQU3HCDejxERKR0FS4ylp+fT25uLh07dqRq1aqsWLGi4LGMjAz27NlDSkpKRd9GgmHjRrj0UvjrX2H/fnZyDtfyb3rzYYnBw27XUIuIiJTPo56P8ePH07t3b5o2bcqRI0dYvHgxq1at4uOPPyYuLo5BgwYxatQo6tatS2xsLMOGDSMlJcXtlS4SIg4ehIkTTQEPyyLvrOo8emISsxhJLmeV+BK7HdatQ8tqRUSkXB6Fj4MHD3L77bezf/9+4uLiaN++PR9//DFXXHEFALNnz8Zut9O/f39yc3Pp1asXzz//vF8aLn5w6hQ8/zxMngzZ2QBkdr6Fy9c/jYPSuzOck0sVPERExB0VrvPha6rzESSffALDh8P/Jg+fbHcBn984jyumXEp+fskvsdthyRJISdFQi4hIpPPk81t7u0S63bth9Gh46y1zHB/P51c/xeX/GsTpb6NKfZndDgsXwo03BqaZIiISPhQ+ItXx4zB9OsycCSdOmLGTIUP4+d7HuaxDHfJL6Q+z2czIzDXXqLdDRES8o/ARaSwL3ngDHn4YnDVVuneHuXOhXTt++JRSh1nAdJIMHhyYpoqISHhS+IgkW7bAQw/B6tXmuGlTmDUL+vUDmw2HA375xQyplBRA7HYzLURERKQiKlznQyqBQ4dgyBC44AITPM46Cx5/HL7/Hvr3B5uNtDRISoKbby45eERFmTkeGmoREZGKUs9HOMvLM4lh0iT47Tdz7sYbzTyPpKSCp82caQqYlsRmg9df14oWERHxHYWPcPXZZ2aI5ZtvzHG7djBvHlx+ucvTNmyAceNKv4xlQf36Ch4iIuI7GnYJN3v3woABcNllJnjUqQPPPgubNhULHmlp0LmzCRiliYqC/23lIyIi4hPq+QgXJ06YNPHUU/DHH2a85P774YknoF69Yk8va6jFyVm5VL0eIiLiSwoflZ1lwTvvmDWwu3aZc5deaoZYLrig2NMdDlizpvShFpsNxo+HK64wPR4KHiIi4msKH5XZtm1m7esnn5jjs882XRoDBpgUUUR6Otx3X+l1PGw2WL9ee7SIiIh/ac5HZXT4MIwcCe3bm+ARHW12od2+HQYOLDF4OBxlBw+AGTMUPERExP/U81GZ5OXBokUwYYKpBgbQty888wy0aFHmS9esKT142O2m0vrDD/u4vSIiIiVQ+Kgs1qwxS2c3bjTHbdqYkuhXXlnuS9PT4d57S398yRJtECciIoGjYZdQt28f3H47XHKJCR6xsaYk+pYtbgUP53BLactpo6JMATEREZFAUc9HqMrNhTlzYNo0OHrUnLv7brOUtmFDty7hcJhFMKUNt2gprYiIBIPCRyh6/30YMQIyM81x586mUJgbs0EdDtixw3SSjB1bco+H3W6GWlQyXUREgkHhI5T88INZxfLBB+Y4IQGefhpuu80khnKUt5TWadQozfEQEZHg0ZyPUJCTY7op2rUzwaNqVRgzBjIyzHwPN4KHO0tpwVxq+HAftVtERMQL6vkIpvx8+Ne/TLnRrCxzrndvM9ejVSuPLrVjR/nBQ3M8Qp9z2Cw5Wf+dRCR8qecjWDZsMCtY7rjDBI+WLeG990zPh4fBA8yHVWkdJHa7qeGxezcMGlSxZov/pKdDUhJ0727+TE8PdotERPxDPR+BdvCgKRL20ktmNmiNGvDoo2aCaUyMV5d0OEzJj8KTS52Fwzp10h4tlUHRYbP8fLMvYK9e+m8nIuFH4SNQTp2Cv/0NHn/czPEA+OtfTUJo3Njry6allbyqxbLMv54VPCqHkobN8vLMgif99xORcKNhl0BYvhw6dDDLTHJyoGNH+OIL+Oc/vQ4eDgcMHmzmpZa0nNay4Oab1X1fWZQ0bBYVZcKjiEi4Ufjwpx9/hOuvN5VIv/8e6tWDF14wW8defLHHl3M44NNPYdIkaNrUTB4tj7P73uHwov0SMImJsHChCRygycEiEt407OIPx45BaqoZE8nNNZ8kw4bB5MlQu7ZXl3S3hkdJ1H1fOQwaZOZ4ZGZquExEwpvChy9ZFrz+uhkLcXY19OgB8+bBeed5fVl3a3iAqUe2eLHrc9V9H9qKLq9V6BCRcKdhF1/ZvBkuuwwGDjSfJs2awVtvmfkeFQge4F4ND7sdZsyAV15R931louW1IhKJFD4q6tdf4YEHzCTS//4XqlWDqVNh2zYz38Nmq/BbfPVV2Y8PHgw//WQ6XMB03+/ebeaHqLZH6Cptea3m54hIuNOwi7dOnzZdCo8+Cr//bs7dfLPpfmja1Gdv43DAI4+U/JizloczdBSm7vvQp+W1IhKpFD68sWoVPPQQbN1qjtu3N/M6LrvM529V2pDL7Nlwww36kKrMnMtrNT9HRCKNhl08sWcP3HQTXH65CR516sBzz5n96/0QPKD0+g8KHpWflteKSKRSz4c7/vgDZs40Yxx//GHSwODBZm5HfLzP3sa56qFmTTh69Mzqh4ULzVyAvDx9QIUbLa8VkUik8FEWyzIrVkaPNjM6Abp2NUMsHTr49K1KquNht5vgoQ+o8Kb5OSISaWyWVVJx7uDJyckhLi6O7OxsYmNjg9eQb7+F4cNh5UpznJhoiobddJNPVrAU5nCYZZYlze2w22HdOrNBnIiISKjy5PNbcz6K+v13Ezr+9CcTPGJizIqW7dvNahYfBg9nufQ1a0qv45GfD126qP6DhB7n76+WBouIpxQ+nPLyzBhHq1ZmWCUvz9Tp+P57M7ejRg2fvl3h4lLlZRrVf5BQo+JoIlIRCh9gdpjt1Ml8wv/6K5x7rqlM+tZb0Ly5z9+upHLpllV2AHHWfxAJNhVHE5GKiuwJpz//DOPGwauvmuO4OJgyBR58EKpW9elbFV7J8t//lj7MsnSpKZLat6/qP0hoUnE0EamoyAwfubkwaxY8+aTZgdZmM0tKnnwSGjTw+du5uyOtZUH9+tCtm5bXSuhScTQRqajIGnaxLFi2DNq2hQkTTPBISYENG+CFF/wSPDzZkbbw/8C1P4uEKhVHE5GKipyej4wMGDECPvrIHDdqZPZhufVWny+dLcydHWmh5P+Bq/6DhCrVnhGRioic8PH11yZ4VK0Ko0bBxIlQq5bf37akLuqitE+LVEYKxyLircgJHwMGwJYtcPfdJhH4mcNh6nesXGlGe0qjfVpERCTSRE74sNkgNTUgb5WeDvfeW3rocPaEuDNW7lwl49znRUREpLLzaMJpamoqnTp1olatWjRo0IDrrruOjIwMl+d069YNm83m8jV48GCfNjqUOBxmeezSpeb7DRvKDh4AS5a4N5FUhZxERCQcebS3y1VXXcWAAQPo1KkTp0+fZsKECXz77bds27aNGv+rANqtWzdatWrF1KlTC15XvXp1t/dpCZm9XdxQXg9HSaKiTOgorxejpP1e3H2tiIhIoHny+e3RsMtHzpUi//Pyyy/ToEEDNm7cSNeuXQvOV69enYSEBE8uXek4HN4FD3eXJKqQk4iIhKsK1fnIzs4GoG7dui7nX331VerVq0e7du0YP348x48fL/Uaubm55OTkuHxVBjt2uB88bDZ4+GHP6nU4V8kUpkJOIiISDryecJqfn8+IESO45JJLaNeuXcH5W265haSkJBo3bsyWLVsYN24cGRkZvPXWWyVeJzU1lSlTpnjbjKBJTjahorwAMn8+XHON570VzkJOqnIqIiLhxqM5H4U98MADfPjhh3z++ecklvGJuHLlSnr06EFmZiYtWrQo9nhubi65ubkFxzk5OTRp0iQk53wU3p9l1y6zjHbhwtIDyMyZpsejou+pQk4iIhLq/Dbnw2no0KG89957fPbZZ2UGD4DOnTsDlBo+YmJiiImJ8aYZAVXW/iz33296QV54wfRS2O0wfXrFgweokJOIiIQfj8KHZVkMGzaMt99+m1WrVtHcje3mN2/eDECjRo28aqA/Fe7JOHq09Foa5e3P8uKLZj7HxInqpRARESmPR+FjyJAhLF68mHfffZdatWqRlZUFQFxcHNWqVWPnzp0sXryYq6++mvj4eLZs2cLIkSPp2rUr7du398sP4K20NBg3zjVQ2Gzw9NMwcKBrKHn99bLLoztXoXTrptAhIiJSHo/mfNhK2YBt0aJF3Hnnnezdu5fbbruNb7/9lmPHjtGkSROuv/56Jk2aFFJ1PmbOhLFjS3/cnYmkhan+hoiIRDq/zfkoL6c0adKE1atXe3LJgHLutzJuXNnP8yR42O1ahSIiIuKJiNnbpawJo56y2eD55yE+HlJSFDxEREQ8ERHho7wJo55w1ttwt1iYiIiIuKpQhdPKoqRS5U52O1x9tenNKI3dDhMmuLcZnIiIiJQtIsJHSaXK7XazE+1PP8H778OePaYuR1TUmcevvtr8mZ9v6nbs3KkhFhERkYryusKpv/hrtUt6evFS5SX1YDgritaoAV26aFdZERERd/i9wmllNGgQ9OpVfhEwZ0XRTz/VrrIiIiL+EDHhAzwrVe4cqina86FdZUVERComIuZ8eMO5q6xzDoh2lRUREfGNiOr58JS7QzUiIiLiPoWPcmhXWREREd/SsIuIiIgEVMSFD4fDrGRxOILdEhERkcgUUeEjPR2SkqB7d/NnenqwWyQiIhJ5IiZ8FN3fJT/fFB1TD4iIiEhgRUz4KGl/F2fRMBEREQmciAkfJe3voqJhIiIigRcx4UNFw0REREJDRNX5UNEwERGR4Iuo8AEqGiYiIhJsETPsIiIiIqFB4UNEREQCSuFDREREAkrhQ0RERAJK4UNEREQCSuFDREREAkrhQ0RERAJK4UNEREQCSuFDREREAkrhQ0RERAJK4UNEREQCSuFDREREAkrhQ0RERAJK4UNEREQCSuFDREREAkrhQ0RERAJK4UNEREQCSuFDREREAkrhQ0RERAJK4UNEREQCSuFDREREAkrhQ0RERAJK4UNEREQCSuFDREREAkrhQ0RERAJK4UNEREQCyqPwkZqaSqdOnahVqxYNGjTguuuuIyMjw+U5J06cYMiQIcTHx1OzZk369+/PgQMHfNpoERERqbw8Ch+rV69myJAhrFu3juXLl3Pq1CmuvPJKjh07VvCckSNHsmzZMt544w1Wr17Nvn376Nevn88bLiIiIpWTzbIsy9sX//LLLzRo0IDVq1fTtWtXsrOzqV+/PosXL+aGG24AYPv27Zx77rmsXbuWLl26lHvNnJwc4uLiyM7OJjY21tumiYiISAB58vldoTkf2dnZANStWxeAjRs3curUKXr27FnwnDZt2tC0aVPWrl1b4jVyc3PJyclx+RIREZHw5XX4yM/PZ8SIEVxyySW0a9cOgKysLKKjo6ldu7bLcxs2bEhWVlaJ10lNTSUuLq7gq0mTJt42SURERCoBr8PHkCFD+Pbbb1myZEmFGjB+/Hiys7MLvvbu3Vuh64mIiEhoq+LNi4YOHcp7773HZ599RmJiYsH5hIQETp48yeHDh116Pw4cOEBCQkKJ14qJiSEmJsabZoiIiEgl5FHPh2VZDB06lLfffpuVK1fSvHlzl8c7duxI1apVWbFiRcG5jIwM9uzZQ0pKim9aLCIiIpWaRz0fQ4YMYfHixbz77rvUqlWrYB5HXFwc1apVIy4ujkGDBjFq1Cjq1q1LbGwsw4YNIyUlxa2VLiIiIhL+PFpqa7PZSjy/aNEi7rzzTsAUGRs9ejSvvfYaubm59OrVi+eff77UYZeitNRWRESk8vHk87tCdT78IVLDh8MBO3ZAcjIUmkYjIiJSKQSszof4Rno6JCVB9+7mz/T0YLdIRETEfxQ+gszhgPvug/x8c5yfD/ffb86LiIiEI4WPINux40zwcMrLg8zM4LRHRETE3xQ+giw5GexF/itERUHLlsFpj4iIiL8pfARZYiIsXGgCB5g/FyzQpFMREQlfXlU4Fd8aNAh69TJDLS1bKniIiEh4U/gIEYmJCh0iIhIZNOwiIiIiAaXwISIiIgGl8CEiIiIBpfAhIiIiAaXwISIiIgGl8CEiIiIBpfAhIiIiAaXwISIiIgGl8CEiIiIBpfAhIiIiAaXwISIiIgEVcnu7WJYFQE5OTpBbIiIiIu5yfm47P8fLEnLh48iRIwA0adIkyC0RERERTx05coS4uLgyn2Oz3IkoAZSfn8++ffuoVasWNpvNp9fOycmhSZMm7N27l9jYWJ9eO9zoXnlG98t9ulfu073yjO6X+/xxryzL4siRIzRu3Bi7vexZHSHX82G320n0897ysbGx+sV0k+6VZ3S/3Kd75T7dK8/ofrnP1/eqvB4PJ004FRERkYBS+BAREZGAiqjwERMTw+TJk4mJiQl2U0Ke7pVndL/cp3vlPt0rz+h+uS/Y9yrkJpyKiIhIeIuong8REREJPoUPERERCSiFDxEREQkohQ8REREJqIgJH8899xzNmjXjrLPOonPnznz55ZfBblLQPf7449hsNpevNm3aFDx+4sQJhgwZQnx8PDVr1qR///4cOHAgiC0OrM8++4xrr72Wxo0bY7PZeOedd1wetyyLxx57jEaNGlGtWjV69uzJjh07XJ7z22+/ceuttxIbG0vt2rUZNGgQR48eDeBPERjl3as777yz2O/aVVdd5fKcSLlXqampdOrUiVq1atGgQQOuu+46MjIyXJ7jzt+9PXv20KdPH6pXr06DBg0YM2YMp0+fDuSPEhDu3K9u3boV+/0aPHiwy3Mi4X7Nnz+f9u3bFxQOS0lJ4cMPPyx4PJR+ryIifLz++uuMGjWKyZMn8/XXX9OhQwd69erFwYMHg920oGvbti379+8v+Pr8888LHhs5ciTLli3jjTfeYPXq1ezbt49+/foFsbWBdezYMTp06MBzzz1X4uMzZsxg3rx5/P3vf2f9+vXUqFGDXr16ceLEiYLn3HrrrXz33XcsX76c9957j88++4z77rsvUD9CwJR3rwCuuuoql9+11157zeXxSLlXq1evZsiQIaxbt47ly5dz6tQprrzySo4dO1bwnPL+7uXl5dGnTx9OnjzJmjVr+Mc//sHLL7/MY489Fowfya/cuV8A9957r8vv14wZMwoei5T7lZiYyPTp09m4cSNfffUV3bt3p2/fvnz33XdAiP1eWRHgoosusoYMGVJwnJeXZzVu3NhKTU0NYquCb/LkyVaHDh1KfOzw4cNW1apVrTfeeKPg3Pfff28B1tq1awPUwtABWG+//XbBcX5+vpWQkGDNnDmz4Nzhw4etmJgY67XXXrMsy7K2bdtmAdaGDRsKnvPhhx9aNpvN+vnnnwPW9kAreq8sy7LuuOMOq2/fvqW+JlLvlWVZ1sGDBy3AWr16tWVZ7v3d++CDDyy73W5lZWUVPGf+/PlWbGyslZubG9gfIMCK3i/LsqzLLrvMGj58eKmvieT7VadOHevFF18Mud+rsO/5OHnyJBs3bqRnz54F5+x2Oz179mTt2rVBbFlo2LFjB40bN+acc87h1ltvZc+ePQBs3LiRU6dOudy3Nm3a0LRpU903YNeuXWRlZbncn7i4ODp37lxwf9auXUvt2rX585//XPCcnj17YrfbWb9+fcDbHGyrVq2iQYMGtG7dmgceeIBDhw4VPBbJ9yo7OxuAunXrAu793Vu7di3nn38+DRs2LHhOr169yMnJKfhXbrgqer+cXn31VerVq0e7du0YP348x48fL3gsEu9XXl4eS5Ys4dixY6SkpITc71XIbSzna7/++it5eXkuNxOgYcOGbN++PUitCg2dO3fm5ZdfpnXr1uzfv58pU6bwl7/8hW+//ZasrCyio6OpXbu2y2saNmxIVlZWcBocQpz3oKTfK+djWVlZNGjQwOXxKlWqULdu3Yi7h1dddRX9+vWjefPm7Ny5kwkTJtC7d2/Wrl1LVFRUxN6r/Px8RowYwSWXXEK7du0A3Pq7l5WVVeLvnvOxcFXS/QK45ZZbSEpKonHjxmzZsoVx48aRkZHBW2+9BUTW/dq6dSspKSmcOHGCmjVr8vbbb3PeeeexefPmkPq9CvvwIaXr3bt3wfft27enc+fOJCUlsXTpUqpVqxbElkm4GTBgQMH3559/Pu3bt6dFixasWrWKHj16BLFlwTVkyBC+/fZbl7lWUrrS7lfhuUHnn38+jRo1okePHuzcuZMWLVoEuplB1bp1azZv3kx2djZvvvkmd9xxB6tXrw52s4oJ+2GXevXqERUVVWxG74EDB0hISAhSq0JT7dq1adWqFZmZmSQkJHDy5EkOHz7s8hzdN8N5D8r6vUpISCg2qfn06dP89ttvEX8PzznnHOrVq0dmZiYQmfdq6NChvPfee3z66ackJiYWnHfn715CQkKJv3vOx8JRaferJJ07dwZw+f2KlPsVHR1Ny5Yt6dixI6mpqXTo0IG5c+eG3O9V2IeP6OhoOnbsyIoVKwrO5efns2LFClJSUoLYstBz9OhRdu7cSaNGjejYsSNVq1Z1uW8ZGRns2bNH9w1o3rw5CQkJLvcnJyeH9evXF9yflJQUDh8+zMaNGwues3LlSvLz8wv+5xipHA4Hhw4dolGjRkBk3SvLshg6dChvv/02K1eupHnz5i6Pu/N3LyUlha1bt7oEtuXLlxMbG8t5550XmB8kQMq7XyXZvHkzgMvvV6Tcr6Ly8/PJzc0Nvd8rn05fDVFLliyxYmJirJdfftnatm2bdd9991m1a9d2mdEbiUaPHm2tWrXK2rVrl/XFF19YPXv2tOrVq2cdPHjQsizLGjx4sNW0aVNr5cqV1ldffWWlpKRYKSkpQW514Bw5csTatGmTtWnTJguwZs2aZW3atMn66aefLMuyrOnTp1u1a9e23n33XWvLli1W3759rebNm1t//PFHwTWuuuoq64ILLrDWr19vff7551ZycrI1cODAYP1IflPWvTpy5Ij18MMPW2vXrrV27dplffLJJ9aFF15oJScnWydOnCi4RqTcqwceeMCKi4uzVq1aZe3fv7/g6/jx4wXPKe/v3unTp6127dpZV155pbV582bro48+surXr2+NHz8+GD+SX5V3vzIzM62pU6daX331lbVr1y7r3Xfftc455xyra9euBdeIlPv1yCOPWKtXr7Z27dplbdmyxXrkkUcsm81m/ec//7EsK7R+ryIifFiWZT377LNW06ZNrejoaOuiiy6y1q1bF+wmBd3NN99sNWrUyIqOjrbOPvts6+abb7YyMzMLHv/jjz+sBx980KpTp45VvXp16/rrr7f2798fxBYH1qeffmoBxb7uuOMOy7LMcttHH33UatiwoRUTE2P16NHDysjIcLnGoUOHrIEDB1o1a9a0YmNjrbvuuss6cuRIEH4a/yrrXh0/fty68sorrfr161tVq1a1kpKSrHvvvbdY+I+Ue1XSfQKsRYsWFTzHnb97u3fvtnr37m1Vq1bNqlevnjV69Gjr1KlTAf5p/K+8+7Vnzx6ra9euVt26da2YmBirZcuW1pgxY6zs7GyX60TC/br77rutpKQkKzo62qpfv77Vo0ePguBhWaH1e2WzLMvybV+KiIiISOnCfs6HiIiIhBaFDxEREQkohQ8REREJKIUPERERCSiFDxEREQkohQ8REREJKIUPERERCSiFDxEREQkohQ8REREJKIUPERERCSiFDxEREQkohQ8REREJqP8P+CW0F/x2oJYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(t,y,'.b')\n", + "Xnew1 = np.linspace(0,n-1,n)\n", + "Xnew = np.c_[np.ones(len(Xnew1)), Xnew1]\n", + "ypre = Xnew.dot(theta)\n", + "plt.plot(Xnew1, ypre, '-r')" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAGXCAYAAACEDgBPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB99ElEQVR4nO3dd3zM9x8H8Nf3Mi6JbAlBgtgrNhFFac0mJLYoRc1WdaFoq+jSotVWiyqli8ROJGqrGStij9o7iJGERNZ9fn/cL0cqZF4+9728no/HPeruvnf3uqvv2/f9HZ+PIoQQICIiIiIiomfSyA5ARERERERk6tg4ERERERER5YCNExERERERUQ7YOBEREREREeWAjRMREREREVEO2DgRERERERHlgI0TERERERFRDtg4ERERERER5YCNExERERERUQ7YOBEREREREeWAjRMREREREVEO2DiRyTl9+jRmzZqFgQMHwsfHB5aWllAUBZ9//rnUXMuWLUPr1q3h4uKCEiVKoF69epg2bRrS0tKe+7rU1FT88MMPaNGiBVxdXWFjYwNPT0906tQJoaGhRZSeqHjK73prrPfN6+tMtR4SmTtTXffyU3suX76Mt956C9WrV4etrS1sbGzg7e2NAQMG4PDhw0WY3gwIIhPzzjvvCABP3T777DPpmSwtLUX79u1Ft27dhLOzswAgWrRoIZKSkrJ93ZUrV0StWrUEAOHm5iYCAgJE7969RfPmzYWdnZ3o3r17EX8TouIjv+utsd43P68zxXpIVByY4rqXnxqyZ88e4eDgIACIcuXKiS5duoiuXbsKb29vw3stXbpUwrdRJzZOZHJ++eUXMWbMGPHXX3+JkydPiv79+0stVqtWrRIAhL29vYiOjjY8fvv2beHj4yMAiNGjRz/1uqSkJFGjRg0BQEyePFmkpqZmef7hw4ciJibG2PGJiqX8rrfGet/8vs7U6iFRcWFq615+a0jdunUFADFs2LAs2yEZGRni448/FgCEs7OzSE5OLpLvoXZsnMjkDRgwQGqxatKkiQAgPv/886ee27FjhwAgtFqtuH//fpbnJk6caChWRFS08rveGut9CyuP7HpIVFzJXvfyU0Pi4uIMR8pu3br11OvS09OFra2tACAOHjxo1Pzmgtc4mbmpU6dCURSMGTMGcXFxGDNmDKpUqQKtVovSpUtjyJAhiI+Plx2zUCUnJ+Obb75Bs2bN4OzsDBsbG1SvXh0ffPAB7ty5k6f3unbtGvbv3w8A6Nu371PPt2jRAl5eXkhJScHatWsNj6elpWHOnDkAgLFjxxbg2xDJp7Y6kt/11ljva6w8RGqhthpSGExhW0Sr1eb6M9zc3PKUqbhi42TmoqOjAegHKKhVqxZWrlwJHx8fvPDCC7hz5w4WLFiAoUOHSk5ZeK5fvw5fX1+MGTMGZ86cQZMmTfDKK68gJSUF06dPR+PGjXHp0qVcv19MTAwAwNXVFd7e3tku07hx4yzLAsDBgwcRFxeHsmXLokqVKjh69CimTJmC4cOHY/z48YiMjIROpyvANyUqOmqrI/ldb431vsbKQ6QWaqshBWUq2yL29vZo2bIlAODjjz/OMoCETqfD5MmTkZycjE6dOsHLyyvP37M4YuNk5g4ePAgA+OWXXzBt2jScO3cOq1atwpYtWzB//nwAQHh4ODIyMnL1fgMHDoSiKHm+/fPPP8b6igZCCPTq1QtHjx7F4MGDcfHiRWzcuBErV67E2bNnMXr0aFy8eBGDBg3K9XteuHABAFC+fPlnLpNZbDKXBYAjR44AADw9PTF+/HjUq1cPkydPxrx58/D1118jICAAjRs3xuXLl/PzVYmKlNrqSH7XW2O9r7HyEKmF2mpIQZjStgig/80rVaqEefPmwdvbG0FBQejevTuqVKmCadOmoX///ggJCcnHNy2eLGUHIOO5d++eYQX6/vvvMXDgwCzPd+vWDYMGDUJKSgrS09NhYWGR43u2aNEiX1k8PDzy9bq8WL9+PXbt2oX69etj7ty5sLR8/Nfb0tIS06ZNw/r167F161YcO3YMderUyfE9ExMTAQAlSpR45jL29vYAgISEBMNjmYfhY2JisG/fPowcORJvv/02PDw8DPdjYmLg7++PgwcPwsrKKl/fmcjY1FhH8rveGut9jZWHSA3UWEMKwpS2RQCgevXqiIqKQv/+/bFhwwZcu3bN8FytWrXQunVrODo65uk7FmdsnMxY5h6esmXLYsiQIU89n7kiuru75/o82CFDhmT7XqYgMjISANC9e/cshSqTRqNBq1atcOzYMezevTtXxSq/hBAA9Nc6BQcH48cffzQ817ZtW2zcuBHVq1fHsWPHEBISgv79+xstC1FBFLc6QkSFq7jVEFPaFgGAXbt2oVu3brC0tMTixYvx0ksvwdraGrt27cL777+PwYMHY9euXViwYIFRc5gLNk5mLLNYBQYGQqN5+qzM48ePAwDq169flLGM5vz58wCAiRMnYuLEic9d9vbt2wBguFD1vxYtWgQAcHBwAAA8fPjwme/14MEDAMiyxybzdQAwfPjwp15Tvnx5+Pv7Y8WKFdi0aRMbJzJZaqwj+V1vjfW+xspDpAZqrCEFYUrbIvfv30fXrl0RFxeHqKgo+Pr6Gp4LCAhArVq14OPjg19//RX9+vVDmzZtcvENizc2TmYss1g1bdo02+czR2h51vPZmT9/Pnbu3JnnLOPHj0eNGjXy/Lq8yBxsoUWLFqhcufJzl61duzYAYPny5dleoJlZrCpWrAgAuHLlyjPfK/O5zGUBoFKlStn++UmZj9+4ceO5WYlkUmMdye96a6z3NVYeIjVQYw0pCFPaFomMjMTt27dRuXLlLE1TpkqVKsHX1xdbt27Fpk2b2DjlAhsnM5Y5ik3mSCv/lVmsmjRpkuv33LlzJ3777bc8Zxk4cKDRi1XmhZGBgYEYM2ZMrl5z8eLF5z7foEEDAPprli5cuJDtaDYHDhwAADRs2NDwWMOGDaEoCoQQiIuLy3a0msy9S5nnJROZIjXWkfyut8Z6X2PlIVIDNdaQgjClbZHMAaiedyTbyckJAHD37t1cZS3uOKqemUpMTMTZs2dhZ2eHmjVrZrtMforVokWLIPQTJ+fp1rp168L4Ws/VqVMnAMCyZcsM1xgVlKenp+H3Wbx48VPP79y5E1euXIFWq8Urr7xieNzDw8Nw8eqmTZueel1aWhq2bdsGIG972YiKklrrSH7XW2O9r7HyEJk6tdaQgjClbZFy5coBAE6dOpXtPFlpaWmGI4LPGuac/sMo0+qSdNu2bRMARPPmzbN9/urVqwKAKFu2bBEny7vcztadkZFhmFl7wIAB2c6SfffuXTFnzhyRlpaW689ftWqVACDs7e1FdHS04fG4uDjh4+MjAIjRo0c/9bpNmzYJAMLFxUVERUUZHk9LSxOjRo0SAISDg4OIjY3NdRaioqTmOpLf9VYIIcaPHy+qV68uxo8fX2jvW5A8T8ptPSQyBWquIf+lxm2RW7duiRIlSggAomfPniIxMdHwXEpKihg5cqQAIKysrMS5c+dynaU4Y+Nkpr799lsBQLz99tvZPp+5AgYGBhZtsFyIjo4Wvr6+hpubm5sAIDw9PbM8fv369adee+3aNVG/fn0BQJQoUUI0b95c9OnTR3Tr1k3Ur19fWFhYCAAiOTk5T5nefvttQ3Hp2LGj6N69u3B2dhYAxAsvvCCSkpKyfd1nn30mAAhLS0vRvHlz0a1bN1GxYkUBQNja2oqIiIh8/UZERUHNdUSI/K+3mRtIAwYMKNT3zc/rClIPiWRTcw0xl22RP/74Q1haWgoAwt3dXbzyyisiMDBQlCtXTgAQGo1GzJkzJ9+/U3HDxslM9evXTwAQv//+e7bPf/jhhwKA+OKLL4o4Wc62bt0qAOR4u3DhQravf/TokZg7d65o06aNKFmypLC0tBSlSpUS9evXFyNHjhTr16/PV67Q0FDRqlUr4ejoKGxtbUWdOnXEV199JVJSUp77uvXr14tOnToJV1dXYWVlJby8vMTAgQPFyZMn85WDqKiouY5kys96m1PjlN/3zc/rCloPiWRScw0xp22RQ4cOiYEDB4pKlSoJrVYrrK2tRYUKFcSrr74q9u7dm68cxZUiRCGdgEmq0r59e2zcuBEbNmxAu3btZMchIhViHSGigmANIbVh41RMubq64t69e7h79y5cXFxkxyEiFWIdIaKCYA0hteGoesXQ2bNnce/ePVSpUoWFiojyhXWEiAqCNYTUiI1TMZSfoT+JiJ7EOkJEBcEaQmrEU/WIiIiIiIhywCNOREREREREOWDjRERERERElANL2QGKgk6nw/Xr1+Hg4ABFUWTHISrWhBBITExE2bJlodGoY98NawiR6VBjDQFYR4hMSX7rSLFonK5fvw4vLy/ZMYjoCVeuXIGnp6fsGLnCGkJketRUQwDWESJTlNc6UiwaJwcHBwD6H8fR0VFyGqLiLSEhAV5eXob1Ug1YQ4hMhxprCMA6QmRK8ltHikXjlHlI3NHRkcWKyESo6VQV1hAi06OmGgKwjhCZorzWEfWcHExERERERCQJGyciIiIiIqIcsHEiIiIiIiLKARsnIiIiIiKiHLBxIiIiIiIiygEbJyIiIiIiohywcSIiIiIiIsoBGyciIiIiIqIcFIsJcImIiKjgrl4F1qwBTp8GtFogJQUoVUr/3K1bjx/7739zu0yVKkDz5oCnp7zvSET0LGyciKhgkpOBkyeB6GigQwegfHnZiYiKnatXgd27gbNnszYn/21YtFqgUiXg/Hn985nLuLjol7t3L/vmplQp4MABYNUq438XRQF++QUYPNj4n0VEZuLIEaBfP/32SFAQsGyZUT6GjRMR5U56OnDmDHDwILB9O7B/v34rLTHx8TLBwcDixfIyEpm4zAbnzh39/ec1KkDujuJs2QJs3izn+xiDEMDw4fr9MDzyRERZPHoEDB2q34vz8GH2y6xcabSPZ+NERFkJAVy+DMTEAP/8A+zZoz8v5/79nF+7bp2x0xFJcfWqfr/Bw4fAvn2Pj9bkpeE5fZqrSG5lZOj3y7BxIirG/voLGDcOuH5dv22SWxYWRovExomoOLt9W98gbd0K7NwJnDql3xWelwJFZOKePMpz755+h+V/T1d7XuNz+jSwfj1Xi6JkYaG/3omIioHr14EePfSn/Kem5v31NjZA69bA0qWAg0Ohx3sSGyei4iAxETh8WH9Oz7ZtwLFjQFwcoNMV7uc0aVK470f0H9ldy6PVAk2bAleu6Juc6tWBxo311+SsWGFep7EVBxoN8PPPPNpEZJZGjwYWLADi4/P+WgsLoGJFYM4coF27Qo+WG2yciMxJSgpw/DiwaZN+a/HIEf3WZWE2SBoNYG8PeHkBderom6XGjYEaNR7vrifKo/8eFcpugANzu5ZHzWrUAAID9TuH3d31j92+DVhb6x/7739zu0yVKoCfH5smItXbulV/LdLFi/pzb/PK2RkYNAj49tvCTlYgbJyI1CjzAoCNG/UXTURHF26DpNHoD3d7eQF16wK+vvpbtWqPh98ieob9+/VDVtvY6O8/b4CD6tWBa9eAL7/kqXCFpW1boFGjpxuWkyeznnLYsaO+QVmw4Onf/o039P///tv4pKQA/v48uExE//fwIdC7t36v1qNHeX+9tbW+YC1dqoo9JmyciEyZEPqtyr//BiIigL179VuhhbGFmdkclS8P1K8PtGihP9+palWgRIlcvcWTp009egR07swNKnP25Bw+zxoEYc0a/QY65d6TjU5ej9BkLpPbozVXr+rX1ypVHi/XrJl+FLuMDP2ZMD//zKHAiSgbM2fq93Ll51pojQYoU0b/+tdeM06+IsDGichU3LkDrF2rn3tgzx79NUgFaJAEAKFokGJlj3sO5XGtTGOc8WiFxNrNcM+1MmLvWmfd+38C0J7L/VDIly8/PafLZ58BAwYAixblOzZJklNTxBHhsurYEahZM++npNnY6I/YlCnzdANTFDw9n/68wYP1Q3/LyENEJujYMaBvX/1esPT0vL/e3h7o0gWYPx+wtc3y1NWrwJmt+kUOHMg6mXZhTKqt1Rp3Jy4bJyIj+++1G/euPkTdqxFocHghKt7YA9u0eGgAKPl4bwFABw0eogQuoTz2oim24CVEoTkuowJ0wgJIBXDn/7djADYV4pfLxm+/ASNH8siTqXne6XPFqSlq0AA4dCjr6WpPNkDPanxsbPSX8tnbF15zYUoNSnYNFRGZueRkJPQfAdvIlbB49CDLdsiztkme3J2boVgi1qUmFnf6DdfdGjw9mfaErE1NdLT+WlVjn5ZtzJ24bJyI/i+70boKsufD1jIN2rUr0ebkTLyCw7DFI2j+/1l5aZIEAAEFSbDFZXghCn5Yh07YhRdwA2Xz+G5FY9cuNk5F6b9/d//799FcT59r2xawtMx5qPAhQ4D27R+fxpbd6WpERGrw5NkBedlOaX4jFO3/HgOHxOvQ4PH10I7P+JwnS6oOCuJQEtMwBt9iXNaF7gL4q5C/ZCEw1k5cNk5kFvJbSApntC4dhuJHjMc38MQ1WCLD0MrktqXJLFAp0OIqymInWiAMgdiG1riHkvkNJs0LL8hOYF6edxpddLR5jjT3rAEOsruWJ7MRKlFCf73Ok2OkWFgAkyZlbZB4dIWIilLmEf/czBv3vB2zuTk7wBXXsBy90Qz7YYOscyJlt00i/vPnZNhgC15ED4QiFU75/comwRg7cdk4kUnI3DC8cUM/PkFSUvbDEue3kBQGJ9zEfAxFW2yFAx5C80S5yalBerIwpcMCcXDDdrTAYvTFZrTDQxh3wraiNGAAjzbl5MnTN4HHf8+f/HudecrDxo1PX0umFl276v8uPOt6n4MH9d/vSWPGAO+8k7fG5slGaN48YNgwffPE+YCIqCCuXgXOnNEPHLdvX/4an+3b9fPMG8MUjMObmAcX3Dec0QLk7jS7dGhwERUxHD9iKzoZJ6BkxtiJy8aJjOJZp73JbHxywwl3MQTzMAzzUQGXYI2sF0U+r0H6716bJNjhABphFkYiAoFIhY0xIpuMzp2BiRPZNOV0yqc5zEVUo8bjQZGya4qqVQMCAnIe3a18+acfnzlT3zgRERnD82q0i4t+R9ajR/qdL1OnFv488fnRDP/gVwxDZZyHFR7PiZSbBkkHIB6OWIAB+AA/GDOmSTHWTlw2TpQr2U1O+eRFgMDjx7Mbbc2UlMQtdMdyBCMEDRADBzyE8v8yk5cjR4B+j80NeOBHjMS3GI0MaI2SOb+enKQyv8McP28ZFxegZElOWJlpwQL99TRq9rymKHNEuML4x+jMmeyvS8qcoiw/f5+uXn18tAnQ/3f4cP2Icfz7SWSentw+KVkS8PZ+9mhtprSjNnvJWIFeaI/NsENyngdreARrRKMhArEcd1HOiDkLT2FMx2Csf6eyw8apGMvpgvInR0FR1x5ygXK4ig74G4EIQxNEww1xsPz/Xpq8XnekP3pkgwNoiMGYh/Oone9kXbsCFSsWvGHJXMbdXd+o/vLL4zlYxo3TP/7CCzz6U5SuXlVH0/Ss0+eM/Y/Nf1WtCijK082ThYX+Gqb8OHPm6b3DBWnEiKho5eVsFXVunzw2DLMwCZ+jNG7n6tT/LKPZQcF1eOBDfI6/8HqhZ8uumclpO+XgQWDTpsc1/VnbO2rf6crGyQzlZqAENRcbAFCggzfO4yVsRkesR2McQGnchPb/F0LmfdQ6/agxt+GKVQjCzuYfoXxL76eKRM98NDy5nZiyID76iKOEybZ7t+wEem3bAi+9pP/zk38fc3P6XFHy9NQ3/EOHPv6HtqDXJFWtqn+P/w4Okd9GjIgKLvM6IXt74MKFZzdFpn62Sn5VxEksRTDq4gSskWZ4PDcNkgDwEHZYhS4YgF8BPJ4TKfOMkvcK4QhNxYrAxYuAh0fB/p0oDiOWsnFSof+OzmKq1wsVlBVSUQVn0Brb0Aab0RAxKIMbsEEKFIg8D8Kd2SClwwL3HcrjSJVuOPPiUNx3r4bbcYqhweniB7ypshWeo4QVD886ja4omnNjyJx4NSpKf7+g+T099YNDDB/++AgsB4cgMq7sTuV/8tS4nKYLMB+PMBdvog+WwQH5mxPppkt1hAQswrWSjZ9qeN67LefsgLwoDtsibJxMzPOaInOcj8UWSaiOU2iBHXgR21EPR1AW12GL5Hw1R1lYW+u3Jv39gT59oNSrB8XCAtYASgFo+/8bUWFo3jz7U89yK/NIUXw8MG3a0++zZo1+T6C58fQEevYsvPfLbMbMfa8nUVF4XlNkDmev5FXmhNl1zi5H4Jb34Pww65xIOTVICqD/h8LVFRg9GsqECYZlLAGUAzDaONGpkLBxKkI5jbb155/m1RRlCnzxPtp5nYTnpV2oFLsbpW8fhfPDG7BKSzIMylAgtrb6LaT27fUn1TZurP9xiYpQ5qlnmUc7gJznIqpYUT/M7ZMb+Fu3Al9//fT729sXydcwC8VhrydRQT15Cl12gymYe1NUvz7Qpk321+dkcsRNrEQPtLTYB6uMVCjrAOTlrB6tFmjVCsrSpYCzc+GFJ2nYOBWSJ48UabVApUrA+fNAmTKAl5f+dJGICNkpC8eTF/xFRwObNgmUwi3UxAn0qxSFVtq9KBV3AiUSbsAyNQnKtkI6Rm9nB1SurK90AQGAry/g+Kw5r4mKXmEc7eB1OkRUUP9tim7ceLxdkpKi/7d7yxbzOoWuTh3g+PHH3+lZAxw861S3O299CPuFc2CZFP/0YA0ZeD4LC/38CrNm6d+czBYbpyc8a1LKnGZzNocjRc+6oNxwjm1JHXxcr8LX4STcz+3BpRX7kXb0FD7GDdgh+XGROV+wHDoAD1AC51EJu/ECqr7ZAe0mNX/8YxOZuIIe7eB1OkQEPN4mAfSnAnt6Zh38yXxGws1eboapfvJI0bFj+ucURX/UfuzYZ7zxjh3Aq4P1XWTG446o5DMWz3KaHaDfYfvaa8D33+v3clGxwsbp/xYsyDq6kzl4cg6f7EZTeeqC8rQ0/bAqJ08Ce/cCJw/qq/PNm0BSUpb3rlAYAW1t9RMuNGsGvPwyblR6AZ7Ny0MnHp8lbPEzcHECwG1GKk54nQ5R8XX1KvD55/odJk+qXVt/RMUcPKspyssw1VevAhUqPL3dJgQwYQIQ3OUhPD/oC2zYoJ/RNpcy3y4FVohGffRAKG5beOPiRdZiYuMEQL/yqbFpyrxI8b9N0XNHXElK0u9lOXFCf37hL4eBsf/qd1klJxsnqK2t/nzFxo31h7WaN9dvDVpZZVns1FZA95//B5yDhYorXqdDVPw8bxJtNTRN2c3dY2Oj/+c/cxOjsEb/fHLetiH4EVPwOUrjlv4MmAwANXL5RoqiH4f700+BIUPwz9bHZ+AYcFuE/o+NE549g71Mz2qKcjUfy/37wLlzwJ8n9c3RkSP6Nf72bf2xfCNJhhVS3bzg9GIDoFUrfYNUq5b+2qRc4LUdRERUXGXuxDVVz5vQtMimQzh9GggOBo4dQ+u0NMN4drkegdfOTr8BtWiRfqduNrgtQs/Dxgn6laSoPWu0rVxNUimEfuHdZ/W7oKKj9f89f17/eFrac15cCCwskOhYFlvv1cMuvIA9aI4X3/LBsHEuvLaDiIgoH2TvxH3W6XNS5ohLSwPefBMICQEePMh2kf82S0/+dDrFAhY1qgELF+oHksoDbovQ87Bxgn5lmDYN+OAD435O1676HSW5KkA6HXDtmv5I0cmT+uboxAn9tNtxcVkuaDSazMPXtWvrQ7/wAuDjA5QpAwdFQcOrgONZYFQhXoPBazuIiKg4qlq1YHPBPc+T7/vkGS15uabIaFatAt59V3/I7cnDPLmhKEh3csGFoHdx/82JT03vkF/cFqFnYeP0f2PH6gvLBx88Li7POiyd3egu1arp5zPr3fvp9545E+jRI5sVLy0NuHRJv2aeOAHExOibpEuXgLt3815ACsLdXT+aRNOmjxskb2/9rpZnMNY1GLy2g4iIipvMueByc811jRr6gd2Ap0fCvXNHf63Uk++hKEBoqOQG6fZt/WzXe/bk77IBrRZo0QJYtkzf8f2fJQBjnDjEbRHKDhunJ4wZA/Tpk/89DFevPn1ebAlNMvr4nIdH9FngjxPAoUPAqVPAlSv6a5GK+ri8k5O+y2vSRF9B69YFqlfnhLFULPz000+YPn06YmNjUa9ePcyaNQtNmzaVHYuICMDjIx1RUfoGqGRJ/aU4Bw7oB4Z77uBP/7d1KzB/ftbHdDr9/tEiaQSEACZNAn78MX/bORYW+qA//AB06WKUiET5xcbpP/K1hyE+Hjh3Dp5nz2K//3FcXnMEVXEanrgGJ10C0NYoUZ/Pzk5/3L9Bg8cNUu3agIODhDBE8oWGhuL999/H3Llz4evri++++w4dOnTA6dOnUaqQ5wlLzUiFtYV1ob4nERUPnp76AzNPCgjI/euLdHCD3buB11/X73HOzyUEDg5A//76OZEsuUlKpo9/S3MjczCGc+cen1Z35Ij+Ss5r17LMcdTw/7ciY2Wlnw68fn39fEj16ukbJE4YS5TFt99+i6FDh2LQoEEAgLlz5yIyMhK//vorxo8fn2XZlJQUpDxxKklCQkKuP2f+wfmYvns6dg7aCfcS7oUTnogol4wyuMHDh0C/fvo5kf4zr2OuWFnpt09CQ/XbLEQqxcYpkxD6c+2ebI6OHtX/+cYNow7jnSsaDVC+vP7ao8wjSHXq6B9Tcj0QJ1GxlJqaiujoaEyYMMHwmEajQdu2bREVFfXU8lOnTsWUKVPy/DlJaUn4audXOHfvHHos64GN/TfyyBMRFbkCDW4wdy4webJ+fse8nmanKEDp0sAnnwBvvJG31xKpABunTPfv65sQU1CmjL4p8vV93CBVrcrD2ET5FBcXh4yMDJQuXTrL46VLl8apU6eeWn7ChAl4//33DfcTEhLg5eWV4+fYWdkhPDgczeY3w/ZL2zFq7SjMDZgLhTs3iKiI5XjpwZkz+gu7jx7N3zQmdnb6C64WLcr1fI1Easct8UxFOYJdJldX/QSxTZroD2H7+OiHymEBIpJKq9VCm88BU2q518KS7kvQeUlnzDs4Dz6lffBW07cKOSERUS6lpQFvvQUsWQIkJub99RYW+p238+frR90lKsbYOBWFEiX0DVHjxvprkerU0V+H9MRwmkRkPG5ubrCwsMDNmzezPH7z5k14eHgU+uf5V/PH122/xgebPsC7695FTbeaeLnSy4X+OUREWYSFAe+8ox+5Nx9zIsHZGXj7bf2oeDxSTvQUjewAufXTTz+hYsWKsLGxga+vL/bt21e4H1AYp8FZWemPIL32GvDNN8D69frBIxIT9WOJzp0LjBihn4eATRNRkbG2tkajRo2wefNmw2M6nQ6bN2+Gn5+fUT5zTPMx6F+3PzJEBnou64lrCdeM8jlEVAzdvg289JJ+fHJFeXwLCtLPBZlT06TVAm3aPL6OSQj9a+7e1V/fxKaJKFuqOOJUJMMIp6bmfllF0U8O27Ch/hS7OnUeTxirUU0vSlSsvP/++xgwYAAaN26Mpk2b4rvvvsPDhw8No+wVNkVRMK/zPJy7dw7+Vf1R1qGsUT6HiIpOkc8FJwQwZQowaxZw717eB2vQaAAvL+Dbb4Fu3YyTkagYUUXjlJdhhPPN2Tn7x8uW1Z9el3kNUp06+glkOWEskar07t0bt2/fxieffILY2FjUr18f69ate2rAiMJkY2mDfwb8AysLK6N9BhEVjSLZiXvxIlClCkRGBvJ8zMfeHujbVz/xrBVrDpExKELkdfdF0UpNTYWdnR2WL1+OoKAgw+MDBgzA/fv3ERYW9tRrspuDxcvLC/Hx8XB0dHzmZ93s0xmrr22Gtn4jDHh1OhROGEtU6BISEuDk5JTj+mhKCivzw9SHWHVqFfrV7VeI6YiKF1k1xNfXF02aNMGPP/4IQH+6r5eXF0aNGpWrnbi5yp2cDGFn9/ymycpKP+Lun3/qr58mojzLbx0x+fPKnjeMcGxsbLavmTp1KpycnAy33AwjDAAHPh2BN9ulYJDbTszI2MGmiYgKzaP0R2i5sCX6r+qP3w79JjsOEeVB5lxwbdu2NTz2vLngAP1O3ISEhCy3HNnaAgAEgHQAyW7OwA8/PL4OSQj9pQUHDrBpIpLA5Bun/JgwYQLi4+MNtytXruTqdf7V/DGzw0wAwLhN47Dy5EpjxiSiYsTG0gYB1QIAAMMihmH3ld2SExFRbhXlTlzodBiwsj+sJgMeo3U40YcjchKZCpNvnPIzjLBWq4Wjo2OWW26NajoKI5uMhIBAv5X9cOD6gQLlJyLKNLn1ZHSr2Q2pGanoFtoNV+Jzt1OHiNQnvztxFUXBL51/QcvyLZGQkgD/xf649fCWkdMSUW6YfONU1MMIK4qC7zp+h45VOiI5PRmdl3Tmxg0RFQqNosHvQb+jXul6uPnwJgJDAvEw9aHsWESUg6Leiau11GJV71Wo4loFF+9fRGBIIJLTkgv0HYio4Ey+cQL0wwj/8ssv+O2333Dy5Em88cYbRh1G2FJjidAeoahTqg5iH8Ri4taJRvkcIip+SliXQFifMLjbuSMmNgYDwwZCJ/I4USURFSkZc8GVtCuJyL6RcLFxwZ6rezAicoRRPoeIck8VjVPv3r0xY8YMfPLJJ6hfvz4OHTpk9GGEHbWOiAiOwLCGwzDbf7bRPoeIip8KzhWwqvcqWGmssOPSDh7VJlKBot6JCwDVSlbDqt6rUM6hHEY0YuNEJJvJD0deGNQ4/DGRuVLj+miszKtPrUajMo3g5ZTLi8aJSGoN+fHHHw0T4NavXx8//PADfH19c/XaguR+lP4INpY2+YlMRNnI7/qoiglwTYEQAp9u+xRudm4Y2XSk7DhEZAaCagRluZ+uS4elhmWZyFS99dZbeOutt4r8c59smg7HHkZiaiJalG9R5DmIijtVnKpnCtb8uwaTt03G2+vexrqz62THISIzs+rkKtSdUxc3H9zMeWEiKpb2XduHF359AYEhgThz54zsOETFDhunXOpcrTNer/86dEKHXst64ejNo7IjEZGZSMtIw4dbPsTJuJPoGtoVKekpsiMRkQnyKeWDOqXq4G7yXfgv9sedpDuyIxEVK2yccklRFMwJmIPWFVsjMTURAUsCEPsg+0nviIjywsrCCmF9wuBs44yoq1EYETkCxeDyUyLKI1srW4T1CUMFpwo4c/cMui3VzwtHREWDjVMeWFtYY0WvFahWshoux19GYEggktKSZMciIjNQrWQ1hPYIhUbRYNGhRZi5Z6bsSERkgkrbl0ZE3wg4ah2x/dJ2DF0zlDtaiIoIG6c8crV1RWTfSLjaumLftX0YsHoACxYRFYr2ldvj2/bfAgDGbhyLv8/8LTkREZmiOqXqYGmPpbBQLPD74d/x5Y4vZUciKhbYOOVDFdcqWN17Neyt7RFQNQCKosiORERm4m3ftzG4wWDohA59VvTB+XvnZUciIhPUoUoHzOo0CwCw88pOZOgyJCciMn8c9zafWlZoiYvvXERJu5KyoxCRGVEUBbP9Z+P0ndNoUrYJyjuVlx2JiEzUG03eQGn70uhSvQssNBay4xCZPTZOBfBk03TzwU1cvH8Rvp65mwiPiOhZrC2ssan/JmgttbKjEJGJ61azm+HPQggkpCTAycZJYiIi88VT9QrBhXsX0GxBM3T6qxNOx52WHYeIzMCTTVNqRiqWHl8qMQ0Rmbq0jDS8EfkGmv/aHPcf3Zcdh8gssXEqBB72HvCw98C9R/fgv9gfcUlxsiMRkZlI16Wjw58d0Ht5b/wS/YvsOERkou4k38Gaf9fgxO0T6LWsF9Iy0mRHIjI7bJwKga2VLVb3Xo2KzhVx7t45dAvtxgksiahQWGos8bL3ywCAN9e+ie2XtktORESmyMPeAxHBEbCzssPG8xsx6u9RHPWXqJCxcSokpe1LIyJYP6/Cjss7OK8CERWaj1p+hN61eyNdl47uS7vj4v2LsiMRkQlqUKYBlnRfAgUKfo7+mfPBERUyNk6FqHap2ljWcxksFAv8ceQPfLHjC9mRiMgMKIqCXwN/RaMyjRCXFIcuS7ogMSVRdiwiMkFdqnfBN+2/AQCM2TAGYafCJCciMh9snApZ+8rt8dMrPwEA/jr6F5LSkiQnIiJzYGdlh9V9VsPD3gNHbx1F/1X9oRM62bGIyAS92+xdjGg0AgIC/Vf1x93ku7IjEZkFDkduBMMbD4eiKOhZqyfsrOxkxyEiM+Hp6InVvVfjxUUvYuvFrfj3zr+o4VZDdiwiMjGKomDWK7MQlxyHgfUGwtXWVXYkIrPAxslIhjUaluV+WkYarCysJKUhInPh6+mLJd2XoKZ7TTZNRPRMlhpLLOu5THYMIrPCU/WKwE/7fkLjXxoj/lG87ChEZAa61uyapWniKXtElJNzd8/hnb/fQYYuQ3YUItVi42Rk8Y/i8eXOL3Hk5hH0XNaT8yoQUaHaemEr6s+tj+uJ12VHISITlZKegja/tcEP+37AmA1jZMchUi02TkbmZOOENcFrOK8CERU6ndDhvfXv4eito+ga2hXJacmyIxGRCdJaag0j7X239zvM3j9bciIidWLjVAQalmmIxd0WG+ZV+G7Pd7IjEZEZ0CgarOi1Aq62rth3bR/njyOiZ+pZuye+fOlLAMCov0dh3dl1khMRqQ8bpyISWCMQM9rPAACM3jAa4afDJSciInNQ2bUylvdcDkuNJf46+he+3vW17EhEZKLGtxiPgfUHQid06LWsF47ePCo7EpGqsHEqQu81ew/DGw2HgEDwimBcvH9RdiQiMgNtvNvgh44/AAA+3Pwh1pxeIzkREZkiRVHwc8DPaF2xNRJTExGwJACxD2JlxyJSDTZORUhRFMzqNAsdKnfAlNZTUMGpguxIRGQm3mjyBt5o/AYEBPqu7ItTcadkRyIiE2RtYY0VvVagWslq8LD3gAJFdiQi1eA8TkXMysIKa19dC43CnpWICtf3Hb/HqbhTKOdYDhWdK8qOQ0QmytXWFZv6b4KbnRtsrWxlxyFSDW69S/Bk05SQkoAvd3zJeRWIqMCsLKwQ0TcCvwf9DhtLG9lxiMiEeTl5ZWmaYm7ESExDpA5snCTSCR3a/t4WH235CB9s/EB2HCIyA3ZWdlAU/ak3OqHD6lOrOdIeET3XJ1s/QcN5DfFrzK+yoxCZNDZOEmkUDUb7jQYAfLvnW8w9MFdyIiIyF0II9FjaA11Du3LOFiLKleERw7H1wlbZMYhMFhsnyXrX6Y3P23wOAHhr7VvYcG6D5EREZA4URUEzz2YAgHfWvYPN5zdLTkREpmpK6ykIrhOMdF06ui3txsFliJ6BjZMJ+LDlh3it3mvIEBnouawnjt86LjsSEZmBsc3Hon/d/obacvbuWdmRiMgEKYqCXwN/hZ+nH+4/ug//xf6IS4qTHYvI5LBxMgGKomBewDy0LN8SCSkJ8F/sj5sPbsqORUQqpygK5nWeB99yvrj36B66LOmC+EfxsmMRkQmysbRBWJ8weDt74/y98wgKCUJKeorsWEQmhY2TidBaarGq9ypUca2CdF06bifdlh2JiMyAjaUNVvVehXIO5XAy7iSCVwRzFE8iypZ7CXdE9I2Ak9YJu67sQuSZSNmRiEwK53EyISXtSmJt37Wws7JDOcdysuMQkZko41AGYX3C0HJhS2y5sAWHYg+hUdlGsmMRkQmq5V4Ly3stx43EG+hWs5vsOEQmhY2TialasmqW+9cSrrGJIqICa1S2ERZ3X4yyDmXZNBHRc7Wt1DbLfSGEYZoDouKMp+qZsNBjoagyqwp+P/y77ChEZAaCagShabmmhvuc34mIchL7IBYvLnoRuy7vkh2FSDo2Tibs8M3DeJT+CEPCh2D7pe2y4xCRGYm+Ho0mvzTBlfgrsqMQkQn7bNtn2HF5B4JCg3Du7jnZcYikYuNkwj5/6XP0qNUDabo0dA3tyqGEiahQCCHw1t9vIfpGNAJDAvEw9aHsSERkoqa3n47GZRsjLikO/ov9cS/5nuxIRNKwcTJhGkWD34N+R9NyTXE3+S78F/vjbvJd2bGISOUURcGS7kvgZueGmNgYDAobxNP2iChbdlZ2CO8TDk9HT5y+cxrdl3ZHakaq7FhEUrBxMnG2VrYI6xOG8k7l8e+df1mwiKhQVHSuiJW9VsJKY4VlJ5bhs+2fyY5ERCaqjEMZRARHwN7aHlsvbsWbkW9yZwsVS2ycVMDD3gMRwRFwsHbAPxf/wfyD82VHIiIz0LJCS8z2nw0AmPTPJKw4sUJyIiIyVfU86iGkewg0igYLYhbg+73fy45EVOTYOKmET2kfLO25FONeGIcRjUfIjkNEZmJIwyF4x/cdAMBrq1/DkZtHJCciIlPlX80f33X4DjXcaqBL9S6y4xAVOc7jpCIdq3RExyodZccgIjMzo/0MnLh9AlYWVqjgVEF2HCIyYaN8R2Fww8Gws7KTHYWoyPGIk0o9Sn+EwWGDse/aPtlRiEjlLDWWWNl7JcL7hMPJxkl2HCIycU82TX+f+RuX7l+SmIao6LBxUqlPt32KXw/9ii5LurBgEVGB2Vvbw0JjAUA/XPn6s+t58TcRPdeSo0sQsCQAAUsCkJCSIDsOkdGxcVKpCS0moG7purj58CYLFhEVGiEEhkcMR8e/OuK7Pd/JjkNEJqxF+RYoVaIUjt06ht7LeyNdly47EpFRsXFSKQetAyKCI+Bh78GCRWbriy++QPPmzWFnZwdnZ+dsl7l8+TL8/f1hZ2eHUqVKYezYsUhPz7ou/PPPP2jYsCG0Wi2qVKmCRYsWGT+8SimKglrutQAAYzaOwfqz6yUnIiJT5eXkhTXBa2BraYt1Z9fhnb/f4ZFqMmtsnFSMBYvMXWpqKnr27Ik33ngj2+czMjLg7++P1NRU7N69G7/99hsWLVqETz75xLDMhQsX4O/vjzZt2uDQoUN49913MWTIEKxfz4bgWd7xfQev138dOqFD7+W9cTrutOxIRGSiGpdtjL+6/QUFCmYfmI1Z+2bJjkRkNGycVI4Fi8zZlClT8N5778HHxyfb5zds2IATJ07gzz//RP369dGpUyd89tln+Omnn5Caqp8oeu7cufD29sY333yDmjVr4q233kKPHj0wc+bMovwqqqIoCmb7z0aL8i0QnxKPzks6417yPdmxiMhEda3ZFV+3/RoA8N769xDxb4TkRETGwcbJDGQWLBcbF/iUyn4Dk8gcRUVFwcfHB6VLlzY81qFDByQkJOD48eOGZdq2bZvldR06dEBUVNQz3zclJQUJCQlZbsWN1lKLFb1WoLxTeZy5ewa9lvfi6cBE9Exjmo/B0IZDoRM6bL2wVXYcIqNg42QmxjQfg+NvHkcb7zayoxAVmdjY2CxNEwDD/djY2Ocuk5CQgOTk5Gzfd+rUqXBycjLcvLy8jJDe9JUqUQrhfcJRwqoEtl7Yil2Xd8mOREQmSlEU/PTKTwjtEYoZ7WfIjkNkFGyczISiKCjjUMZw/+Ttk7ieeF1iIqLsTZo0CQDg5OQERVGyvZ06dUpqxgkTJiA+Pt5wu3LlitQ8MtXzqIe/uv2Fv1/9Gy9WfFF2HCIyYVYWVuhVuxcURQEApOvSkZyW/Q4qIjUyWuPE0bDk2X5pO/wW+KHLki54mPpQdhyiLEaNGgUA2L9/P06ePJntrVKlSrl6Lw8PD9y8eTPLY5n3PTw8nruMo6MjbG1ts31frVYLR0fHLLfiLLBGINpVbme4z0FoSE24PSJH/KN4+C/2R9+VfZGhy5Adh6hQGK1x4mhY8ng6esLKwgrRN6LRf1V/6IROdiQiAzc3NwBAtWrVUKNGjWxv1tbWuXovPz8/HD16FLdu3TI8tnHjRjg6OqJWrVqGZTZv3pzldRs3boSfn18hfaPi5d87/6LVola4eP+i7ChEucLtETlO3zmNbRe3YfWp1Ri/abzsOESFQxjZwoULhZOT01OPr127Vmg0GhEbG2t4bM6cOcLR0VGkpKQIIYT44IMPRO3atbO8rnfv3qJDhw55yhAfHy8AiPj4+Lx/AZXaeWmnsP7MWmAyxAcbPpAdh8ggL+vjpUuXRExMjJgyZYqwt7cXMTExIiYmRiQmJgohhEhPTxd16tQR7du3F4cOHRLr1q0T7u7uYsKECYb3OH/+vLCzsxNjx44VJ0+eFD/99JOwsLAQ69atM0pmc9f297YCkyF8ZvuIxJRE2XGoGMrv+ih7e6Q41pHFRxYLTIbAZIifD/wsOw6RQX7XR2nXOBlrNCyAI2IBwAvlX8DCwIUAgGm7p2H+wfmSExHl3SeffIIGDRpg0qRJePDgARo0aIAGDRrgwIEDAAALCwtERETAwsICfn5+6NevH1577TV8+umnhvfw9vZGZGQkNm7ciHr16uGbb77B/Pnz0aFDB1lfS9UWBi6Eh70Hjt46in4r+/GINqkeR+c0nmCfYExpPQUA8Gbkm9h4bqPkREQFI61xMtZoWABHxMrU16cvJr84GQDwRuQb2Hx+8/NfQGRiFi1aBCHEU7fWrVsblqlQoQLWrl2LpKQk3L59GzNmzIClpWWW92ndujViYmKQkpKCc+fOYeDAgUX7RcyIp6MnVvVeBa2FFmGnw/DJ1k9yfhGRCePonMY1sdVE9KvbDxkiAz2W9cDxW8dlRyLKtzw1TuPHj3/mKFimMhoWwBGxnvTJi5+gr09fpOvS8eP+H2XHISIz0MyzGX7p/AsA4IsdXyDkWIjkRFQcPW9kTlPYHuG2iJ6iKJjfeT5alm+JhJQE9FnRh0eqSbUsc17ksdGjR+e4pzYvo2Ht27cvy2OFMRoWoB8RS6vV5iqHuVMUBQu6LIBPKR+87/e+7DhEZCb61+uPo7eOYvru6RgUNghVXauiUdlGsmNRMbJ//37Y29s/83nZ2yPcFnlMa6nFqt6r0HNZT8zsMBMahbPhkDrlqXFyd3eHu7t7oXywn58fvvjiC9y6dQulSpUCkP1oWGvXrs3yOo6GlXc2ljYY3yLriDYZugxYaCwkJSIiczD15ak4cfsE7j26B09HT9lxqJipVq1aoUwVwO2RolHSriS2DNgiOwZRgRit5b98+TIOHTqEy5cvIyMjA4cOHcKhQ4fw4MEDAED79u1Rq1Yt9O/fH4cPH8b69evx8ccfY+TIkYY9NCNGjMD58+fxwQcf4NSpU5g9ezaWLl2K9957z1ixzV6GLgPvrXsPr61+jXOxEFGBWGgssKT7Emx5bQtK25fO+QVEEnB7xDTtvrIb03dNlx2DKG8KfXy//xswYIAA8NRt69athmUuXrwoOnXqJGxtbYWbm5sYPXq0SEtLy/I+W7duFfXr1xfW1taiUqVKYuHChXnOUhyHAH2W6OvRwvJTS4HJEJO3TpYdh4ohNa6Paswsy/aL24VOp5Mdg8xYXtdHU9keYR157MK9C0L7mVZgMsRvh36THYeKofyuj4oQ5n/YISEhAU5OToiPjy+Uw/pq90v0LxgWMQwA8GfXP/Fq3VclJ6LiRI3roxozy/DR5o/w5c4v8dXLX2Fci3Gy45CZUuv6qNbcxvLh5g8xdedUWGmssOm1TWhVoZXsSFSM5Hd95NV5xdDQRkMxtvlYAMDr4a9j1+VdkhMRkTko51gOADBh8wSsOb1GchoiMmWfv/Q5etTqgTRdGrqGdsWZO2dkRyLKERunYuqrtl8hqEYQUjNSERQahHN3z8mOREQq92aTNzGi0QgICPRd2RfHbh2THYmITJRG0eD3oN/RtFxT3E2+C//F/ribfFd2LKLnYuNUTGkUDf7s+icalWmEuKQ4dAnpgrSMNNmxiEjlfuj0A1pXbI0HqQ/QZUkXxCXFyY5ERCbK1soWYX3CUN6pPM7cPYNuod2QmpEqOxbRM7FxKsZKWJdAeHA4qpesjs/bfA4rCyvZkYhI5awsrLC853JUcqmEC/cvoOeyntwpQ0TP5GHvgci+kXCwdoB7CXdk6DJkRyJ6JjZOxVxZh7I49uYxdK3ZVXYUIjITJe1KIrxPOBysHfDPxX+w7uw62ZGIyITVKVUH+4buQ2iPUNhaZT+hMJEpYONEsNQ8ngf5cvxl/HboN4lpiMgc1C5VG4u7L0Zoj1B0rt5ZdhwiMnE13GpAo+g3S4UQOHrzqORERE+zzHkRKi5uPriJpr80xa2Ht+CgdUC3mt1kRyIiFQuoFiA7AhGpTEp6CgaFDcLKkyuxdcBW+Hn5yY5EZMAjTmRQqkQp9KjVAwIC/Vb2w4HrB2RHIiIzcS3hGjr+2RFn756VHYWITJilxhIPUh8gJSMFgSGBuHDvguxIRAZsnMhAURR81/E7dKzSEcnpyei8pDOuxF+RHYuIzMBbf7+F9efWo8uSLoh/FC87DhGZKAuNBRZ3X4z6HvVxO+k2ApYEsGaQyWDjRFlYaiwR2iMUdUrVQeyDWAQsCUBiSqLsWESkcrNfmY2yDmVxMu4k+q7sy5GziOiZ7K3tsSZ4Dco6lMWJ2yc4OieZDDZO9BRHrSMigiNQukRpHLl5BMErgrmRQ0QFUsahDML6hMHG0gZrz6zFhM0TZEciIhPm6eiJNcFrYGdlh43nN2LU36MghJAdi4o5Nk6UrQrOFRAeHA4bSxtcS7yGe4/uyY5ERCrXuGxjLAxcCACYvns6fj/8u+RERGTKGpZpiCXdl0CBgl9jfsXJuJOyI1Exx1H16JmalmuK9f3Wo2GZhrC3tpcdh4jMQJ86fXDs1jF8seMLDF0zFNVKVkMzz2ayYxGRiepSvQtm+89GLfdaqOVeS3YcKubYONFztarQKsv92w9vw72Eu6Q0RGQOPm3zKY7fPo6zd8+idInSsuMQkYkb0XhElvtCCCiKIikNFWc8VY9yRQiBqTumosqsKpyUjogKRKNo8EfXP7D79d3wdvGWHYeIVOTYrWNosbAFriZclR2FiiE2TpQr6bp0bDi/AQkpCQhYEoDYB7GyIxGRitlb28NB62C4f+D6AV74TUTPJYTA8Ijh2H1lNwIWB+BB6gPZkaiYYeNEuWJlYYUVvVagWslquBx/GYEhgUhKS5Idi4jMwLdR36LpL03xxY4vZEchIhOmKAr+6vYXSpUohcM3D3PUXypybJwo11xtXRHZNxKutq7Yd20fBqweAJ3QyY5FRCrnqHWEgMDErROx8uRK2XGIyIRVdK6I8D76UX8j/o3A6A2jZUeiYoSNE+VJFdcqWNV7Faw0Vlh+Yjk+3vKx7EhEpHJDGg7B203fBgD0X9Ufh2MPS05ERKbM19MXvwfppzP4fu/3+GnfT5ITUXHBxonyrFWFVpjfZT4AYOrOqdh/bb/kRESkdt90+AbtKrVDUloSuoR0wa2Ht2RHIiIT1rN2T3z50pcAgLfXvY3N5zdLTkTFAYcjp3x5rd5ruHDvAso6lEWTck1kxyEilbPUWCK0RyiaLWiGf+/8i+5Lu2NT/03QWmplRyMiEzW+xXj8e/dfXLp/CQ3LNJQdh4oBNk6Ub5NaT5IdgYjMiIutC8L7hMN3vi92Xt6J5SeW49W6r8qORUQmSlEU/BzwMwDA2sJachoqDniqHhWKuKQ4DFg9AHeS7siOQkQqVt2tOkJ7hGL2K7PZNBFRjqwtrLM0TUuOLuGov2Q0POJEhSJ4RTA2nd+EC/cuYGP/jTy9hojyrUOVDrIjEJEKfbzlY3yx4wv0qNUDoT1CoVF4fIAKF/9GUaH4rsN3cNQ6YsflHRgWMYwTWRJRobiXfA89lvbA6bjTsqMQkYnrULmDYdTfjzZ/JDsOmSE2TlQoapeqjWU9l8FCscDvh3/Hlzu+lB2JiMzAO+vewYqTK9B5SWfcS74nOw4RmbCWFVpiQZcFAICvdn2FX2N+lZyIzA0bJyo07Su3x0+v6OdS+Hjrxwg9Fio5ERGp3fR20+Hl6IUzd8+g9/LeSNely45ERCasf73+mNhqIgBgeMRwbL2wVXIiMidsnKhQDW88HO83ex8AMGD1AERdiZKciIjUrLR9aYQHh8POyg4bz2/EmA1jZEciIhM3pfUUBNcJRrouHd2WduOpvlRo2DhRoZvWbhq6VO8CT0dPuNq6yo5DRCpX36M+fg/6HQDw/d7vseDgAsmJiMiUKYqCXwN/hZ+nH+IfxWPXlV2yI5GZYONEhc5CY4G/uv2FPUP2oLpbddlxiMgMdK/VHVNaTwEAvBH5BnZe3ik5ERGZMhtLG4T1CcOa4DV4vcHrsuOQmWDjREZhb20PNzs3w/391/YjLSNNYiIiUruJrSaiZ62eKOdYDk5aJ9lxiMjEuZdwh381f8P9h6kPOeovFQgbJzK6hTEL4bfAD6P+HsWCRUT5pigKFgUtwr4h++BT2kd2HCJSkYv3L8J3vi8+3fap7CikYmycyOhcbV2hEzr8HP0zvtvznew4RKRidlZ2cC/hbrh/7NYx6IROYiIiUoNtF7fh+O3jmLxtMv468pfsOKRSbJzI6AJrBGJG+xkAgNEbRiP8dLjkRERkDn479Bsa/twQk7ZOkh2FiEzcgPoDMLb5WADA6+GvY9dlDhhBecfGiYrEe83ew/BGwyEgELwiGAdvHJQdiYhUTlEUpOnS8PmOzzlvHBHl6Ku2XyGoRhBSM1IRFBqEc3fPyY5EKsPGiYqEoiiY1WkW2lVqh6S0JHRe0hnXEq7JjkVEKvZavdcwxk8/r9PAsIE4cP2A5EREZMo0igZ/dv0Tjco0QlxSHAKWBOBe8j3ZsUhF2DhRkbGysMLSnktRy70Wridex68xv8qOREQq91Xbr/BK1VfwKP0RgkKCcCPxhuxIRGTCSliXQHhwODwdPXEq7hTeXve27EikImycqEg52zgjIjgCM9rNwMetPpYdh4hUzkJjgcXdFqOmW01cS7yGoNAgPEp/JDsWEZmwsg5lEREcgdYVW+Prtl/LjkMqwsaJipy3izdGNx8NRVEAgEOUE1GBONk4ITw4HC42Lth3bR+PZhNRjup51MOW17agrENZ2VFIRdg4kVQPUh8gKDQIPx/4WXYUIlKxKq5VsKznMnza+lO80fgN2XGISAUyd+ACQOixUKw8uVJiGlIDS9kBqHhbfHQxwk+HI/LfSFRyqYR2ldvJjkREKvVypZfxcqWXZccgIpVZf3Y9+qzoA1tLW2wbuA1NyjWRHYlMFI84kVRDGw5F/7r9kSEy0GNZD5y4fUJ2JCIyA0lpSRgUNgjHbx2XHYWITNzLlV5GpyqdkJyejC4hXXA5/rLsSGSi2DiRVIqi4JfOv6Bl+ZZISEmA/2J/3Hp4S3YsIlK5sRvGYtGhRegS0gV3ku7IjkNEJsxSY4nQHqHwKeWD2AexCFgcgISUBNmxyASxcSLptJZarOq9ClVcq+Di/YsIDAlEclqy7FhEpGJT2kyBt7M3zt87jx7LeiAtI012JCIyYQ5aB0T0jYCHvQeO3jqKPsv7IF2XLjsWmRg2TmQSStqVRERwBFxsXLDn6h68ufZN2ZGISMXc7NwQHhwOe2t7/HPxH7yz7h3ZkYjIxJV3Ko81wWtga2mLv8/+jXfXvcuRfykLNk5kMqq7VcfK3ivh5eiFNxuzcSKigqlTqg4Wd1sMBQrmHJiDOfvnyI5ERCaucdnG+KvbX1CgwMHaQXYcMjFsnMiktK7YGmdGneGINkRUKDpX74wvX/4SADDq71HYemGr5EREZOq61uyKI28cwdS2U7MMWU7ExolMjtZSa/jzgesHsPPyTolpSJaLFy9i8ODB8Pb2hq2tLSpXroxJkyYhNTU1y3JHjhxBy5YtYWNjAy8vL0ybNu2p91q2bBlq1KgBGxsb+Pj4YO3atUX1NcgEjHthHF71eRUl7UrC2sJadhwiUoE6peoY/vwo/RHO3T0nMQ2ZCs7jRCYr6koUXv79Zdha2WLvkL2o4lpFdiQqQqdOnYJOp8PPP/+MKlWq4NixYxg6dCgePnyIGTNmAAASEhLQvn17tG3bFnPnzsXRo0fx+uuvw9nZGcOGDQMA7N69G8HBwZg6dSoCAgKwePFiBAUF4eDBg6hTp87zIpCZyBy9My4pDl5OXrLjEJGKxCXFISgkCJfiL2HvkL0o61BWdiSSSBHF4Kq3hIQEODk5IT4+Ho6OjrLjUC4lpSWh9aLW2H99P6qVrIaowVFwtXWVHYsKqCDr4/Tp0zFnzhycP38eADBnzhx89NFHiI2NhbW1/kjC+PHjsXr1apw6dQoA0Lt3bzx8+BARERGG92nWrBnq16+PuXPnGj0zmaazd8/C29kbFhoL2VEoj9S6Pqo1d3F3/9F9+C3ww6m4U2hUphG2DdyGEtYlZMeiAsrv+shT9chk2VnZITw4HOWdyuPfO/+i+9LuSM1IzfmFZLbi4+Ph6vq4eY6KikKrVq0MTRMAdOjQAadPn8a9e/cMy7Rt2zbL+3To0AFRUVHP/JyUlBQkJCRkuZH5CDsVhvpz6+PDzR/KjkJEJs7ZxhmRfSPhZueG6BvR6LeqH3RCJzsWSWK0xonXJ1Bh8LD3QERwBBysHfDPxX8wImIEhwYtps6ePYtZs2Zh+PDhhsdiY2NRunTpLMtl3o+NjX3uMpnPZ2fq1KlwcnIy3Ly8eHqXOUlKS8LDtIeYtnsa/jj8h+w4ZETcFqHCUMmlEsL6hEFrocXqU6sxbuM42ZFIEqM1Tk9en3D8+HHMnDkTc+fOxYcfPt7Dl3l9QoUKFRAdHY3p06dj8uTJmDdvnmGZzOsTBg8ejJiYGAQFBSEoKAjHjh0zVnQyMT6lfRDaIxQaRYOFhxbi611fy45EBTBp0iQAgJOTExRFyfaWeZpdpmvXrqFjx47o2bMnhg4davSMEyZMQHx8vOF25coVo38mFZ1gn2B82EL/b9HQNUOx9+peyYnIWLgtQoWluVdzLAxcCACYETUD86Ln5fAKMkuiCE2bNk14e3sb7s+ePVu4uLiIlJQUw2Pjxo0T1atXN9zv1auX8Pf3z/I+vr6+Yvjw4bn+3Pj4eAFAxMfHFyA9yfbj3h8FJkN0WdJFZOgyZMehfDp37pwAIPbv3y9OnjyZ7e3JmnDt2jVRtWpV0b9/f5GRkfX/e//+/UVgYGCWx7Zs2SIAiLt37wohhPDy8hIzZ87Msswnn3wi6tatm+vMrCHmJ0OXIQKXBApMhvCY4SGuxF+RHYlyqaDrI7dFqCCm/DNFYDJEqemlRMKjBNlxKJ/yuz4W6TVOvD6BCmJk05FY2WslVvZaCY3Cy/PUys3NDQBQrVo11KhRI9tbZk24du0aWrdujUaNGmHhwoXQaLL+f/fz88P27duRlpZmeGzjxo2oXr06XFxcDMts3rw5y+s2btwIPz8/Y35NMnEaRYM/uv4Bn1I+iH0Qi8CQQCSlJcmORUWA2yJUEBNbTcT4F8Zjx6AdcNBygtzipsi2Pnl9AhWGrjW7GkbBEkLg/qP7cgOR0WQ2TeXLl8eMGTNw+/ZtxMbGZln3+/btC2trawwePBjHjx9HaGgovv/+e7z//vuGZd555x2sW7cO33zzDU6dOoXJkyfjwIEDeOutt2R8LTIhDloHhAeHw83ODQdvHMQPe3+QHYmMjNsiVFCKomBq26moVrKa7CgkQZ4bp/Hjxz/zugRen0BFJTUjFYPDB6PlwpZISOFePHO0ceNGnD17Fps3b4anpyfKlCljuGVycnLChg0bcOHCBTRq1AijR4/GJ598YpjDCQCaN2+OxYsXY968eahXrx6WL1+O1atXcw4nAgBUdK6IFb1W4F3fdzGm+RjZcSgPnnedJLdFqKhsOLcBnf7qhOS0ZNlRqAjkeQLc0aNHY+DAgc9dplKlSoY/X79+HW3atEHz5s2zXGgJAB4eHrh582aWxzLve3h4PHeZzOezo9VqodVqc/wupF5xSXFYd3Ydbjy4gd7Le2NN8BpYajifszkZOHBgjrUGAOrWrYsdO3Y8d5mePXuiZ8+ehZSMzE2rCq3QqkIr2TEoj/bv3w97e/tnPs9tETK2B6kP0G9lP9xOuo1BYYOwuPtiXkpg5vL8f9fd3f2Z1yXw+gQqKmUdyiI8OBy2lrZYd3Yd3vn7HQ5TTkQFlpaRhnfXvYvDsYdlR6EcPO86SW6LUFGwt7ZHaI9QWGosEXo8FJP/mSw7EhmZ0dpiXp9Axta4bGP81e0vKFAw+8BszNo3S3YkIlK5Sf9Mwvd7v0eXkC649fCW7DhUQNwWIWNr490G8wL0RzE/2/4Zfj/8u+REZFRGGeNPCLFw4UIBINvbkw4fPixatGghtFqtKFeunPjqq6+eeq+lS5eKatWqCWtra1G7dm0RGRmZpywcAtS8Tds5TWAyhGaKRkScjpAdh3KgxvVRjZkpf+4m3RVVf6gqMBmixa8tREp6Ss4voiKVl/WR2yJUVMZvHC8wGcLqUyux7eI22XEoB/ldHxUhzP/8poSEBDg5OSE+Ph6Ojo6y41AhE0Jg2JphmB8zH842zrj4zkU42TjJjkXPoMb1UY2ZKf9OxZ1Cs/nNEJ8Sj8ENBuOXzr9AURTZsej/1Lo+qjU35Y5O6NB7eW8sP7EcrrauiB4WjYrOFWXHomfI7/rIK9hI9RRFwWz/2ehWsxtCe4SyaSKiAqnhVgMhPUKgUTRYELOAw5QTUY40iga/B/2OpuWaIqh6EMo6lJUdiYyAw5CRWbCysMKKXitkxyAiM9GxSkdMbzcdozeMxvsb3kdN95poX7m97FhEZMJsrWyxqf8m2Fvb8yi1meIRJzJL/975F++tew86oZMdhYhU6r1m72Fg/YEoYVUC6bp02XGISAUctA6GpilDl4HFRxdz1F8zwiNOZHaS0pLQelFr3HhwA9YW1vi63deyIxGRCimKgrn+czGhxQRUK1lNdhwiUhEhBLov7Y6w02G4eP8iPmz5oexIVAh4xInMjp2VHWa0nwEAmLZ7GuYfnC85ERGpldZSm6VpuppwlUefiChHiqKgQ+UOAICPtnyEpceXSk5EhYGNE5mlvj59MfnFyQCANyLfwObzm5//AiKiHGy7uA3159bH2A1jZUchIhV4o8kbeNf3XQDAa6tew56re+QGogJj40Rm65MXP0Ffn75I16Wj+9LuOHn7pOxIRKRicUlxuJN8B9/t/Q4LDi6QHYeIVGBG+xnoXK0zUjJSEBgSiIv3L8qORAXAxonMlqIoWNBlAZp7NUd8SjwClgTg9sPbsmMRkUp1r9U9y5HsnZd3yg1ERCbPQmOBxd0Xo75Hfdx6eAv+i/0R/yhedizKJzZOZNZsLG2wuvdqeDt7o4x9GQ4PSkQFMvHFiehRqwfSdGnoFtoNl+5fkh2JiEycvbU91gSvQVmHsrhw7wIO3zwsOxLlE0fVI7PnXsIdWwdshYe9B7SWWtlxiEjFNIoGiwIX4ezdszgUewhdQrpg1+u7YG9tLzsaEZkwT0dPRARHQCd0aFS2kew4lE884kTFQgXnClmapkOxh+SFISJVK2FdAmF9wlCqRCkcuXkEX+74UnYkIlKBBmUaZGmaktKSJKah/GDjRMWKEALjNo5Dg58bYPHRxbLjEJFKlXcqj1W9V2FAvQGY2Gqi7DhEpDL7ru1DlR+qIOxUmOwolAdsnKhYURQFAvoZvAeFDcKuy7skJyIitWru1RyLghbB1spWdhQiUpnFRxfjxoMb6LuyLw7eOCg7DuUSGycqdr5q+xWCagQhNSMVQaFBOHf3nOxIRKRyOqHDlH+mIPp6tOwoRKQCM9rPQPvK7ZGUloTOSzrjasJV2ZEoF9g4UbGjUTT4s+ufaFSmEeKS4hCwJAD3ku/JjkVEKjZ913RM3jYZgSGBuJF4Q3YcIjJxlhpLLO2xFLXda+N64nUELA7Ag9QHsmNRDtg4UbFUwroEwoPD4enoiVNxp9BjWQ+kZaTJjkVEKjWi8QjUcKuBa4nX0DW0Kx6lP5IdiYhMnJONEyL6RqBUiVI4fPMwglcEI0OXITsWPQcbJyq2yjqUxZrgNShhVQJbLmzBhnMbZEciIpVysnFCeJ9wuNi4YO+1vRi2ZhiEELJjEZGJq+hcEWF9wmBjaYOIfyMwc89M2ZHoOdg4UbFW36M+QnqEIKR7CPyr+cuOQ0QqVrVkVSzruQwWigX+OPIHZuyeITsSEalAM89m+C3oNwTVCMKIxiNkx6HnYONExV5AtQD0rtPbcJ97iYkov16u9DK+6/gdAGDcpnGI/DdSbiAiUoVetXthZa+VnEzbxLFxInrCtYRraLWoFQ5cPyA7ChGp1MgmIzGs4TBYWVghPiVedhwiUglFUQDod+B+vfNrHLt1THIi+i82TkRPmLh1InZe3okuS7rgSvwV2XGISIUURcGsV2Zh35B96OvTV3YcIlKZGbtnYPzm8fBf7I/YB7Gy49AT2DgRPeG7jt+hTqk6uPHgBjov6YzElETZkYhIhawtrFHPo57h/u2HtzlyJxHlyuCGg1HVtSoux19GYEggktKSZEei/2PjRPQER60jIoIjULpEaQ4NSkSFIuZGDBrNa4R3170rOwoRqYCrrSsi+0bC1dYV+67tw4DVA6ATOtmxCGyciJ5SwbkCwoPDYWNpg8gzkRi9YbTsSESkYlcSruBqwlXMPjAbcw/MlR2HiFSgasmqWN17Naw0Vlh+Yjk+3vKx7EgENk5E2Wparil+D/odAPD93u/xS/QvkhMRkVp1qd4FX7z0BQBg1N+j8M/Ff+QGIiJVaFmhJRZ0WQAAmLpzKhbGLJSciNg4ET1Dz9o98eVLX6JOqTpoX7m97DhEpGLjW4xHX5++SNelo/vS7jh/77zsSESkAv3r9cfEVhNhqbGEAKdLkU0RxWDSmoSEBDg5OSE+Ph6Ojo6y45CKCCGQnJ4MOys72VHMhhrXRzVmJtOTnJaMFxe9iP3X96OWey1EDY6Co5Z/n/JKreujWnOTfEIIHL11FHVL15UdxWzkd33kESei51AUJUvTFPlvJIcGJaJ8sbWyxeo+q1HWoSxO3D6BjzZ/JDsSEamAoihZmqa4pDjEJcVJTFR8sXEiyqWFMQvReUlnBIYEIjktWXYcIlKhsg5lsbr3agTVCMJnL30mOw4RqczpuNPwne+LrqFdkZKeIjtOscPGiSiXWpRvARdbFw4NSkQF0qRcE6zqvQrONs6yoxCRymSIDMQlxWHn5Z0YsmYIisEVNyaFjRNRLlUtWRWreq+ClcYKy04sw8QtE2VHIiKVE0Lgh70/YO/VvbKjEJEK1HKvheU9l8NCscCfR/7EZ9t55LoosXEiyoNWFVphfpf5AIAvd36JRYcWyQ1ERKr2c/TPeGfdOwgKDcLVhKuy4xCRCrSr3A5z/OcAACb9MwmLjy6WnKj4YONElEev1XsNH7fUT0Q3bM0wzslCRPn2qs+rqFOqDmIfxCIoJAhJaUmyIxGRCgxtNBRj/MYAAAaFDcKuy7skJyoe2DgR5cOUNlPQu3ZvpOnSsPn8ZtlxiEilHLQOCO8TDjc7N0TfiMbg8MG8ZoGIcuWrtl8hqEYQUjNSMXbjWNaOIsDGiSgfNIoGCwMXIqR7CEfGIqIC8XbxxvKey2GpsUTIsRB8ueNL2ZGISAUsNBb4s+ufeLPxm1gTvAaKosiOZPbYOBHlk62VLXrX6W24n5qRyqFBiShfXqz4In565ScAwMdbP8aqk6skJyIiNShhXQI/+f+EknYlZUcpFtg4ERWCe8n30PHPjhgWMYyHyokoX4Y1Goa3mrwFjaLB9cTrsuMQkQr9Ev0L3oh4g9siRmIpOwCROTgUewjbL21HhshANddq+KjVR7IjEZEKzew4E319+sLPy092FCJSmVNxpzAicgR0QodKLpUw9oWxsiOZHR5xIioEbbzbYFanWQD0p9mEHguVnIiI1MhSY5mlaUpISUBqRqrERESkFjXcauC7Dt8BAMZtGoeVJ1fKDWSG2DgRFZI3mryB95q9BwAYsHoAoq5ESU5ERGp29u5ZNJvfDCMjR/K0GyLKlVG+o/BWk7cgINBvZT/sv7ZfdiSzwsaJqBBNbzcdnat1RkpGCgJDAnHh3gXZkYhIpc7ePYvTd05jfsx8zNo3S3YcIlKJmR1nolOVTkhOT0aXkC64HH9ZdiSzwcaJqBBZaCywuPti1Peoj9tJt/Hqyle5p5iI8qVjlY6Y1nYaAOC99e9h47mNkhMRkRpYaiwR2iMUPqV8EPsgFgGLAzi5diFh40RUyOyt7bEmeA1e8HoBv3T+hfMqEFG+ve/3PgbWHwid0KHX8l74986/siMRkQo4aB0Q0TcCZR3Koq9PX9ha2sqOZBY4qh6REXg6emLHoB1smoioQBRFwVz/uTgddxpRV6PQeUln7B2yF842zrKjEZGJK+9UHidHnoSj1lF2FLPBI05ERvJk07Tt4jbM2T9HYhoiUiutpRYre6+Ep6Mn/r3zL95b/57sSESkEk82TQ9SH2DN6TUS06gfGyciIztx+wTa/dEOI9eORPjpcNlxiEiFPOw9EN4nHC97v4ypL0+VHYeIVCYhJQEtF7ZEUGgQIv+NlB1Htdg4ERlZTbeaeL3B6xAQCF4RjIM3DsqOREQq1KBMA2x6bRM87D1kRyEilXGwdkDjMo2hEzr0WdEHh2MPy46kSmyciIxMURTM6jQL7Sq1Q1JaEjov6YxrCddkxyIilVt8dDF2Xd4lOwYRqYCiKJjtPxsveb+EB6kPELAkANcTr8uOpTpsnIiKgJWFFZb2XIpa7rVwPfE6Oi/pjAepD2THIiKVCjkWgldXvopuS7txjhYiyhUrCyss77kcNdxq4GrCVXRZ0gUPUx/KjqUqbJyIioizjTMigiPgbueOmNgYvLryVWToMmTHMmldunRB+fLlYWNjgzJlyqB///64fj3rHrIjR46gZcuWsLGxgZeXF6ZNm/bU+yxbtgw1atSAjY0NfHx8sHbt2qL6CkRG0blaZ9T3qI9bD29x44eIcs3F1gURwRFws3ND9I1o9FvVDzqhkx1LNdg4ERUhbxdvhPUJg9ZCixJWJZCuS5cdyaS1adMGS5cuxenTp7FixQqcO3cOPXr0MDyfkJCA9u3bo0KFCoiOjsb06dMxefJkzJs3z7DM7t27ERwcjMGDByMmJgZBQUEICgrCsWPHZHwlokJRwroEwvqEoVSJUjh88zAGrB7AjR8iypXKrpWxuvdqWFtYY8/VPTxqnRfCiDp37iy8vLyEVqsVHh4eol+/fuLatWtZljl8+LBo0aKF0Gq1wtPTU3z99ddPvc/SpUtF9erVhVarFXXq1BGRkZF5yhEfHy8AiPj4+AJ9H6LCciT2iNDpdLJjSFGQ9TEsLEwoiiJSU1OFEELMnj1buLi4iJSUFMMy48aNE9WrVzfc79Wrl/D398/yPr6+vmL48OFFkpnImHZd3iWsP7MWmAzxyZZPZMcpEnldH7ktQpS9NafXiEv3L8mOIUV+10ejHnHi3mKi7PmU9jHM86QTOpyOOy05kem7e/cu/vrrLzRv3hxWVlYAgKioKLRq1QrW1taG5Tp06IDTp0/j3r17hmXatm2b5b06dOiAqKioZ35WSkoKEhISstyITFFzr+b4OeBnAMCn2z/FsuPLJCcyPdwWIcpeQLUAlHcqb7ifnJYsMY1KGKmRyxb3FhNllZSaJLqHdheOUx3F8VvHZccpEnldHz/44ANhZ2cnAIhmzZqJuLg4w3Pt2rUTw4YNy7L88ePHBQBx4sQJIYQQVlZWYvHixVmW+emnn0SpUqWe+ZmTJk0SAJ66sYaQqRq9frTAZIgp/0yRHcXoCvpvOrdFiJ624sQKUWZGGW6L5KDIrnHi3mKip2kUDW49vIWElAT4L/bHrYe3ZEcyukmTJgEAnJycoChKtrdTp04Zlh87dixiYmKwYcMGWFhY4LXXXoMQwqgZJ0yYgPj4eMPtypUrRv08ooL6uu3X2NR/Ez558RPZUUwat0WInqYTOny/93vceHADAYsDisW2SH4ZvXEaN24cSpQogZIlS+Ly5csICwszPBcbG4vSpUtnWT7zfmxs7HOXyXw+O1OnToWTk5Ph5uXlVVhfh6hQaS21WNV7Faq4VsHF+xcRGBJo9ofKR40aBQDYv38/Tp48me2tUqVKhuXd3NxQrVo1tGvXDiEhIVi7di327NkDAPDw8MDNmzezvH/mfQ8Pj+cuk/l8drRaLRwdHbPciEyZhcYCL1d62XD/UfojPEp/JDGRaeG2CNGzaRQNVvRagUoulXDh/gUEhQSxfjxDnhun8ePHP3MvMfcWE+VdSbuSiAiOgLONM/Zc3YNBYYPMenQsNzc3AEC1atVQo0aNbG9P7vl9kk6n/11SUlIAAH5+fti+fTvS0tIMy2zcuBHVq1eHi4uLYZnNmzdneZ+NGzfCz8+v0L8bkSm4kXgDLy56EcMjhhv931uZnnfUmtsiRHnjZueGyL6RcLZxRtTVKAwKG2TW9SO/LPP6gtGjR2PgwIHPXea/e4sz9xjXrFkTXl5e2LNnD/z8/Iy6t1ir1eblaxFJVd2tOlb2Won2f7ZH6PFQVCtZDZ+2+VR2LKn27t2L/fv3o0WLFnBxccG5c+cwceJEVK5c2dD09O3bF1OmTMHgwYMxbtw4HDt2DN9//z1mzpxpeJ933nkHL774Ir755hv4+/sjJCQEBw4cyHLhN5E5ORl3EtHXo7Hv2j74lPLBmOZjZEcyiv3798Pe3v6Zz3NbhChvarjVwIpeK9Dhzw4IORaCqq5Vi/22yH/l+YiTu7v7M/cSc28xUf618W6DeQH6jfnpu6cX+3kV7OzssHLlSrz88suoXr06Bg8ejLp162Lbtm2GjREnJyds2LABFy5cQKNGjTB69Gh88sknGDZsmOF9mjdvjsWLF2PevHmoV68eli9fjtWrV6NOnTqyvhqRUb3k/RJmdtDvPPhg4wdYe8Y8J3x+3lFrbosQ5c9L3i8ZtkU+2/4ZNp3fJDmRiSn8cSr09uzZI2bNmiViYmLExYsXxebNm0Xz5s1F5cqVxaNHj4QQQty/f1+ULl1a9O/fXxw7dkyEhIQIOzs78fPPPxveZ9euXcLS0lLMmDFDnDx5UkyaNElYWVmJo0eP5joLR7IhNfly+5di1+VdsmMYjRrXRzVmpuJNp9OJoeFDBSZDOHzpYFYjZeVlfeS2CFH+jN84Xry37j2RnpEuO4pR5Hd9NFrjdOTIEdGmTRvh6uoqtFqtqFixohgxYoS4evVqluWenHSuXLly4quvvnrqvZYuXSqqVasmrK2tRe3atTnpHJGKqXF9VGNmopT0FNFqYSuByRCVv68s4h7G5fwiFcjL+shtEaL80el0siMYVX7XR0UI87/yKyEhAU5OToiPj+foWKQqh2IPYcyGMVjacylcbV1lxykUalwf1ZiZCABuP7yNpvOb4uL9i+hRqweW9VT/BLlqXR/VmpsoNSMVk/+ZjDHNxxT7bZEim8eJiPJGJ3R4deWr2HxhM3os7YHUjFTZkYhIZdxLuCOsTxh8y/niq5e/kh2HiFRocPhgTN05Fd1CuxX7bRE2TkQmSqNoENI9BA7WDth6cStGRIzg0KBElGd1S9dF1OAoVHatLDsKEanQuBfGwcHaAdsubcOwNcOK9bYIGyciE+ZT2gehPUKhUTRYeGghvt71texIRKRCiqIY/vz3mb+x7eI2iWmISE3qlKqDZT2XwUKxwG+Hf8PUnVNlR5KGjRORietUtRN+6PgDAGDC5glYfmK55EREpFZrz6xFwJIAdF/aHefvnZcdh4hUokOVDpjVaRYA4KMtH2Hp8aWSE8nBxolIBUY2HYm3m74NAOi/qj+ir0dLTkREatSmYhs0LNMQd5LvoMuSLkhISZAdiYhU4o0mb+Bd33cBAK+teg17ru6RG0gCNk5EKvFth2/hX9UfL1Z4EVVcq8iOQ0QqZGtli9W9V6OMfRkcv30c/Vb2Q4YuQ3YsIlKJGe1nIKBaAGwsbZCUliQ7TpFj40SkEhYaC4T2CEVE3wg42TjJjkNEKlXOsRxW91kNrYUWa/5dg4+3fCw7EhGphIXGAku6L8HeIXvxkvdLsuMUOTZORCpSwroELDWWAAAhBJafWI50XbrkVESkNk3LNcWvgb8CAL7a9RX+OvKX5EREpBb21vao7lbdcP/CvQtIy0iTmKjosHEiUqnRG0aj57KeeG/de7KjEJEK9fXpi/EvjAcA7L22V3IaIlKjrRe2ouG8hhj196hiMUw5GycilWpZviUUKPhx/4+YtXeW7DhEpEJfvPwFwvuE4/uO38uOQkQqlJiaiPhH8fg5+mfM3DNTdhyjY+NEpFJda3bF12318zq9u/5dRP4bKTkREamNRtGgc/XOhnme0nXpeJT+SHIqIlKLLtW74Jv23wAAxmwYg7BTYZITGRcbJyIVG9N8DIY0GAKd0KHPij44HHtYdiQiUql7yffgv9gfg8IGFYtTboiocLzb7F2MaDQCAgJ9V/bFwRsHZUcyGjZORCqmKApm+8/GS94v4UHqAwQsCcCNxBuyYxGRCp24fQJbLmxByLEQTN05VXYcIlIJRVHwQ6cf0L5yeySlJaHzks64mnBVdiyjYONEpHJWFlZY3nM5arjVwPXE69h+abvsSESkQi+UfwE/dvoRAPDRlo+w+tRquYGISDWsLKywtMdS1HKvheuJ1/H59s9lRzIKNk5EZsDF1gWRfSMRERyB3nV6y45DRCo1vPFwjGwyEgDQb2U/HLl5RHIiIlILJxsnRPaNxKimo8x2wBk2TkRmopJLJXSq2slwnxd4E1F+zOwwEy95v4SHaQ/RZUkX3H54W3YkIlKJis4V8UOnH6C11MqOYhRsnIjM0Lm759Dg5wZYcHCB7ChEpDJWFlZY1nMZKrtUxqX4SxiweoDsSESkQjqhwwcbP8Cc/XNkRyk0bJyIzNCyE8twKu4URkSOwJYLW2THISKVcbV1xZrgNahbui6mvsyBIogo71acWIHpu6dj1N+jsP7setlxCgUbJyIzNO6FcQiuE4x0XTq6L+2OU3GnZEciIpWp6V4TMcNjUM+jnuwoRKRCPWr1wIB6A5AhMtBzWU8cu3VMdqQCY+NEZIYURcGvgb+iuVdz3H90H/6L/RGXFCc7FhGpjEZ5vJkQdSWKR7CJKNcURcG8zvPwYoUXkZiaCP/F/oh9ECs7VoGwcSIyUzaWNljdezW8nb1x/t55BIUEISU9RXYsIlKhHZd2oPVvrdF9aXecuXNGdhwiUglrC2us6LUCVV2r4nL8ZQSGBCIpLUl2rHxj40RkxtxLuCOybySctE7YdWUXPtz8oexIRKRCTco1QaMyjXD/0X10CemC+EfxsiMRkUqUtCuJyL6RcLV1xb5r+zBw9UAIIWTHyhc2TkRmrqZ7TSzvtRwtyrfABy98IDsOEamQjaUNVvZeCU9HT5yKO4U+K/ogQ5chOxYRqUTVklWxqvcqOGmd0KNWDyiKIjtSvrBxIioG2lZqi+0Dt6O0fWnZUYhIpTzsPRDeJxy2lrZYd3YdPtjIHTFElHutKrTCxXcvolftXrKj5BsbJ6Ji4sm9O38c/gO7Lu+SmIaI1KhBmQb4Leg3AMC3e77FokOL5AYiIlVxtnE2/PlawjVEXYmSFyYf2DgRFTMhx0Lw2urXEBQahHN3z8mOQ0Qq07N2T0x6cRIAYOP5jaq9VoGI5Dlz5wyazm8K/8X+OB13WnacXGPjRFTMdK7WGQ3LNERcUhwClgTgXvI92ZGISGU+efEThHQPwR9d/1DttQpEJI+noyfKO5XHvUf3VDVlChsnomKmhHUJrAleg3IO5XAq7hR6LOuBtIw02bGISEU0iga96/Q2zPMkhOB0B0SUa7ZWtgjrE4aKzhVx7t45dA3tqooawsaJqBgq61AWEX0jUMKqBLZc2II3It/g6TZElC9JaUnou7IvXl35KnRCJzsOEalEqRKlENk3Eo5aR+y8vBND1gwx+W0RNk5ExVR9j/oI6RECjaLBgpgFmLF7huxIRKRCJ26fwIoTK7Di5Ap8uu1T2XGISEVqudfC8p7LYaFY4M8jf+Kz7Z/JjvRcbJyIirGAagGY2WEmAOBh2kPJaYhIjRqXbYyfA34GAEzZNgXLji+TnIiI1KRd5XaY4z8HALDi5Ao8Sn8kOdGzWcoOQERyjWo6Cr7lfOHr6Ss7ChGp1KAGg3D01lHM3DMTA1YPQGXXymhYpqHsWESkEkMbDYWVhRW61+wOG0sb2XGeiUeciIo5RVGyNE3JacmIfRArMRERqdG0dtPQoXIHJKcnIzAkkHWEiPJkYP2BcNA6GO6b4mARbJyIyODmg5to/VtrdPyzIxJTEmXHISIVsdRYIqRHCKqXrI6rCVfRZ3kfk7/Qm4hMjxAC03dNR8N5DXH/0X3ZcbJg40REBo/SH+Hi/Ys4fPMwglcEI0OXITsSEamIs40zwoPDUa1kNXzW5jPO8UREeXb/0X38sO8HnLh9Aj2WmtaUKWyciMiggnMFhPcJh42lDSLPRGL0htGyIxGRylQrWQ0n3jyBlhVayo5CRCrkYuuCiOAI2FvbY/OFzSY1ZQobJyLKwtfTF78H/Q4A+H7v95i9f7bkRESkNhYaC8Ofj986js3nN0tMQ0RqU8+jHkK6m96UKWyciOgpPWv3xJcvfQkAePvvt7Hu7DrJiYhIjQ7eOIhmC5qh29JuOHn7pOw4RKQi/tX8DVOmjNs0DitPrpSciI0TET3D+BbjMbD+QGSIDIxcO9KkzjEmInWoU6oOGng0QEJKArqEdMHd5LuyIxGRioxqOgojm4yEgEC/lf1wOf6y1Dycx4mIsqUoCn4O+BlWGiuMbzEeVhZWsiMRkcpYW1hjRa8VaPJLE5y9exa9lvXC36/+zXpCRLmiKAq+6/gdLsdfRscqHVHeqbzUPDziRETPZG1hjXmd56GSSyXZUYhIpdxLuCM8OBwlrEpg84XNeH/9+7IjEZGKWGosEdYnDG82eVN2FDZORJR7kf9G4vWw16ETOtlRiEhF6pauiz+7/QkA+HH/j5gXPU9yIiJSkyenNribfBcTt0xEui69yHOwcSKiXLn54CZ6LuuJhYcWYuKWibLjEJHKBNUIwudtPgcArDq1ymSGFyYi9dAJHdr+3haf7/gc7617r8g/n40TEeVKafvSmBswFwDw5c4vsejQIrmBiEh1Pmz5IRYGLkR4n3BOjktEeaZRNPi41ccA9EevZ+2dVbSfX6SfRkSq9lq91/BRy48AAMPWDMM/F/+RG4iIVEVRFAysPzDL4BAcsZOI8qJbzW74uu3XAIB317+LyH8ji+yz2TgRUZ582uZT9KrdC2m6NHQL7YZ/7/wrOxIRqVBaRhreWvsWeizrwesmiShPxjYfi8ENBkMndOizog8Oxx4uks9l40REeaJRNFgUuAi+5Xxx79E9+C/259wsRJRnp+JOYf7B+Qg/HY6Pt3wsOw4RqYiiKJjjPwcveb+EB6kPELAkADcSbxj9c9k4EVGe2VrZIqxPGCo4VUBb77Zw1DrKjkREKuNT2gfzu8wHAEzdORWLjy6WnIiI1MTKwgrLey5HDbcasNRYIj4l3uifyQlwiShfStuXxoFhB1DStiQv8iaifOlXtx+O3TqGr3d9jdfDXkcV1ypoWq6p7FhEpBIuti5Y23ct7KzsUNq+tNE/j40TEeWbm52b7AhEpHJfvPQFjt8+joM3DkKj8EQYIsobbxfvIvssNk5EREQkjYXGAn91+wsPUh+grENZ2XGIiJ6pSHbtpKSkoH79+lAUBYcOHcry3JEjR9CyZUvY2NjAy8sL06ZNe+r1y5YtQ40aNWBjYwMfHx+sXbu2KGITkYlgDSEyb45aR6M3TawjRFRQRdI4ffDBByhb9umCmJCQgPbt26NChQqIjo7G9OnTMXnyZMybN8+wzO7duxEcHIzBgwcjJiYGQUFBCAoKwrFjx4oiOhGZANYQIioo1hEiKjBhZGvXrhU1atQQx48fFwBETEyM4bnZs2cLFxcXkZKSYnhs3Lhxonr16ob7vXr1Ev7+/lne09fXVwwfPjzXGeLj4wUAER8fn/8vQkSFIq/rI2sIET0pP+sj6wgRPSm/66NRjzjdvHkTQ4cOxR9//AE7O7unno+KikKrVq1gbW1teKxDhw44ffo07t27Z1imbdu2WV7XoUMHREVFPfNzU1JSkJCQkOVGROrDGkJEBcU6QkSFxWiNkxACAwcOxIgRI9C4ceNsl4mNjUXp0lmHDsy8Hxsb+9xlMp/PztSpU+Hk5GS4eXl5FeSrEJEErCFEVFCsI0RUmPLcOI0fPx6Kojz3durUKcyaNQuJiYmYMGGCMXI/14QJExAfH2+4XblypcgzEFH2Jk2aBABwcnJiDSGifHteDWEdISJjyPNw5KNHj8bAgQOfu0ylSpWwZcsWREVFQavVZnmucePGePXVV/Hbb7/Bw8MDN2/ezPJ85n0PDw/Df7NbJvP57Gi12qc+l4hMw6hRo/Ddd99h//79sLe3z3YZ1hAiysnzagjAOkJEhS/PjZO7uzvc3d1zXO6HH37A559/brh//fp1dOjQAaGhofD19QUA+Pn54aOPPkJaWhqsrKwAABs3bkT16tXh4uJiWGbz5s149913De+1ceNG+Pn55TU6EZkANzf9pLnVqlWDo6PjM5djDSGi58mphgCsI0RUyIwxUkV2Lly48NRINvfv3xelS5cW/fv3F8eOHRMhISHCzs5O/Pzzz4Zldu3aJSwtLcWMGTPEyZMnxaRJk4SVlZU4evRorj+bI9kQmY78ro+sIUQkRMHWR9YRIhIi/+uj1MZJCCEOHz4sWrRoIbRarShXrpz46quvnnrt0qVLRbVq1YS1tbWoXbu2iIyMzNNns1gRmY7CbJyEYA0hKm4Ku3ESgnWEqLjJ7/qoCCFEUR/lKmoJCQlwcnJCfHx8jof1ici41Lg+qjEzkblS6/qo1txE5ii/66NR53EiIiIiIiIyB3keHEKNMg+qcfI5Ivky10M1HexmDSEyHWqsIQDrCJEpyW8dKRaNU2JiIgBw8jkiE5KYmAgnJyfZMXKFNYTI9KiphgCsI0SmKK91pFhc46TT6XD9+nU4ODhAUZRnLpeQkAAvLy9cuXKF5x//H3+T7PF3eVpufxMhBBITE1G2bFloNOo4Wzi3NQTg343s8Dd5Gn+T7OXmd1FjDQG4LVIQ/E2yx9/lacbeFikWR5w0Gg08PT1zvbyjoyP/Av4Hf5Ps8Xd5Wm5+EzXtJQbyXkMA/t3IDn+Tp/E3yV5Ov4vaagjAbZHCwN8ke/xdnmasbRH17KohIiIiIiKShI0TERERERFRDtg4PUGr1WLSpEnQarWyo5gM/ibZ4+/yNP4mevwdnsbf5Gn8TbLH34W/QXb4m2SPv8vTjP2bFIvBIYiIiIiIiAqCR5yIiIiIiIhywMaJiIiIiIgoB2yciIiIiIiIcsDGiYiIiIiIKAdsnJ7w008/oWLFirCxsYGvry/27dsnO5LRbN++HZ07d0bZsmWhKApWr16d5XkhBD755BOUKVMGtra2aNu2Lc6cOZNlmbt37+LVV1+Fo6MjnJ2dMXjwYDx48KAIv0Xhmjp1Kpo0aQIHBweUKlUKQUFBOH36dJZlHj16hJEjR6JkyZKwt7dH9+7dcfPmzSzLXL58Gf7+/rCzs0OpUqUwduxYpKenF+VXKTRz5sxB3bp1DRPJ+fn54e+//zY8X9x+j5ywhjzGGsIaArCG5AfryGOsI6wjgInVEUFCCCFCQkKEtbW1+PXXX8Xx48fF0KFDhbOzs7h586bsaEaxdu1a8dFHH4mVK1cKAGLVqlVZnv/qq6+Ek5OTWL16tTh8+LDo0qWL8Pb2FsnJyYZlOnbsKOrVqyf27NkjduzYIapUqSKCg4OL+JsUng4dOoiFCxeKY8eOiUOHDolXXnlFlC9fXjx48MCwzIgRI4SXl5fYvHmzOHDggGjWrJlo3ry54fn09HRRp04d0bZtWxETEyPWrl0r3NzcxIQJE2R8pQILDw8XkZGR4t9//xWnT58WH374obCyshLHjh0TQhS/3+N5WENWZXmeNYQ1RAjWkLxiHVmV5XnWEdYRIUyrjrBx+r+mTZuKkSNHGu5nZGSIsmXLiqlTp0pMVTT+W6x0Op3w8PAQ06dPNzx2//59odVqxZIlS4QQQpw4cUIAEPv37zcs8/fffwtFUcS1a9eKLLsx3bp1SwAQ27ZtE0LofwMrKyuxbNkywzInT54UAERUVJQQQv+PgEajEbGxsYZl5syZIxwdHUVKSkrRfgEjcXFxEfPnz+fv8R+sIasM91lD9FhDssca8mysI6sM91lH9FhHsierjvBUPQCpqamIjo5G27ZtDY9pNBq0bdsWUVFREpPJceHCBcTGxmb5PZycnODr62v4PaKiouDs7IzGjRsblmnbti00Gg327t1b5JmNIT4+HgDg6uoKAIiOjkZaWlqW36VGjRooX758lt/Fx8cHpUuXNizToUMHJCQk4Pjx40WYvvBlZGQgJCQEDx8+hJ+fX7H/PZ7EGpIVa4gea0hWrCHPxzqSFeuIHutIVrLriGXhfA11i4uLQ0ZGRpYfFABKly6NU6dOSUolT2xsLABk+3tkPhcbG4tSpUpled7S0hKurq6GZdRMp9Ph3XffxQsvvIA6deoA0H9na2trODs7Z1n2v79Ldr9b5nNqdPToUfj5+eHRo0ewt7fHqlWrUKtWLRw6dKhY/h7ZYQ3JijWENeRJrCG5wzqSFesI68iTTKWOsHEiysbIkSNx7Ngx7Ny5U3YU6apXr45Dhw4hPj4ey5cvx4ABA7Bt2zbZsYhMGmvIY6whRPnDOvKYqdQRnqoHwM3NDRYWFk+NwHHz5k14eHhISiVP5nd+3u/h4eGBW7duZXk+PT0dd+/eVf1v9tZbbyEiIgJbt26Fp6en4XEPDw+kpqbi/v37WZb/7++S3e+W+ZwaWVtbo0qVKmjUqBGmTp2KevXq4fvvvy+2v0d2WEOyYg1hDXkSa0jusI5kxTrCOvIkU6kjbJyg/5/RqFEjbN682fCYTqfD5s2b4efnJzGZHN7e3vDw8MjyeyQkJGDv3r2G38PPzw/3799HdHS0YZktW7ZAp9PB19e3yDMXBiEE3nrrLaxatQpbtmyBt7d3lucbNWoEKyurLL/L6dOncfny5Sy/y9GjR7MU8o0bN8LR0RG1atUqmi9iZDqdDikpKfw9nsAakhVrCGvI87CGZI91JCvWEdaR55FWRwphYAuzEBISIrRarVi0aJE4ceKEGDZsmHB2ds4yAoc5SUxMFDExMSImJkYAEN9++62IiYkRly5dEkLohwB1dnYWYWFh4siRIyIwMDDbIUAbNGgg9u7dK3bu3CmqVq2q6iFA33jjDeHk5CT++ecfcePGDcMtKSnJsMyIESNE+fLlxZYtW8SBAweEn5+f8PPzMzyfOeRl+/btxaFDh8S6deuEu7u7aocAHT9+vNi2bZu4cOGCOHLkiBg/frxQFEVs2LBBCFH8fo/nYQ1hDWENeRprSN6wjrCOsI48zZTqCBunJ8yaNUuUL19eWFtbi6ZNm4o9e/bIjmQ0W7duFQCeug0YMEAIoR8GdOLEiaJ06dJCq9WKl19+WZw+fTrLe9y5c0cEBwcLe3t74ejoKAYNGiQSExMlfJvCkd3vAUAsXLjQsExycrJ48803hYuLi7CzsxNdu3YVN27cyPI+Fy9eFJ06dRK2trbCzc1NjB49WqSlpRXxtykcr7/+uqhQoYKwtrYW7u7u4uWXXzYUKiGK3++RE9YQ1hDWkKxYQ/KOdYR1hHUkK1OqI4oQQuTtGBUREREREVHxwmuciIiIiIiIcsDGiYiIiIiIKAdsnIiIiIiIiHLAxomIiIiIiCgHbJyIiIiIiIhywMaJiIiIiIgoB2yciIiIiIiIcsDGiYiIiIiIKAdsnIiIiIiIiHLAxomIiIiIiCgHbJyIiIiIiIhywMaJpNu1axcURYGiKFi6dGm2y+zduxf29vZQFAVjx44t4oREZOpYR4ioIFhDKDcUIYSQHYIoMDAQ4eHhqFGjBo4dOwYLCwvDc6dPn8YLL7yAO3fuYMCAAVi4cCEURZGYlohMEesIERUEawjlhEecyCRMnToVFhYWOHXqFP7880/D49evX0eHDh1w584dBAQEYP78+SxURJQt1hEiKgjWEMoJjziRyRgyZAgWLFgAb29vnD59Gg8fPkSrVq1w9OhRtGjRAhs2bICtra3smERkwlhHiKggWEPoedg4kcm4du0aqlatiuTkZMycOROrVq3C9u3b4ePjg+3bt8PZ2Vl2RCIycawjRFQQrCH0PDxVj0xGuXLl8PbbbwMA3nvvPWzfvh0VK1bE+vXrsy1UDx48wOTJkxEQEAAPDw8oioKBAwcWbWgiMimsI0RUEKwh9DxsnMikvP3229Bo9H8tXV1dsWHDBpQpUybbZePi4jBlyhQcPHgQjRs3LsqYRGTCWEeIqCBYQ+hZLGUHIMqUnp6O4cOHQ6fTAQCSkpKeex5xmTJlcPXqVZQrVw6PHj3iOcdExDpCRAXCGkLPwyNOZBKEEBgyZAgiIiLg7u4Ob29vPHr0CJMmTXrma7RaLcqVK1eEKYnIlLGOEFFBsIZQTtg4kUn44IMP8Ntvv8He3h6RkZH44osvAAC//fYbTpw4ITkdEakB6wgRFQRrCOWEjRNJN2PGDMyYMQNWVlZYuXIlmjRpgj59+qBu3brIyMjAhAkTZEckIhPHOkJEBcEaQrnBxomk+v333/HBBx9AURQsWrQI7dq1AwAoioLPPvsMABAeHo5du3bJjElEJox1hIgKgjWEcouNE0mzdu1aDB48GEIIfPvtt+jbt2+W57t06QJfX18AwLhx42REJCITxzpCRAXBGkJ5wcaJpIiKikLPnj2Rnp6OcePG4d133812uczzi3ft2oWwsLAiTEhEpo51hIgKgjWE8orDkZMUfn5+ePjwYY7LvfzyyxBCFEEiIlIb1hEiKgjWEMorHnEiIiIiIiLKAY84kar9+OOPuH//PtLT0wEAR44cweeffw4AaNWqFVq1aiUzHhGpAOsIERUEa0jxoQgeeyQVq1ixIi5dupTtc5MmTcLkyZOLNhARqQ7rCBEVBGtI8cHGiYiIiIiIKAe8xomIiIiIiCgHbJyIiIiIiIhywMaJiIiIiIgoB2yciIiIiIiIcsDGiYiIiIiIKAdsnIiIiIiIiHLAxomIiIiIiCgHbJyIiIiIiIhywMaJiIiIiIgoB2yciIiIiIiIcsDGiYiIiIiIKAf/A2mzTC/h+IOlAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,4))\n", + "plt.subplot(131)\n", + "np.random.seed(112)\n", + "plot_gradient_descent(eta=0.000001)\n", + "plt.subplot(132)\n", + "np.random.seed(112)\n", + "plot_gradient_descent(eta=0.001)\n", + "plt.subplot(133)\n", + "np.random.seed(112)\n", + "plot_gradient_descent(eta=0.00000001)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/main_files/main_11_0.png b/main_files/main_11_0.png new file mode 100644 index 0000000000000000000000000000000000000000..dd038d083483c5c07ce47afd778af3e6e2250027 GIT binary patch literal 22583 zcmcG$cQ}^+|37>oBU@yzB#Mg=vMCpm2-(>}_LeNyX^F5CH{vG#m|8aL5pW}UexSZEHUa#l#v7TqBs)_;$Aw3}qg(6YBg;7VLuvt(j ztW*L#_(|zkiZ}2dQCB$~*Lw~Yu8&Nd%~8rGu8y`2uC`XDtnTK{E>;fq*LX#Euc28V zy1F{Lh+VyE_dg%tb#S)4+CHyy4-RtH@s_R&3Pomu{0}QfI@=0`(tf9ixuM~avO3|Z zud#C?y)m4k=4it2c!Pmf*-^2q^^O(4IuXxt?0pNbF@nr;eTv>MXrgli1^FD4)uR?6 zf0Eq_^LfHvoqhHyH&K5h%tL+P&JEQYmfh=-cdrTXH4=B>ZFxyCOKhNBx-C^2YY)-u zRkzisa53;tg{}G{7W{Wsm)3`zf+G4J{~jwF8(X&N#tr1Rt1S^%MSX?%uM*Gur4=~qsPX< z`7tvSRASctb0GJgyMrK{xR8PHAD`{TetgcmuLXTqM=LsAZHEeUM@r3!gzZM3bamZH z5plvcYkOW|6BG*PXI19etq@MlLrz7dVdk%>c-B>nN!WHI;DYQk6l$pOe(+?S_eF7W zh9Eo=Yag4_^vi_r4eJQ&3>~U$V$6B&S3c1z{ClN2bS0vD9X&k?@w^7Td79i$f`c#e z^HW^7aG~St*Vb5WZ9dx(zW(YuubrE>ZV{B0mRgfYadB~}s;QZb^78N$Zk@!&#)^1u zvhy0&KD6o2#nRw9FGx?~v#VcGK<`6M-u-V^V&YJ7Y$ zW{i^)e{F4T?|TFBvSHVyfwQfxtrdpX-~`~(N|#RXg0K`KnV;$v%EReR&&{=B9+1Af zOxT?wilZAxK~3GpOwPtuN|gLKlH#I#!pTIDku))*2)SM%_2S~LG)2kQ32n} zER!oEmY?wC78E>bGL~_4Q6h2wi9#x74YfPP5o-;r^o{OE|(EET4^&(D(ST? zbK?fqTwZCYcZVIBHqIz;y`gq_1 z31=sq0iVnKo%|l720z~j#ZMT_z;oXXtf*)#pS`!8Nyhz8`pe79#UiV$2MM{g-?w~; z+Ibhc#M-U#^!e z)V@mCDXKa6D-yY@LfQs3L*tL;iF+GPE9~T)^jwloN-5;9zH}Cz9;{wB9_F16X2A^L zqu%(iRX$oh*Irl`M{@cW&UE7w(N*L5uEY;(AD4S`?{O9w)KJgO&3POwX8%}T4)5(% zwVn7lxSa&Ia@?t%X=8U+9&SGc3rl3ac2Uxc`1tslP|nu@k&$F#kJg@ND#Z_daFCP3 zMehD`Q3JExSY>NtAWn(PLN}hYJv^GnLxnhbMN~q5&ng~b`D{nuOYYzHmf|%$L!a!s z)kQbGR%7RHpi9?VSvZ*8aC&l>aNU8~@94LJ?f3_Z9?3t9!VZ(q`!W>FPLB3<>U~5{ zcB>lR=Hw8-IW-57Nrhy;_9A5Q*}x)Yk$V2?*TZtS#YOc8TqssyVd})h#J!`fp1u+@ zg|0W!EYio@l=jtg)cum#ci+5_4JN(7!$V^5(Y0y*Ycjvjo+G1(Bg(|Yq_V*hPFsu$ zckd_Bbi{R3P}8QU_b#exVt&QFIzA@m9BzO*{F@npYkvhtxdI#MV`W*v9krGjw-asM z#KHCDN$+*dwfaN*{@uZR?bu4YF)shZv8g+UDz7DSQL3=#U+r%#a7%jcY7pZEE$+dB zIM2euB3CrbO~b3N3j6of_O@&P?=s6CuEP6OS{7XiZ!d?XGm5+4QOh6vvfglNKNR;? zHkj+|*|TBkm%n^;Tc+~&Kh+zv`<+Nh5q)^LdR>lA>S)wb%Q$V1S8;yI#bwpG=A%?Y zzRiIoi`{4lGr|3pG0W;~vtiz}+eLwze=2V@_#NLl)yf|vASP~6zCQ6_bQl%~s&TPD z`}deb!vzV6arEb5gGUojOG^b{m%#IVTUvS!2cJ}siHv|irsuV!@)$lTV}M~1)ECLF zQ8hKSz{W#j7(_#+l_Mq-Q{mKc-ckw|Yz zMt}0ib`V+Ym#nvBr~v-+wd|qxmuLPA71}k#k?2+0T2&UR=XUMV;gHDM8JG!kadQVj z9kaK$j~Mucrc%HRbkP!<+P5F=!&#e7bwoFong=)~)D@F&Y@U0QdM^tV8yiqn)t@}N z&6y&MX@4Q38kI12IO+YdsZS~zIUsSoIYX<<6q%DE6~bQc@vdVK;4U(a_$IMU2)dZY)?+hTF?$^^INPcMGM?N7pO%bvs%qqAqw) z85Q6mZuH8MRc|nzqfpB@J`pFU!S^{T8QI;!q2@i4b(iLill_-#L1c{*y^bc^+R4a{ zJ>Bo|Cud*?Pj;xM!@|OXul%HRweEo!r>H2Mxw$#5kTsQ$uP?u4H{+{UuM!L_p$F*H zdhkOD37YahWm+ApYEQcn#OFMF%d+7T^p5z>_`tc&R<5{B=ij2cUDr$xi}r)o?qq7L z4nM+yHox)bkAkA2VgzAT{8ghi*xG%C_pigg{UXP+jrN(xVC*q!0sf~936czZQ>QKU z8;<`N!!aI49y?Nk4Lg$80P}2(#m~`m+JyTrMp=93HTZpN zAu#b;V6r`S{l0wH+^t)v&CP(%FN>5}?QTju>V^s$EiN#`bU2MOz3`^>+jr>`@^)rF zTAhznza}Rt>}=Wp9_hVB?$XNAAe$mB>d7-~Zf$HbiRq8RqZEG;k#?DeTjlKwYE)E$ z$&EPEDF{j$K3tHt(MlC^zA>n)VAg|tP5x!VjqjG})ZyZqscw9`$mv&qDr&&~Ge!2C z?qaF^qhGAM4Bj%<%V(|dlGep-u>Y%@XkP~qma;f5I^9YWnCyU8=|DqQY2>A-q4j9% zquK5!lXwnOD1sl>>kl2*#zo6*hPwy9USMOpzqr#lTEW&U;;ps9AgPB=T^&-kt?``T z_clS$-R#3DUrsM^zkNB|KZ`g8I#|R^)_$*(hndP~BAMNz&FSD@l==4`f4Ht*ZKu2| zfdzHRb#0tZDV|qI`~-HzPgt+PMMYPkk8kYFL?Rmih4lOJM^nD2faUi!q+GFtcO`eI zP{w1Gb{`JcYWe_+oWa90o$ZJgah?rno+6{5(0!Xjkidua;g2DON4X8>Qt`@|_O*=- zR%QmDU#?;gEA)uz1kM2H5KHZT`zJgiLe9d1L+bR%#pifuc%<5e)9+xBv;Q|V)9IaI zqxP!}M~{1?4vC*WeVT>3C?Z08`p5qiAJx&>+5Gt>XNhSmA&M<0QPNv@cWojZ7OZRx z`*UVV`e&mS%1|z63_h}J6>l%$zRM0be4aqdD$U~Y1GmIy=;amrtatA)SZT2E2SnT# zzg?Q^eJlF~>OQ?&!|?&)aqKF7$Y?0niXHcl5xjLN5X! zLVS64Z7pMTbo9p7R&zUx|8uxH+sRrw6hJ%O1sjD3`lr&TN0c_h?^|C>dKX*vFy|X8 zU@#;abxSMX%NonA*cwNwDIX3Jdd!`l-Z0^x$~dc)>LwUTEConc{ocK|TKQNZjb>ky zgnAzel2#i5pzA9&SGs46LLrUc|MbuZ)%c@1*lBk~m;KVEAFsXFZWI~T-Fc}T0nHN? z!c3n5y_4HEi^rKM#Wu%QPm(y#B|4qCre&)sOHF`90|XTdBF6*^704PW5nBhSsv z{WV^FEi5dIoP}k*_|FZ@Y>9Qgn9UK(CuT{EX>o%Vhx&v>=|c0Zj6UFHpWX%rt2sLh ztW_^CKc^QWY<@=4Jn?8M;^g=c2Zf+*U;<|SS;`-Nw=qP&diCVhE2^?#Bmd(ao$`ki zKWAq8ppoBsBgGWMjsTwO>gr!(RaY&(COw^Wvj?Nc<}C?*9p(>UnX$A z>3XYU_!tZ-QWB3*nm4Q#%ihRMn3FSmsIj>tdht?0(`$q{<^huS*f(bt(%g10w;*KM*viT(Bs{!K zY5#fEq*tf8EHCPBt1v!vH*O=I9yV&-{dzq-ugu>(S=dQ+P}i*3WSuob4DJU!Hh>nR z$D@@GW151Kd3vpe_6kCCbj7`>62xitw(pfN(Gs8y(OQ*9u_51H=e?KVCyiejDZzm) z=B9I_7hqS`CTBNpD!jNNE?V3_C@ zQ=2j0bXVfFhy7V3dLCZ;mO#Cz?Gdsg%ryCT#hlPCp@@>GvB&eeK?mC;L;HSV}^JUGmrEm=PuG=o*vYPVES zd|!w8PHGOUUjf#gv=0ovoq6--O>F!9e0BTb_XcV@Iu8%3#7T+9eeOg$`;=SZu(P9F=0nWO zg^LAU)75kDjA@=u=(L?K=6gxP(@0H?z{0^xNWJenHX&3!-F&N1%Y_-6f?`mkVrk{Q zfhn_sVyK9)Q#!$I`d)6;v0lZ&)wVOtZH;m<>|L)V8KB@dY8&}J&Apcm5HXpn_mpp~9(YIC z3G`I=!Pk@sF{w55r5)^+qlocw{hEadgveqrPbS_kkm~5X2nmtsls>s2@M1{Qt&;l6 zl`GUiMBd#~IkyY7Y6L5)#f_21uNb(miG2!t&F41&Z}9@yKSBfU(NU4y`>jgiGgMM;Amf9G)!(POWRcZdl?f%&lZ=*(B!!44M2UmnfYvk zfPerwJ-u~OB-TJmnF)KRb6IkgTI#)L2F}jT#TH-bx0i>D+Dd@U)$WekWUYc)Be*RL z`p>+|8@%}*{FD8=eOrB%JjKRXvo-7TC(UFR(d=iE7GC4Higi4F+Hv)=j86NDEHYo+ zIDYdlujFx=+ul+}$eU5$8KBnDknZUhx*RC0t4qhBob;r^X87mF<@fncwaUrD1cZbF zz9sm8yXXr`)!A{0h$!b)&f_LX&~)mg9!IjO~mv`Bq9e2iGh2D1tp`K+X@lcr0ho!S#zD$rI zAMvU4YJzPoFmd31tN^z*Wl22cmck-^a?GeO*n;jd>Ezu7^|lI#OwFx8T$1j zmn2yRSD{J)O_qbhe|)rVI3waM1;zdu5lujA_}lv*srtMm^ZZni6$ET!4pPfC*+Y9-MM%G$*%SI++a{aXw7{OjV| zt%i)kD*~>+R1p+rJJo+zI>NBd>jE!tw`pOl@8K>M3ZxF(&O$hCx@#6xBt%3tyKhfs zBBQcZTElz~i-~1qv!2|JdBShjX1q23RcO;egG7+odxby$G2wf4C*tJCWT2F8uZ|7d z8UZFoRHb^~!=D||7e|UsaF~5IZXoa&+D?Ly4K*Gav#paNF9n4sHFQpZu4uSNcybhT zKa6}RuCI>;GbJY8l56%BgEC!g+=Sg<8?m&1eYDap{4X)@O8eBhlJsMsvy*7b?~rHG z@6hg5d_01Q5#b6Uc0FU{6l#5U-ocm4U;#}j$sE71;A#gyvWP(_n@|s$(L7G z_-KiNgaTGcY4~vyjfN#m%GoJUu4fmtX>%*)2?&`#}*mKicy9B6KCE+k~$+}g4kzh5+* zk(L(F6dcY6I&`}HH9SVm&YpY?E_QZy8Gt~SF12PYE5Ur8)XCHvaf>>LoeYxn1qE9zCACcRWDWV&7QR6gT|wRPSV%V2iJTX*g} zC<-P*1n+dbYt&X{ZnxyHqe#;9GjHCPyJ4b!&as(9i!5^lwj&`x&1*Yfpcr0cWes?# zV(^4gB{ZbNdT_zzU3RwFrzdBH4P>#SMk~0}f6mASewb+wOkr%iNq0bBEkoaDuOjA# zzAx3lpfMN+n=2gM84?lkR4czV>Vho!xpR+$nY{=iC3h2)hojlgexLG>%sD+KOAtFh zQigvST|nUhG^oF>T#v_9%phabX!zYdXDNg{s-=SV#OE+6kxckO*VN9BL}6RKc%k|C zhXMGO0t+h-**No+$vTG9lRpi1ywh1HHa8an#MfkC-9gtRXsl2&%fBlo#QVd1`Um~W zJ}cX%v8Hw&tv3g1paWw~ay}qpy&-brf-L>c+qDiuLh3LV#$e3~H#~$7clRX}WW=#^ za+@H8E!|5`$>MIqXpLB~ZkvGll z?f4)I;iASp7g7<$I*!-Cy1#-QrHJA<*h`xZsLHF+nz_Xb%SCK1ooZcgc_y)Vk1>5NS=&L2kyGKX~v!CeFOfUpw~A8wZ!^ z3ySB4-W!C&5ef|J=%3a+x;O*$|Bf2D_a=Mqd!}Mj++v3}3BwdrXSUbLYX7|6W2QRe z=tlINBG@1#WL)OI8KJ#7RH=P^O9ZTlCD}qvUge7R~v{^B)NAZn26rJLmAYJ){(5WsK*+H z_k=KhitBNB59{3-nmuDME_2N7r$TSv_EOOpjU^^tadwh8ttF5+*u|}Mz(3h3vS9H* znO;)eDR}Qy$Bc`M%WF+B_^g>1gNb->rEY(Bb?o)WEBr(gP{6@BUT z);&ecENYOuT?-lr@MmCx4}?8kfkF?@qZ!4YVa2d>g!%1fmSC~5D41uCuuxvaj@(^c z{k@w+1uEyjfX1CvvB8ynr;gTRM-a%=aCDQ*dQ~+!6~2_(N_h@+Bn@6!+u@wJWbNxW ztEz9Ugqb}PH%~iY4o2LssfGrtUoEz@mn6owZ{+qpMEgJV+osrig4=)Br$Rs9e{=&S^MK)4Y0!UoaYYw=i=k-8$j){nUyBUSyNDTj;)*<48}*C5O%5ZdYa=7Q#{Pz^R30}(EMfzA;MbvX^J#T0ZIqsn1&{#Kb z(z`3Cb3B8ZEaY8^Hfs$#uTyEO8+7k2L;ssG!MCpKhQ^Z;6guO6;v1_~rXh2^7o3jf zlLH@3V&Re5t0speA>Q!-n$BC)HkTJRJ)da{f$dl&32=LOs$ydF01xeS9NO_&P;_*S zQ>Ub_UZLLja_r*cVLQ}Wm95{exi+)3gIBontsUNv+BKMVOwuCnmUbZYz0l zFf`|L{%hl$i=Yqu2K7_;@`h^u zpa-DO)q8%&+g1R;WU}+?EQ4Y#Ls4);(>b!`Xpc6U$s+906rQ~Q*r?_-=vKu}GxFh`W z^Y9V-DQ1r?<>^Gr_dKaQ=m&GU>3V{f_bzjDH@{PSiF8h2l_TX1pc09tk}?R}f~_ix zLV@xnyFOVL4XpY`5Z?FfLCnC)=hEjBV3nYD*QXqIzUkIz#20>jO2pQoQ+ekMC66Ae zKRetub9FTFP3M;~Oog@T20xHMiS1rlT4CD+-3?^Pg7|9;_&Lk>KTbLtkLCRN^Eo*= ze0K41al#O=7`Q`Q77hN~K-TtxdoJ&Nh9IoHJu_BbQV~z}74K=R>D8*h$+}hVt88S( zE*sHtanIiP9h?;v6%~4Mo`$9wQ1oivF^f#LN~)^9zU^FE^*>}{FY-Czi&I`h*Rt%%4bcL-+fLfO1Y{1_e?u51Y#f1 zmJrd*;6FyXl9CbyBcpA+4Q2Gbg*qTu4SJ3(Xgl;^!MO~)8q9$NJ#v*!@lE}BIZVT(r8-l{|WDS52p@>QeTyWQJF8;#d5~RX;%Ik8dMfNuOk8i zP<#9PKfn)@0WC!PBRK^uU|T{7`4^1fI(uLv{n692+86sp-g8aMDPI~9Z|c2GrIH3S z1y+6vkEJWotj|MMzO2!yfVl*qlM?*t{RY2fezE)xBAG?s8vwWmQPo6#nE%a;F z1!~2ZVy_+RL$Z9GJh8(j{GT;?JkDZyLDG75{vVAC`2)4&$OR!iLPj^6mn^$ zUUDV?Sg$+wG-RcFRPYy+a8Q6h%*EYDH99qOYt|j)?UlZhBQierY9EgexdX*pEkl#Z z5Gw#$Y`&KSmD~+=^>d(cGxc|>4Ss%Uy0~(sx$1Du)xZ$$Sga5emJk2ix64d=QvZ& zMa$AIxB~@jTSEHoyUfhQK|@7l+_) zu3KD(`N-A{j8^VPSFN34=fQ&$pIb2+%Ma9b3TC1X5K4fv`V0cLsJ^;{Kf|a^f9|4I3gBJA?%7FFJ82PQ^TZfRhd_SR&#R)Icg#! z__CX{=@YYcC5(m0%1w;>#m>^!%(Afb>6dqm5@Jrd%39fq&qdRY7(16*>q4h zog)NpLn0_L+uPe>@qP5c_ZhRS2fyEyqBwlMB?gowJwt99(j6a!$)ja~`feIS8wXDX z6_B3J*3#NKNat}YW_IsK+)4sKyBN~;>7Wi--DKv8MI}okPh5{x zq0V+4x40Z#5EW+wALv$cZ6L7>;8+VOn&?t=T(|v*>Y-?Xn9=~+F^f7nIO?yZm_@a? zgUf7PF)A9^KG%sbHA(NVM%hekW={;`H5HDzck1aDPbFC}%xPZM+u$hGP7Ze^33ZkP z2B!lS!0SrHVU*lCj`{aHcnn6=K$A2b1?u{VfrMm?hi&HF!JK?%J!tZqS+Pmf3_xtuG z)v1^PA6RGBrck6A=sgBBlP{ss1#Pn$Gb!ZZ@U!@<_$sfdPVrC?^4oqA2RZwM)NE{y zxjcZiroMg8)A0A*P>Mkuk@Vu?;_iJ0`UpG_qAWV?ZO(AFzrd=lZoDgPkS|ta5=0NZ<=8#KEUnXXLY_eq=MF@!UaI`Y47(86QzfKEkW%8S8ski zfdu=D8^Q7Bj>gjkCF0H(}0&5(jWd@&?FG!q$ zLJqbc(uKzw2*$y0?YxR(Glas!>CHP&&T@6$tK7=W&wfxQ2zo#V9#EO_Cqga~aaWCA zIL)+uZ^)im(wwgQ6QFHKVZM%KeB=QPyw@7RNShwWhXc@^x9;98x`rU(7iT5hS5OvR zC{kvsvEzf#yfO-k-8wRgJ|kGY)geyy3Xr!0&0&c|VnwPdqgZvoWFIlJ{+m(xFoCT2 zseuo}Yy5Sb6qY7zCt_N@#`?b{v1;;M>ogY^szUEowNd%4Gpz98HYiA+0TiT&S2gQ+ z?iN-BTvTY8Rnw(ze@09pi}pPfK9Ry;v`j5n**I@2DmFnFE%o0=qZI-|Ddnc$4u&x@ zPx*B=28E=&fQq9Mlalfr_|Kr{i-~!6MubP;JDx}syBCf;`uRkM^l-bsu`3Y*P7yT- zD=x|7i4LOWeD&<trW`sXatlcorw z{%==lwTS-12;*~~LmtQDoyPTs`%>M2ac50awr)JI{QUVd$b>>)msP27A#h3EV^I1) zF``j6yZ=W1plL_cgQ9QjDRwFaXz%&ViiQVu=L#^2a&rbsEGCjh-6 z^3d_YP7tJMkB*MWnVDZejx6Z~h`2IHc(%2rWu&eTvvxbq94Y_auh|uKN*|ns5a0co z9Zl^|w8VIz2AnT-atpg;Zr=D9w=v>6Hc+y-?rx~BleV>q`;XYzXv(Zc!d(s@qLk6tc@34q~-#1HG4rv`9m9Of~%X&Y_PxBN(0G*oeGdh1DJw(3RyftBa(j2% zD*D8y5d|q1E1cTjc#glKI%d>-W5cWdRQLi%!`OeCALIp`jlf-S)rlcwfCMSvIxnK8 zf48#)Yvs#9z_8f=)DNE21xPf!p|?@ciAqQakqf65I$|Oh)g65O;-f$;7!Z(EePCgc zq*br;vi%|m*bvZwgvbXtjW6e?*Zpa(^eWwM34O^CT97$xv>s9giV>gi!hTLc0S4l< zw{PFxDDpohI^AoRj!I0lB9zG+EiuDK(i4z^a9y9A___1Hg35A02DW^n#vn7qtyKV7 zyUwL9RXt64c|1rkv38bv@|lDe)t^&rB4wc-18$1QfWror2Eid6fwrHw`hKySL6Sih zU`Pps5$M~$bao<75E#J)0fBFM%lw~dt1qUi1poT=%PUwTPd$I|G8%2`@vZnVw(+j5 zaVK@j#9N%G1OkbjS2}$+F|+cv`$zWMqvAnL#zQV@gW#~BP~Z#Ouh@m?w|zJoj6;Cw za{s&a32wq#@P#X{>Z5+nw1&m<+{dUF>y`zao@f{7nLrOwPEmG|I(P0IqEi5HoBs5a z2r+8h*TzF3TS^Ft(t`2SKts{IlK;#G21z!x)Uq9<^0Y=ga?y^bTJq{ApkI zT^2|i-=CT>K_Bfl;Ws)oU^zK8et!8==K(t~#9rXRQ&^DNEU_B71P={zeC?20`mw$q z>34hpE)?mXDSv4Q&%c15&Op2bOnwEp_wtd<5%GpzpR;~YlGa4k zfZ!IAL`NNW(fUbBN{ZLLcMcH1WfF7!>l_#w+8=Vo?JNgczQ#iD4jz2DpJA|?Rqo}Jq3lQk z3BAfQ^WC`atLL6h9e_FNebwkN1>=_ z!hOl4F2{B6{<=`93s);a9z?czYlt@ksjCi5E5qMNT>18fjGi4EEI#OyA|AySu!3gaBInTx z=KD~-%lJsXdgE*+m^8m;^Of;12V3f;!nWY)V6blV`6y39jrxg{`KE1|aJHztgb zv)UbMKF?AeVI>TP`uA0KAsdikAVf#Wai>_My*bak90+;bDokI;61Gdsfe}+)2XFFpoEhkdpKX>^ZAf^Uj;L81kF%Ld}ww9#5%B7@_qgA^Sg(> z=-_h#9{jNbbo@KQ;)41IY=OQcBqVsbcz`+bE-P#3xCw%(LsE}2w!TOYk4Y^$x&EuUamQq*gSLO8C^7!l^jsiK&@oC&|^9H-5TjNnnaE8JvXbr z1&7$S4Dt><&`AA7kk)Np9+03x4ttLnt71&~7irT+r%KTX~ zP1dwj{uhAbcU#hc-Z=KMl!D?I<|u^Dg40B0`wvglcQ?-TDX_GD%T%&CH6E`}(nvkt zw=9{csml54e0n^;P_k5z2=OZLz|+&x8l7bn0H3OeT&l9PN;flD(wFD%Y^?QcCUUIfq9yi&7WF!d*7-&8NBo}t1Rv`l6_r-v&hva-Vv7>Pg zJ@ArvJ`nTdrjgOZ+qYW)?zeo?E!48r*3i!v%fHNQ0H5rLg+6N0gD;wj?gWqUc3mJo z>K6$f6=?F;C(f*lVA+nk@@$|mX(nAhUx4{wl(B=zoW+s}Td@cXYH9ZtIj8Fn8OQiw zWQ-8jhXyDOGi?z2JV{|ycb$+P!SXhvVI%E!xF@WB@U<`X+vw=|r#~TjfhZ100>OQK(qKU%atxr1{)<;s58GZm&3Zvt z2?r^68hOgdb?FlBznYih_Bxne=GV%1=(wSSXkv+wkR%~kVa)@Yi9@#v)lHPu&k63N z04Dy550?-Ere4b+rD_W?!!z9FAtyt8is;}U#YEo?z&1q&t`15)?(FT}M; z5%bE-Y`I6Dkkz%7a6vE(JXXRWvQh?^q@tnGUUr%hR2K>m0!Q&{_*Jn?0|-JGiYx@J zaGXk?mW<52#V*E|u|(l=oxgb=H%Won$r(xE8jK8Vm4GA(Sb_|)mJqO&1!!1lKVdEA zx4&tACs~*T;-^Staiqk|2?nTYt|yH{Brl4^pD{RFyC4T8@pq@Ruu&Mvy>8K3CaSo>}QqY&`smgC$MC(vQ*Ab5fNdj2wq~_)ZuDP`j+lS z00SX#b3haVSxw9sU>@ytdq&hW_{_g1YOcfl3*W4h<%( zs%GZl?1~-T-E9F_IQo5Ju!sbZ428rGjiTX;5Nd)+B?2-sgjBxQuYPRO{4BA1aWJ0- z31G#>YA(AW_*75NdRNYVrGsJ`7+=S&U)EsfXX|=WEpCc}^rDrwHPtO1?gnJlR zRdpT7(RglIjC;&PT;}C{22tM83L8szzkiy){_+mEO#sFm4hTs}EBBS7C||{5Z7tw{ zU%$WA6a8M@gb|#ATze%<}HaSQQz7kS3QN$zX`ror9ZU?T7=w zQdM2u^gs+Wy`UmF(zMHvPr{P)#sJX5SsA2iFXwUvf&yW+2reOAqe#C_q|M{yA-6R1~@X2S+T# z3+hf4N1{bdQ&TJu)=GdhJ~lS?^uj_gjiCqDj~_p@id-+y98BY|Uc^C0Kjvtri$WVV zfAuA7?k~9EF$K_CC-R#;yQT+|pa9UD+L6hm7RtNRv!7ogBPGb_3mpE($>BOa3T;%+ z2qqkO6krC)Jb1vaRj4-?_3S0nKYE|09y*PKsy{XKSsx_wm?0_X`0}_(b!>(71_V7{ zz|@9rVV@_!WKXG-Tjp0-a#?Xku&4LMjNX5OB~8K1+zpr6(JXqY2VcmEh8IO9`QUdH zsSLpqsRZW*r!^ABb4Q-Pi)>0LRWU(A@P&JzqfIwwY9PTE)EWU*e81_DH-*1 z8_PwFADm=V$$J~5XIn6g?=LkMlxQhwXuNvKa2F~XNw7gu*_YeKt%NWk(aK1M^7wg{ z!ozh9T`5H0QR8mXx-_UG<}Zc*DjoMX-YqNI+4Dtb7}vox>uNB6!Yt1v^qDHNb5-U}c3qF!*oJ2y2CA20jNQ z@)2YiZNR_xkoUGy;E2vN0H(tG05)28{ZF|$5^m3*=9=rudwF@Ko^8=dga{L3U^B0B zY7?sVR4OWp)w&dwzF@ZRoTfk)ezkAW6=_JRf%x40=P05xiWf3+bM*GUc8I*%?7GIb zK|n<5B3Xa*&2-viWi^L;BSFGb;9Gyc6KKQlZDBGd*tkdG9>T$X1k1$pvMG)PvxJ$| z*Eez(p&*Iu;i>CWEmX&ZLPTANkceM@9TM`3e#qU)Qj@45f)*=9ilp3*`TZB@_3$g_HXSNc?U-5hieUF7n{ z@fLhOltoHm4_J4$>y?wY7Zz77Nl*|W;v1;4-M?YcWE=Mc*Kl3Ia(1ziuKyb(+A-vS zO%Hj+3TEy6L8O*?!`AJvf(2y1?KRDEO3tkvca>%=AmIBYq0EDMQB69uwBKb_ngwq6vE>{s)scENWHK4By5WC z1&F1976RP$?^@0_+xS81cghqJjw5xVV|%!dMMQ%QK5Zsk4p)6X5)(={PN{kn(W#Rx zfff=v4-+zv25R8O=TQccX@B&g19KN0%X5{csr6b9%AxiGNZgtvf*M@mfx#szN(O&Z z-tO+g`N-2%;@@+`mBW%cWlXq+|6g-p(-V)NMlrZ5+Qjwq>XtqU3}(1Snh0*VlgM*u z?J6Q}m9oK5@r}11!ct#ki|abskPQN4gj9Ns&IcO*L)@yGhB@26ExLl5hP1)IF}u|K zWN6TQU5-oWg&v%udcvdQbyM8%cp5-wmkAbT`g4@B-@RjnRA|8hk|6yTR+4%6@bc;1 z(FolyGM%<%n1KPl=3Mc<2L1}dyiHVzx%yzw3S)p!vA4h)kE zVUwXia_f;km8e-y4gsB$j<(5vQc(N+dJ=dduaGtM5j$?PIWQRz-HbElkB{*o$qzt zkLm&y?%W}U7KG#q+^4Qn=o>0wUWZAtknAkHVZ%Mh(+tR*HLR}Ig87TPzRf)U@ypu#f|qlK^2#c6c+3w# z;Zf7jcme@9KUE>MzbE;;DOe~hEZ{6 z-+Lce$~Pdp4pbAFq4_squ!WPC7z&f3(B~EwAX;RyVG^2-Iz5QbsZ-Zr-z8xtMzpuB zucXzPD%s7iuH5T-rpx}&+i+l^R9v} zKz`+$c7cw`A8$&bxZex$i-(~dTEtTC4RN*JpZWADU@*T`;QQ|xxn6jygG{n8X|>(p znR}pC@R@T~JlNlyJHokZ|Mcv)kQ{yq?!6pCPvMKQ+pc%skfw;^Z!dH1W@h8)6*ecC zbWN#MRLQEn0=viT1fT7Z>hVH6E-`%7>+?Re+&%C0&pv11#Eu5m8Gwq;6}+yE&UPyv z-F$>Oq|JU#ANQ3BkWE%|qk}69=6Rj* zH)Gg3S1~*EeBUxJ`+>u=K1ci;1NTf#t=xF@LJXr6U()-((Hp3EUdeTWm7VnrOMpVN^^>!va?+XY zH6H8t8da8&23$QuneX?R$X} zAtb8I#^#JFz?bh zJWRtR?%r}SQsOZLJIY)@$4!HQ>v}-QE29sStprK)CAd40o(e-Nq`GkzI+0l+WOjHo zs~-&}BRCciwbMy;kx1x(S860(Oy)>|!F)!@In&}1(*}TYZwhn#A|4y8zzd$hTs$^; z6EZFi!{J4VhQnFP4EdaqA8RYaN#Nxh=@}U|Bm(H%kLj7baU6Mihk9^AmM$Yt`avU3 zv@0@dV20Dh02e?q^P^Mn*Jp5XzdJ8-D8$X-;W7`+ujFt?L+^oc{x9@G3&`{uid>cF z#xOFm2(o2{!&LpPTelip!)a{lmpM9E?mH3@!PuqB~^df?SJtG`-d-6 zxIpphHg%K-T>3fYl1`mhg|Z~|KVuW|p>3CipjA3slBfvmj=S`jKx%5F!bUrlB}CkP zr4iB$;JXHZ>NhN62v9vNjIiI`%IeDFpr8roZiPXrMYxTvkY9$Xpl3q{DR*L+PVCJI z2nzZ zZ7)eE5|C9vl9Rqh|878A)@w33wZHF>fJuiDn8bxjwB-AhO!_FGX1$)F;b@cSU}sr- zeShu4Xl6atVw>h=)QA$yA2EM6kz|438IVDSjs1l;&9K_w-6SX!yq=@neuDo0tg7c@ zlUc@?)73m$$3wX;50U&&kQ`-9Z+Hd5X8_8V??l_{KRri5(Ub-ZB!?MBQ3iyYoME8P zV<|V=@o3NK4kVnA_oKjw2;4M&ukDAm+uxMzV;3^&j~KaPzg(yWOdgWN9Snc@Cy-N-aV6#XP`? zB#?qs#QkZLt|}9|QjkH|1QsZof-^PdDnSDU4EF(Ea#0#ZVEMr2dI5{?p1hi33}Q0ej9~{q4jFTWi4laeh0y0V(Wx-Cs^uHNHi3W;yoJVS zp*NI2;~~WS`GHz%#UhjVkDITh2+IN43VHs#;QHAF_&vBY`Cs5Ri3YTvVF|Fy{SqN7 zH0Uj*qY2nF$4SDpTS2xs4|)BHnMYSj@4tg>|1a+=0+#}glnZt={Kfy57ajfo@`vySqyJO2MP_QP`m>M$VR-Wct++c{ zB~{FPSe_E9bU*TUiHV`e@8K0hQ$AZHi2i}k?12JBB+CVv=0$Wx*k2u8T`=9v$p^vC zn(MIlLy|aR(=XqaHS(G7qH|ptp@4xsS_uz6aQmRB;MQiLMua)~8tDezri9P(Iw;+*AdGx3S@PSe}5~P{Cv`sVwDWC}hIZTRqb7 zHiRN8=HP|~X}v0YlK;GI2vo2D@ZSv~K8E;z72lAZlO&xSH<|~W=WrNaDTTbfCg7HU zFuYvDXY(`Xf5ZySIe0IO`cc-Q#)z8507>iCU*X06u4JS7 zmIE5-AB^%A=z65Cs6npt=XBSVF)WyZ5Nh zk#l|Rbn?^Y#_SL<$B>UxqT1VcQ%g_aiTp!AT!3?35f-<#V1;ealIW@^{gsX+)j`b9 zQvkR{=GfRuUWcUKPBnhMo0zoTAucywF53|9)y!)w+F_srC=WUYo}b!<$a@0IMHm1s z@^WvJ%i~!|E~=tJljMZ4*EuLot4{{XYe_8yOi{Vo;WZwQGENpIRz zIPsv#Ay^9Au^}F;51E#ixRU@@K;`<2k=S!Yjl23*=JvD(ctSB# zB5ulkHHPdeT7JcG^y$)I8Hdo?2wjW1dUQEi>%f~q6i9*mmLO@k+za~3lOv7V3K732 zYa#0(WEXUs8hw%Lo;^#D=uu#IB%vmrF+2;W=YD;`3vC{tO?uF8;wVQWPgw$t0={F& zi(Nq*4~pP+vOSZWja#pX$LQcrBZ>I~pvO3>t2lN9NOidNS!5n#$!jv(Au3g1a#R_~ zk-yc^m8T((O=3noX>#C6nGtVELr|QLZ+amP=9k&KO8l#ESRrUYRCL@8UH%&X+z|*o zI$^)L1M<>p6K_ag+QQU}E3|C_V1D$7nG)~maXq}{a6Odm=(XKY0gqEf^$tG<-pVH& zv3*eUuD~mAMO4ZhQ)X+Qp9UJzbvFGU$!V6B`iR2cppQX3u%Mvn=rIN<5H~oe8?}NA zMeh&*Jp`SEeC7_Of$^X>bSAiZ1>N2iY;;g$NU`0rC2`VYHMg+(@O=(`M=T@mOgfz^ z(DoDe;2`w+od7)Ow4Y+R#>|v-#@U?3#c-iyj9-b7AQd*M2PbobE3rhY=*sY-+k4gW zWLN06v;3bF-zy$~KbJ!>1E|CCyA%QC5&~aK@juoYokhG{Zf)ICJb;K9Q(9VzfRqgC zlo{IAJ1Az*#EW?tLtMdr>4GBRsQXjTl(!>04A^1#!-VfmBPGp>(4LVmBHk8H|MK4b z`#TM8mnqBNPpDZj%j~uyx_2jmQb5B@V=J3|lBbN)cNV(f?Xl?j7BG&wdv|8ZWiR2z z=DZt<7fQP1&P4-L+7x8?h_(BkthAelpQm6urk32_1PDqRs5Fv}Q^o{`1ReS`3X#Nv z0Z^oF&UQ72bR%?vXTu*gi;0b`6P-bT#!=bN-+)KQwX-9*yQytP-TM+L6jSzp^{ziJfxmJ)`D@Ui!Ld8>rBijgw*%F zp6QY8*{!z-J}q*RKib!#4|HL5Dmyk1AT$CN`M3GRt6z~Fq(~%>tv)`Ye@A<$+fNpn zgDVvk(R!PBpvc^4!*&osm6dVlTaEkt6E`@Tb&B&%0*uN~9!fKv z`?C-nUOq^hsjI6C*y9PHbCOuXw!TG7`uR4YCyN8Wgw=}m-j#eq$htCWSS$+JWDVCN z1kkEc1}oH7$QQzgZd2jHiQ1gDPE-0qyT;7yu1YQ%a^rEH78U-z{pK;s?pM4nJ2_7N zZ1m({kz=7Cgus|i3{(Mcrq;*Y+K6d(Wb~`E#&`zgA2x_)x{!cjme#F`ZuQ)wHEcFO|e+F zKMf|S)6I0nVBggx(%}YQ{IWSWu_fqW;5W-5Nx>W5`(oDuy?1e$K|YK2dsVC!~er1}^lo=gx^k1p*p)4X!BYFWX_g}U5=O2dgL^| za8S$OoJv4Z{M7Q@|0F#-~z;b*{katIH~7p{5PEj?Ba3PT6!;qITi7ve5*B}_D5 zYz$eRXZhKySJ(Qgs(;MmZ~MeqF;W)Taopl)zsGVKZJRZJG;>%}s$5n2>`3Cg`SZn7 zA^&5iP%j*~B-Ow`K6WI>I&AoIcQ2%WVqVX9WjTNB%0tKjyN=B?`4+n?15P%F?uL}; zpMUzPJ*M>e+ObX9$c4JDDZDt4U}rDd#NYV_ddLLh0LfPi7@=3Y7m9{+4A|Qt(M>>! z*@c}b!{jaD_3Kb}`i{@Qhq#t%*01Gtp=t!%4>xr-A{oI-$rc}NO@TJ2yv%M5-RHL% z>DU}G05S%HH$+3*>|1PT`x}y zK))mbrN@`#sUN~>$j)wBg%+^YaUoXjoMK5pPm()GabgIU^16=XP!FHu75cgIGN+)~mlY`QzYwLRze zJkJ=<`;PJb@%{6iG0xc@_kFLua?WdB^P20^TSY0%$Hb2j5D+kBq{USb5FSt|Jau-#vFTb8@z{x8q>uW#(Xf{@%sK z!I__h#rD4*V77O%VCh}gQU#5mIY?_eBOqWK!~aDr5-zkvKu{c(5f@SONZ+0J^iW%y zzdt-r`5^wBCb{xqI?k`WY$|#}w(_UH!d6W1i^^)570}cUVttjjM|GAFpT4IM3G~bh z51UHVd0Q1g$;>Dk6G)YOKpjF|%1HF+$#Z8ve|dJ(pZt_5DW*ad+x-&kFjFTOD-Ffo zaa%`&v36o`82Be^>VY5vE-o$_(_;!MDykLD|MwpX4+H~_oAj8^_U7dV5}DXAsDD8~ zOR>b2j1jB7(PLl5P;Kfy-@IT$03QzFxxRAi( zt~nyX(PM>5t4>W}5fQnb$Lk-+6{X*g6<~ULdZzO^OTzoLB_71cTUKscI!-pk_$f?U zf6U$y%*!D|F!nzm(UJx3`wO3mxk`S(ShOkwG|F@)WX6DwGyD;AG5UlZP$+vQEmX^9RAq z@@gc{a}K-(A60l)h$BA_5nkwEu4-TI!&Wo_l#Bq2`IXnW&llHZl9R)yGf ze-Kx zU#@At{o3QG?_~;~Gi}G+X+<9t3fmaTopYVk7dZM!-Fo=&M+$(}={g!#QUt zBCFqxM|E|z$9~)S``LOXC80~2G#>l)RO|9XpP^W4scPSAHv$#|d9W$8nqBDJ7d&6i z*4t9Ev5lPXYm19N_~DZJhjf^diZKwcP$`CR^^PyonKxAYn1*7AY~UC3q6U!wf(^5@ zRw}X>cgsEXd^1;1@AaxKLT4o-#ohHDs$yY$QPHc%j~|D9{(Qpkwlz-Yw!feN8_sCj z$cdQ4CLl2IxF}+x=$6`FXrp6hULR8uM$T?*Oa?FQb=>G#^Tp z@beQ&GVr3iyu5VT_|?Uc=y!YNczZf|45qi*sOy1bB=PqulU{mK_uxrAa0YWYZD@Yb z94YTf<4FhbD}f}=HcSPso(5!=+kOD%N-sOaoMNjx55>blSB3H-8&!R zmawpk=uOU)Ha~8b3V))cweC)`r}U2rGPSXS`eCmb&mGgy3(7w_Zp%_UOy&H5jJ|cH zTciTPrU+RcE5k-e<#N8atobnDx(78M^6_V;;Iy3?-!_4;wvsbo5;G^cmz0%(P8l`K z_6-j+PZH~seE$^oFuIz9G@?Ui@M8jAt6hdx{ur?kyB@1WX;9{F`B&BwKC}wvu4RG! zJWP^osc7_T6rb?}h?H%uEqYZI&NI~F;+R-O@3Te<>?cWvetiD-*Nat*19-AR_czWu z^){a%%g_1wQwtQ*s*NEi{BApsI!AJ)F3)D|n|AAG5gN~Ctl`@OtnHlB02AW1fw*{2 z+0N1Aa2bEi^@g3$!UfiG$2DrX*VNEEo6^@r?X{+qko6%}Tbavy57amBL$E`Uj*gx) z4hlNQC8886iFtTrORXPHnMAW$|7Iljzj2g|BJCT_cQN z`*&H>atH|_t5HBl#|zxpU#g>nqdtC&V#4KKm!(R2Mm0o@m2*ws>FGF`igznpj27yY zR>NG^Tyo{_XbV&dog17Y$eQSz zY-oCZJF^%+`Z98kx{2m#T|mn|Ee~ZXf%~G=^0l1IPr*QwA#?YogZN)MyKt}jk|>Qs zU_c)e z9@4{y(WAZnZ2dRd(`_iv2w(Kt5Pp^; zm%7{VSzi>u^p;U5A|u%}bfxOU*KJp%7MLRwc>YQbZMZN6II39UpM2@6&U;2HqfIor(#xdSi65ZYBj&tJ_0psnf(wlx1O)rmR!en|zj^eVjCW_GD z-VV*vz?F1y@BHbfb>38OD?T^UndRfM_E^yIJd4LRC!gP?)R)@|PYZ?B50j)xma z+@9p%J!kjO$ht_g0#Jd*#b)NA?^S1k0`RBH10fuKYaSK+QA9)SrZ>Aw^mN^?G<%in z-EukO8;9}3W-1T=OhniGSyX21YyVtGb!Ec92eq3@;W1ih5*~ag;>cY&uE4x55{$#N9#Lky2YQ2hgr6R|@Z~=eViZ^Fv<2L^FQvum= zuXU5vACZG;JW%Vx-zwmktzr9L1i@CEV8yYf=yLO}hq;dty+lSH;eer`T2N580O7^-C3-_vvu;9>k@#kD0{#(WQs86msrBjEpG zz#%ZZw*m~*^W%rtLdmuZ?SyWPIcA8l1MsVFuz?%j7}RRYZBnGrOS>@GM{Td>a!@54a~YH}Z1Yf)Z|^}0QX`8H9+Q1_UETJrPKUdw)gVTT_+ zx&L-q!+YQ^=bK$kj{fuk|5ZH-qo=0_V9~4XQ&`yePxnQ(+l-fU61gw5JI%COFE%6A zyqp?s4!W6GH{JRtTrl?e(giy%0ynp*1-^fU)l_cG6qMR!j3Z`2dRM+jOt*S+s20c< zA6x`s3;pa4M(-OOGzGuZdbyrz+a&+ zGd%(m7&JAS`?Pd)Qen5H<;~$|yR%~r_J(e|GvCdU^fmTw`r==5m=6*{dld`ESP*-* z4YG}?ec$jG3#x4IZbwoGX98@u;Jq(6Q*S#EuO!sBK9tr3pb-ME^E!tA%__y_Xg)eB zHo56wG8-IU`5bhi_I&?-c;0cJ@c{|7+8L$@ki6yZZ$wL2TqZw0fAv1!OXqbAw8-=f zx!!AuX40)Us9*%2cu9HRZlbn3|XsqXi+q@VrBhnAYN{&&Y&bMA}2Q@d_ZlkeZZ6NY>kGS4k4 z`ngTm=+6hDjLLW4AFHUSl-v^EO-=lEN$r7#pQpyvkhmR5u1yS}Z})t{>*?vKbXXQe z!6wJ(1jx^UmozUwUtPa3FE-sGO?}isFH#kWlS$8Leq=H^w0E$T4$|EtC+6E?15l2U5y+7zPvul-%^*jy^JV( z=M??t_dta8WVwF2kZ-C%o0lhfL{wCPToQ9;bWKf-=Ux-+0_uMU0RX|VX>N4@px|(Z z@}iR_XD26*^%RS#N@FD9n}eW9*o4Fd4ldfmG0W<+az%O4k4nf7LeNqCkmOiG-=(!k zkF#RvB@QsWzsZ?pv3g2RYUUo5z`v?`0X(i*li_|r$%~jTu%mhq2J^JqR z67upGx(#+_CmSPkUfX5(%zc<&dXmL$Ldxa_rLypVQdl_a z%a^B$Swi}2umxwRU{7x^hyR@qzsp9zz*-JyYr-!xO!|3>Vtn1DbyomMbZzJ1jvT8k z@w(Exe-NHG(InK@TQLoJTUUvS&Yo+1UBGG4FZd&KAHrH-h^U0ogk|VhWhE} zUNJJ#Ff&JiEqZh^rZl;h)MOMTjk<|6dh5orUp>H_YdKb6GgbK^itP0Rhm#HE_S-XE zyOv#Ux1Fi3Wk_fWziUb1g4tMsf&mnlfB>b@-Z_Ea=YsXM`=06D%_SUvA@~54bb2HR z%oOsNCA;^nje*YjXcMg=0fseJ>#_AHwcB{fX%Z&M<~>(*9(hM_EJ4&*q2m|ryR9%6 z4+0_pujxG=P9cXzb6NlPScr~@pk`p$7R?%EQSr`;i;G!F^7aIKF|VM29mFrdfc%YJ z1W&&dKCcB(=wop3VN%CUFzD^Stm**chkSk;fW$4;91$*x`g~B5VxS6Z5P(py8kw9d0 zkMnu=rj>ApWPVqAV0{j*ZseGoKEks6GiBmwN6PhI1EBe7$lT;`<-4hc#aNjxk7P9Y z(8=c5_N_NAZgDJoTBE|f5C5uWRE4^na~gW0siCA_3*FA;h1Ge8t#F1Mz&ZwPFm)6| zzQ+En)q=4TJ6`i9!g`-%!x={D?>;)aE7*5hyHs3-*34Ax>>0Ftq0Z9jx3p2y6(&N5 zugF*o-j*&I^Xv?^9Q(^C&|8|>X$v*5L+3JNvUsk(_}?tcd%17z9w+C$JFTCQ5Esv* z%Kt#^eJx9CcSWJs$eLs1WMAoDgR?EU7#NC4ViMPT(1WSu0ks;>N${*>V#k4lq^37! z+jRYBQMkV_0T)<)^o~ZuVyH+yMFIfkKu8Tf18#?L(gs7&o?E72LO+> z&(@;R%69_zYMBDtqU+~6FUg(;yGZp~!OZ7|WjTc=)2ZHM{#NF|k+yF(gZFpqBUe%k z*=I!GW^1s}BS=>5zKy}2Exz&r6iKA#79T2pgn<;MJh~SQ(rIoFRfJ=LW0+dVGcg^Pxo?0 z-PU2iqQZBE;M;n?TzNq$eU`{Fo9}Y6qTzNO58nh~P>9sODO4V-BZ&Qnr5Lxa>u>Uk z8bv+8dXB$S@eWd?TqfcB5ZT|plv3UL?K1o*A^_h%T2op&UNOqOi@!TdO%vQP2LfZ$W z0yrKli6Er%*hd+UJCrN=tUERFx@_PKrSTNX#G{<5;NntzDJ=tG_27>D?_uwBp4^V! ziPm*4G7eR9_Kk2614_!xIGU^N3e!NBMnP zL4X1S5iOr{!Ajk#ihFl=w}AIAKxsKFFeO}QAFkOss`XaNo@voRLPV|vkGEY;!vaMi zPo9t|?z**X;fRa-ocFqsonKmoiKughJ~p? z0d-+>|0N91V(NC)VCqEE?(;`qia}U@g#Wk0C)%CP*VM(wLz%rkWiT8>uxn!_OS|h~ zbe&`fT-f9&tlXY@m%bX}Rx$vy=i%~qXiAz5ykjsyu=Fh3yxt{>ySIN4#hkhv)0_*o z?x@xmI@%0h(<-G?Qf|nP@pjeC@f;*hOIfF0635!s9@y@-gq0|~r4RJGP+VMsu1{kx zrS&doO)aWze&d+a_-sRL@qxh*`1^G#pN`#w)sLBru_;HuS9w)*ExnH&>^c(Sei*HH z^D%Btj5aKNDAN-RO?8*arUS?7;fHE2QpvtHJoJIK#r}4OMv`@@wy14g`nmFUs=Y+m zW(h1N8$KaVjNm={sE#KFgE0oj|^;OigJ7W4>B=U_We4T&dmR~ z&3}mi==DINVDv3-r7?AeU$!7r<4xUpVes`!Gw4uo8( z(dekUK@=B?T4S(C%s^XU2O7x5xJKUeCM_;DgGg3IiQBKE$}T7rS+Y+xVUM-cumlDe zF}lg?yeWFxb7{K(Nt%QaThJ)KTC*Ovw;?y4hT;LA2O)u$nMUo_u= z&dsqu1bb+gvkdq$pJjT?r}~F{XvAMWbWl^lh3`LfHDX?keS@Jd(1MHFue#c9&*a;V z&}err48zObL3e&!a-m0YCrx~>Bq5W^3pzpE#LyKQ+`gjAL#CJjYoixXjU2_LQZFTy za&F5kZHQ7_VP-;GtA4nF{1$bx^KGaqF0L?ZhIwRA=yD+6z8I83H}-tP*I}2-h4@y$ zGebuttDWY46`k}N>&3tHuiJg4;N?QZI3Ei^a_B%LoaDp2g1S9rU1N%iw8MF3o+Y7J;xn z6`(PN8)&uV8(ju2H1ZI1*11xR9p>Z)3{u7C-betCbRZE}B0L4ZTk=+UKdhgS*#l;% zAfwn!vEUgxM;P=GLJ)<=o$bb8Bu-2XpEr87@z*(2ZqEi^`%ni7-@Hy2L?5VjsErEx z^bh9*M&n0ZC+(mLz+hKP_Q_4c6R`@i{??&m`WpcVvdLsOo?!r_iQtasx9@Y7eLXfy zoz!p{iT<}2II%H2Cc7B4<*6HVuN1apC9~wND^ELr)2D?9rlED*R_A5rg0VF&&57X0 zhpWlT*-Fsl!M!)0#$|hc+dQ&ojcg$58@Kv!nHPDM#bsgAT=Io|)no%!WCH6OXl;L&XG$?Y(E+QJr(C3<0N+vY6AfWm@^GWs zng5sbgLj{03s4Q1nVX!SvhWQ{-;E9;|MGTEp$M8;H^|c%hlz<3*Nx6H;2PuZ2sNki zG_+~gEEyyIXu{rQmiDl#Kj+($r&rmB|BlGv<(aI^Qf1T9-EQT{<5%?woR3@1&UyXL z7Ek#NaOw5~6K51N`0*jEgj`l%U{!#XV0+i|2p~YfLKrP|ejw#_SQ71}qYB*Q^nFau z{Y)SQIb~me(7k49-hb+68ghz17x-^6nZHJKE`DtPIKPk0Tw^R?14i1s-79*f08Fbk z8-U}xzW)AqfUutPzrTGZ@D>-%wqVS(Z&J?csQ|_^M(qcSLuji?4T5s}?%Yf7$_(eyD(MCV(GS$^T07&YDovs zyRiyGVK_$!U7enu1{8S+K&hVO+cR|xWUt-6ar!*P$5&QU`@`jdi>6<v( z62Y!J$D-x1_YglW{2}Ila|k3nc8u;e_jk7db&r5>zM^-w&bs&R_L{+`oldpj;N}>5 z&5wa=`O#{ubah(3@d$?|&8)rwb*fTCcP`=~U6z&5+0HZsPf4Il*S_t$#4~-hmq^J1 zp6r0N&ukF%J{#{l4wr_kShLYJ+E?A2$q}}ak@m{{{xwr;mLOeuylH6Z=Ee=e@I0^p zoR*^>X%$jq5)!^=-QQTGa$1T4UV+#5inBM0?D(n`2^9;6ghY4QIV3a`kBDgVl$Po% z#3hyS(h9A^``(>ve?mmYw)eLODf<1|o~+lr>%ms(ubRSZ6L5SVGG*DdoctfcRB1gu zQm`s!r&|*kq`Wu*8L!>rva*z%oSfz(b;OBlN1LN|e5d8L_`c34EcTymC7+yaE}z$$0hM;EKn z@#*P$xe3fvqZgMtlgntNo-q!2wdJc)9$v%(r^0*jYV!1>+2fv}V<{XK?`ozAc^#fh zNJ!-6<*`}}r#IiR1K4n>GHHyk&sdxt^R&Oh6tH3vBmR$YyXA5s{I?C_XXoCLyF+tMy zTo%0K@@J~G6+2oN<4u2=?QEfS^H|RnpXP;#9%){Is3gkH zbZ!D86=r&OXxMmDI)sla_0VH$RO(`_QGyo>VHUf|nveXJOFkJvzol7eRF)uCQi_X$ zO2s;#i|ikxK!UL`SHh9jzSv_zA*6BoGD%w~&A^R?0D72xH9|u*@pcHb+%hxn;_>An zHbN3+$UG8V3;lGwgg7zTDJ21J*5&x)Hq!@?kVs?O>*K+s*vuv6k|~s?krxy;QwU-q zvdH;iEB@iiLoY?74%2LS`Gi+LWIhd(b_xM-;8%_Kb#{Ou&;TyxC3(y8kn_ES=I{P%oLcm}__6%1evzRA zPE`)uqQCRYa}VSxnNsVY?`x4GWc;>!X@BNyr2dPzO`ffodh`SJsN-JpnJF$B5eQ*a zUW{4BwbQlDF(tk$P44ChKG_>53CNR+d;Su2;RapCQ1i%?gu95TISf9S@4zYToYr_+ z&dcH3dD=HTH&&u_c@Q39ye@xnyT3e6*SJA-o@EumOob2kiB9a?7OXDQzaERBezCbZ zV?pm7@fUM>c`;U(awXE}=uk3V z$8Ny^echdxCEzP#%lNFDy8`VEM% zE#BI232`ftWigtEDT*~SAYit^Xf8sHYVk+g{@p~eGlp7k8>E==_bCPNl=zpu0dTma zhnLgogHQ?Nhd%W>u4WvpM&l4|8uS73aBn(#RGrb%Qs+Arl@LH8XozMJGME_TJ7-1{ zSw@|%S^FUr9}L=-){>Tgkj(eO8)lBV@(JT~;@X^b6ly^~GS6rzdC};n7A75YxOUz! zq-63W7NHMhG|UcISufPJo}9(0?!Z_IZATvxFn_!M5H9`mm+iAyNoF=$+%)4-&Hyc~ zy!K-zRW~s^P8w1^`yXNh?{v;oe}D-Bh6guZxxm9d30sGoO_qaBq&*W)Pg9>;TFZgZ<>sznrfJEmu4rl3 zJdN9QFg*aH$D)*+5DaY1mwLkS%HFK9q&kB(y$+EH&(5F7ehBVn5o9Dn+9X%sR)V;R zc<~*dQZR#dzs)1fk^W?`<3WxJehMtW5)%`SS%N4LI<1p7r(bJ*P z{UPsrLCG)DB__U={#a3hIE={Jg4J=NN7h2nhCu$7=QGq2Q}|}d@1UyJ=m*C8-x%TH z!?uqsv}bS>#kan|-@qNSJQDqlJ~%5-(Y=atpcqX@gYAvj+b+6<`hMbZrZ2%>3zSUY z4N3PW>0bcvN#hJmrFZ=@6D!r1Olv~$f~h;PHr{=TkfzR$ToWh$FsjZpfsEZU&_*H0 z2mg`4FLo_q4~tX3SXwFT}S|J&#}+ca)L)#s^#&ZrQ`d>2yf zXASYdOc0Gc$g8cV_BM1|8-g%)7Ws+s;>L!EgKi>NRWp>$vnL675f9f= z8tj0ZZ?r9=!*jnsh%lUIqLWV8fRT;H6s?Q(M1$PaRl$js^=p)}xd`fST&;&FJwHUD znE)2-37eSI#Q`V6Iph;|A(K!x3a!}P@Z)H`<>nr`z+oodE*o9uRn2O_cth#0vQS0QZms1aRxa8FJ@)^PfI{reSA~ z1F{35n*%ZE;X<3Y31P_O?7=c*+vgWmSHDYYYwccsiIP*-oY}!Vqx8JWXu|mVUE%vX zk522~J!XGNM)NlS@gLIp0I^YlVumb$W@+5EIZ9bVbKd)HK0sBG=^TPZ*5B@XEnp8Q z+VTG!)>B?5T-^Jk&H4es^SRa2 zLy&=Z3A#OSb-LYj)X#wUexa4Gs;bJBM>O`i1;2uMMb?nqwn2##ku6<|S5EqvQc_mN1$m-vg}kpnr_x1wQ^-=P>?HFC-lN*OPr4&au_d1y9y``5d~@L7 z{U`jM!fd(r`D+s##QASdnLdS$zlKzQvsw>p1DTFUFwr0!0SxNH2m+>+@|L{^&jkfD zE-pL(^WO;|eF{*nOd9$N-e2?z)BCoAOn($$iQDH^0Wbzw@akeWY`kOi4vvE6VjRU1 zzURv&b}sE2Ns8LJ^pP_mPu$0IWY9KAIf0?RJ-~@Y=>j@4e0=rX#YLe|xTGr{fK(9? zME~pAMUUOO$)ElGfR-+Q<-XTT;V-|~?%Ovsv5qtg^z;Budzb+N zGN3DIk}TEUVg8w>-lbRzU=oZ~Li|B@(!uhv$}C7WJb5yAp5=YE)Au8iBt_7h`*?kb z!QHOHpben}gJOAk`D3X`?!zW}-CWJ=YO~szPa5KRSXVxcddw9m5!LlJ(+}QIYd zK-fch%dyJThtY<( z(}n<jSHvCCZGiZeYd28Ion=HQCJEn|zj^#f z_@O?(h!wr5X=kS3-~N15T3!W;61a|QXSN|4XpZ3e4S3VL4U0f}=dD#|g7;A+RCdxgl?EJ?M5u}HI4BR@i@Pyr(*Iq75>7<8r|Bj^* zIOB|Z?O(n`Nu`1WjEfndyv$xFvYE_(mW5WeJinZ!fR>p~Z+~3I3qZrs!}~-h!uqZv<5j&d-}kJ`6Ac+`b74iOXYL9JVumB?c&lEKC% zK{?jsvN({UjVfS!fj!fD5Ax^4V@ir>+FYB<#z?=R4brzeGmQraYn&0bxs-Svj zJxk;sae~K9$b%yJ*#Q;%0E;-}D;VwyH5XBQ445|l;T@m5`U!1e};ZxX0oO!ocNjTq2I&6HpHv!L;CuC|`Vq?R7 zPqFG_iqRtV2EKI6AQ^9d=j*L|sqWagCF8#eC?$|{Q3ZpE)Ud>kF43rEyc0+iHoFn_ zqIe&&>c4IUuuK>Q2o8wLKV6yod9_u>GY5BoBKtD?k_@UU@?As^{nQ+@?3 zeDZE{wWB8uOa2-kR*wuS9ao!DqYe(7Uys3Cl5PWjnUjBl3kS$vwqyz25A_emRrjVb zi>pQ-EPym3X>8ORY$ zoo=V~e<>xiLtju~ezt3o&W!=wW)#P34PpTVMv_`S&jl5o(}SX_V{{Mw#0cYoP-Fff zglKtjVq(zeAai~NfcwhaEOd(UJ|ug2jB80Cw*ssK%!=!^gt$-60VSq}tDpcvB|@$| zQWYNe8$kgp>c5EcxOo9kr=l*R2vXpuW5G`csev8$53kZK*59iX%0I)qKr&?Ja*tZAEjq-Jei2y06mfUiR)j|C&%-Fe0j$+nPfQL*nTF5;c zL(?qBjJ^Uz1`AYFk%{I)dCJAL3eC#v z`sfRu4f5F0v^Tj`C?3L`0Pq(TTsp!yW=)j3)apIZiKN zu0^olik_j!`Sl=0hUR9Hnpekg%b+VRvEW55INFNKVu4XW=+|iVF27eFrM9Yp#&Y@E zVSs4?weF(^kfUs(G(E%z`Rza3FVy$O-nol(*G~4Mf)t!34!k1}>x#r`L4oWWawdNd zgl}1>@AIgroG70P(Y*RHTl&2dkJpA7PFG~Y3`SOXr$ONGXwFCi%-Aa*=}th0pD1ju zU3(C+IwNDu7!>%UzNz=}0BHx)#}rTA0)ZD{v(5YOT;v4lbstte`Z&XeP|EvBB7r~{ zk{zgumK?cg|4qOHfsnPBBALfMRMRjxQ;?EdLr?(7czMC@d!xp;sw`QB>2%MJCk4wY z2@M5#psy*|hb^Nkqg#Qf0rQpdIPn{IV9$X!kb}V&vhKy-+g_KInMRh)S8~{Q3XsNP z`C};o8F30guZEz@?!Tcd=Z%1mTy%NY`HKh~)j!O2qjo+FTIoHm$(Jf|_RnO*=~z|TYLFeG66EU|Sl4~ z=aXIAK)X^ix~cRXI|9O zz@@`u+k;VAhjhlxWw?QTGV0U3%kI9X2b`RusVPltY%I;om&ePY6kbtT{I21EJ;cGo z0|K>&fJOV$`2opQ=slVcU^aWZ>{*8yPAi*a14HrLv7;%)9Fm@=UYrI$$ z$VANn*aJ!IP=ErHDmw0n1As%Wv6*IH@IBWD0_3R{cNU;m^l!t^3zYh?jscAPPZI`7 zBciuD)>iH!&G2pY(-UK$xl(~MCpR}m$d^9|1vBTr$k4fKXSlR^fTbhdb^Es?1e0eR zXtNbxDl02LefkuKh{%&t3=d>CXvr+x7#o_uuLqu5v%IwYh4)u=+W8}L=@%2o(fs%c z(mHi_ES8RrY!S~`3V>q=Fs-_#h7U-7Zm&*{)5m}`1;|f-HoI=q`(^^cZMtINWEv+z z8n;N6&^LXyj&8F$W|F4`9e_}3vTyjaMhANS=xs#c7{Gk7>FI;Ts&Lht5zr3lIey0n z@|Iu#mUQZ@)?EDnRXNq+@1GClG3$St>3`>$h06TFgkQmlpzWs>yQiZ!E#Vrp3TXe{ zJ(;H{0;eJD%d+#u22dgC*4uo|&JO6f-L)6EIe?g&nN4^h0Ayqiq)D048Hz7KkwBfF zP_fjaFPPm)>Deo)@>kF1WP`gP=2PRnU{UGUoG(BP05v5gVgNuk)sCx@=FrR`By0hY zmMY|P+ex0>=>?LJu*k@=lS`m>N1MD44+2J0+gtPHC`yxkF#3AB zb;)_m=6Pg#b-u3zh+94&Jpvf{-B2o*&&i0CxP(M(YHEKnn@Lzy6fFo@0A5W8%@J3) z#4f2eYs$GYjUnE_&MbjD0J-|C?%u8-RL_mCp;Mq70&EDE{e_HZp{uZ2`wp^z{}W5< zMbvm91(=$CkkupHGpkdr@CgL@lH=_uxEW|(5~6Tb@D&OiIDr;&7*BkZjfURvM~S2< zEo;?i%UJ^Smdw)8QP&Wm_7hOcvsIr#idMrb3fQCfcQ9UNtI~X6x>ZabQ>@sI(Xt!d z;fuBS=o%kas<=V+3=~Q7%|?JemIPR{cg*RKUp*NKKd?x+39xnKo%E{10HHW4<>l zGZPwZtX?TX+W0z&w#RULQ3UiXx9|WrN8b6hNmd7%=8G<*CI73|u-u3(V8Zk4=zKoL zDWqj9QLrx%%k@r{o61~6@H5T-%~Q{s3S++oHu8g&kZ4$w1C}+mY22Buc~gFEzMtP3 z)N?Z`Neu?Nb}G4?Tg71cJh2KUIGSV7dwSfjRA;OTAD36*!N`>B)<+^V%iK=&?+V;d z1E#;*1gdsCGR34Ptw^Gq&}HHQT?RA~b)8hn{f`$^RFra{!InF(C;HD!oYnpMf&TE< zXRyUDBDP=AB^?5j6FFWM7jL-Zfj{L|H!@@ptPxx?Z82S%=9%)NHFfzVOU?MOo z8U|5va6fqkpUk1F|5H;a`m!%NHN37~`iP;f93lfa1sVP(C)M6rz4 zm>+--M8I`h6+Xl#Zy!@&Y8NVIx;yi$lLJ{q@{B$Gsy*?3lCjJ#2qOS~h3l@KhfC+e z8)DLXge{Em{kwQNO4`8dfGJijfekXCZ8;ra{Ap%0{M^=)n0X+0s4`aQxxT`pc;1Lg zm!%j11-3#O`>JH)a>I+R+`O-$^OdoFP#>U0((0oAnW8v`CxD>$KT&3$-zy(ZwJg8K z?hAb<)=F%5XY3s0D1^)x0||K2GSX-pIQiyISTK)3sp5Z_07T;0FzH*Bi}ztdmk+Pb zElkuX@%FRl;&cX3qJ6pG3K3JA;YUAl^4Fi3JgFjDxPLm~sUc3x5gd)u}>Ep)3Ti;KACk!DO9Tt<=h^M6f2LD(c1w|vp_7A7;q604#*<&)Q zCr?~vUugNBlbKq8vV%Y03{=dHSsg;7Sp2S$kM~n5Hn0D7Z*O?Kj13o!F7@(}h8b~~ zgo{Ik5naP;TcR<$EXmOqGBo;edEimeHbHS3HOqBsEwD;%uZbp`y*;$dyga^`{YTNk z3pD}UWZUagje|$;wstA0z5-ULYim@F%_KF>O{q!~8=LVwi`(Y23^@dkN8oGB2!i^= zte8JY;7rl^Jj}%;dHy0eJy~_lS`g$rz7wM4fBwxWSOFhY>*aJ>%>ltL<8Ag6lL&v}e1J_r@2vA8gz(s}B%^4pGP*gNe+ zFa<-GEe<3&Zqc{)?!S+`p!+43z@H6&r37Q3n*Nmu25I4#jGEfhf2a-=FWysocwN|s z&s}JFyIKBr&b&y_$B%9UpWwzC!Tth%v|65p&cR`UX9AsLO|>q_53?s2sHjHYZ`8{@ z2U66V1Elrhpg*QeOK(XNxN*lGKSI+0VFSzo>l522FW>MmrKdsGwfB#Dn4==le@2z>gp8dDue=$SI4I(s*xx-3*(*(E5JR8(AFXPNy}y!-`nmS{q0qq`gP zZw#0cF`MgJ<%bGsii$;2!}MMa`CNzq1hiuDeGC>Uq<0TR6mXbDJm+SD&6~p`{FlDt zKC*$S#Ce~72CHO6dw~!QJe!nOz-(q@WZdK*uz1;#XCORx>4$vr8--KsqsjG1j#K9 zKt(ZM50njM`IFWKPG8gdi#B1d$QHi^m|8T_u4OzwZaAM1g~RQJ0#EA0fZJ4!X2b`P z`;T|urs^Ift*Ly?1eTBnu#9jqxr)jYAbQRNNa$wALf8b9c^SY?_U1`IWzj+iHibc9 z5SC5`f0yedo3E+Tk3}sly9xsIh-f$8o~!XwQ=xPjAjGk15e4}$P%~(?L<9U-h!O{d zwzl?XLbkxXJQ_gC{8eg`xzBY0(Xi!6PB5$$)Vm#p3g2`cI|2@B+pb3h6s>^_5IV|S zqY?MDpK$7@h8BSjt3DvC4Yqh}J73JQr|OJ*LorkF>g64Y>}+v^`W zx(*RFSP{vxnbK%dzPR%R?`Tj@_z@IMX?ofj8&ks7<62dLU%q^C>Saj11m&dYARC@J zwA@WKuZ=O`-*VP#t1ZH($H1Un6i6wZ)yG6}v71PlmvTRj=(x}6?^b~){yyYBFJjIIQN`l;?4XpG zCjVHK*SXc*$!1nRSwp4AVa+pNFU2(UbzdV08!WP!xB&b}E&=;;?r7kM4yzt3%s1>3 zH%`I9)b1m>;Fi%BfF&Xgr9Va=>n0dJYC&IT3LPH`0I@r|zaprTdi&(ba&C^sT6=Yq z(P5#j%rL``kt-DsE_`-&BPcmgVn=~&1&}8Mi(eEKse96qaPP@C#^bkWs1d&fY(jGt ze$ah$9~ozNcPHy}CQQYwvnKCi(4$xApAM9jOONP$3u6FGEqp0u`ErDSZ!wm~pIG1k z;r?>cT7I(@H3^gU)ai-u#$w)&gz3=*AQ%HRwmwf)} z5N4mhUBPuP>%HWlm>D$?7yr{eRU-W2A*0?Sg;wWe2-@broSZeHttAV<@lu?}h^(fM z0AbBx?je|d^&;0u~r*9AM^29LASg2N{u>2Pj^AE8MQ- zn-(Ir@Qz=Hr}M@%o`LVgt%c1u;xKr5PgP9X<*Ru;cyhMa4G#tDV~xdfQiqE>W7`H5 z7Y-g^C8a3wh5GH7Eg+ItCFXgV0%&w}l|~<0oGt18`TiND^Xzw*)I6rw4Nd9j&mdP% z-z~Ud-rVjlfE*+Ed4-=Jqk)xZJXmPS2Xcp+tRMoW2OO`!3ge7l*tdLfVNnopE%6y+ zwV~m(eb!h7di62;2ZfMqa}s~RiM8>RAONKB-Qm3K!93kos{tCl$vF&-4n|*&m0H@- zb|0(Mk0HTClj?M=Mq|{&*}x44O?&}OgkXFaU~xa+?VRVHUuNV>Y(w-a`j8AZuyC+^ z7v0jHj?Nk2U2zXveqAul)t9yC7B?q>cOUAlcI-Y_a(H8q*^(6c&tIv%{|Kjuw+z6Z zd&2tFaTd(1cwk63I7nd^3IBijP+B(W|3XLe;syM20C>3()bES~823%rVZavQVQ-{smj-G(RIGsOu=RQ zH)g=?^*J5^fn=!$;MZ(H$vqI2R~&f$k1DkCda);9+$h<0^}ql1OJQ8IB0^?8Q9nr zL#$wm^AL|L*CEx6@OocRQ-290SDSN9HIs*c6&bCyRMn_3*!8pl&;=BXz_nOB)bOQ1 z87fSP1`Jsx$UnhL#({a$qXix` zrhSeid!5*@=$8h3I;h)9=CDxAZ_pnG4}!VFj0XGyOA%Dc7szb@mFofIw_;m>2mYr# z4+(z5L#&s2=>)S%1JL5c)C*vO5^(b=X^I#{tLX7J*m7W)2JhFYJLL;E(Z~^)2fkOX zK{(;pJwzsUO9iZv4ud*cm49e{Bu*;O+7-aHMgS^LVeEIH00BQGKjj;0uolIJk0}t> z!(3v7o|Cm0qt11iEChIhkY~aN?qnc&`Sl{*An)>D+6HlAQbRv~>pHm@kP`*myEqNa zMt#KpcV|`o*Y2)LGc;pt6XQS{zM2KH{`Qlm9W&r&joxSq)aT61%$?L=)^QEVg#FTs zii+r=Y~NDFp9(vH+c3bL9RO9lBb3Y#Y8cyu7fAvAp<2tlebHE537>vx>faBB#SO0s zJzsr>fogbB92vh$r+H~}3H64#kPSBpmej2s69o}b@iPm|O`VDKa`mCV9|`s@ZC2$% zJMz8Ev`R1~T4&lpOOjUENcPf!fc=eY8bq67WDc+X1^h?>?6tig>Dg_C?=9oqhH_<#J* zqCU8Q0TeItz>83TE&2>9FKaBISI4@=?p#e8z-}?0Hxmo_G{V~{L-<#&AQ%aWi;urN zfM5&u2JO1yKUrSQa9=Qn*J57p)YvSvrT}!C3M%VB4JzTrSLC?_O@qF_vV$z&vlQ4A zxEMpb-i8QVnZXR=2l&!o?{^3Xr^BzB<{=1n%Iqd2nc`u6@UCy_t4m9k?9?y^`B*Zi5d7!4|H?fK;~M-+6aL3gQfR z7$ll$V+-F@x&oZ7amDx5s|~EgdqfQl4e$lmwflJ&Duotz+R#jge+MkR$r+{tG7cKb z%CY_(h{F8$I@*b5^KP@YzkxDXc@y?=tB&6F@cT2}incSIx9#P`w}bE-Za`)MUN4>5 z3r-&3=S@JlG$N_C!_U4x5cOf{fooUbi*$42gYXZD|9R5&U!gO`<#xUIxgEGXWZ%^` zCnskEey_$1+|$8}q~={GJ%=|ZD=5G{511s}7rujCMu2{X-}1n$-+a)rcpC)?#rBR0 z-a4iK*Y6cgceKEB4-@K|@G?Fq9~~VXZ-yfD-iajlxI(@7e+Pepy`rZ&_|KlzcpSca zjE*j&sEE}+ss78BQF9VrR12!0+L&LxfoBD(Or!!N@k!w~#()w+IO7lEv{ew6!4h@t zmcd4U_df*KQ22Emz+!iLAK>=ec9w8kVoT?k&(qs?t}gL=k9vH z&>1$oGgB7W`ff5**R+JGf#;5+>Oo6UkWP}fWHCh~56cd?_Rd(vRD>PJzI zHS)ny5cU%a3MBv`rkY(DfMneixJ6JGeUBizuLBP9|B$$Vt+WQjB}M>`h@3ZDoh*yd zPl8kj^m@L5l02IB}{6D2!YfM{Z7*-Z^Y?*Z`!wrN)H%Nf3PC}QCF%*Z0WH@J9 zTQ2Q3R)`#+3#L;pT0{u(vWqEDg;+6LI;9t(O{r}u#W77w6Uvx}0)q~+3kipU&~-y- zhtFaAVWR*1d48Oe?>pc7z1Qb?PCA}J8MdwO>#RcGm%_m1hXpB+Nv1iSlLwwXSejd= z>>Pn>plJ*?24UEIWsOP>Dk8q>B^qiwRwCdp~l-BO_au4xZzN5 ziKul`@l9F|kN137SlHdUF&SX;r*IvUki4|l6eO?w30mzNP>kYRs|+)HaSXGhiZ+fZ zdz}kv1fvEb!h79#so14h7iKYgCrq+HAaLGR4(NF-i#0-x!|+(8qf;i9!{LZZIsFxK zG8a2W8rZu>?(}VVrRiIx1MFB@vFPdjZs&hwJFNjrc1}(a#C`RHOob7UF2F5C$<#1yf#DD}RAR=~AK}3V@oFn*$t0o>Wxemwcb89=Ok&i?g+Xet z?W?{hIuJ2AK-SZ*y zpFSDgIc^k-5nTB4{EE;0eH$1&lgXsGnf74$f*-0j{0L!97ui$!0oA)YuSZ;u=-ayb zc2SWsw5hs!dAf18vw~?11{b7a1K}Q|k8|aomw=&Nqu5Wy94rkk$!(Zoy{NX^-=wZ) z#u)JTqH7nF5AY*%6bIg)L=nP8C8365PcC{^BSSyD?rc~)@{1t6;HADQEH-t9j{E|F zf`lJXAxq|BryA%i<$|ZM==<k1s{DPNhd2-jhGpXU0|P_;0CyE3 z5m9`iK`Tt#r z@47k0>VLUWvOZnU_3+uNAO_jUc5B|no3nYZO&<=kR_b!YuTrI&MGH$yA#xucS|E~G z6_k_^`#$gAzdv72RNG$&Az*m)2qGIrCabPaDCDsjTBMx1Iy&`$)KoU>4XTVb_h9-{ ztXkVa*s0xbN-=){+rf-5aF;xft%?1UldcpFBW}-aeYi;z8P#(~iE7I(O;Iie22>g$ z_xAS>o~ReAP>SrgqwOCYNP2qD;r#sWGdo5?EkP6e5$cb{JrC9OXb|dGOFuT#> zDbYRf@vF%S8r2+;_g-^8Se0$JLL#D~TDxr?TV%HvYq|b!xMaeJ!0rml+}+;nIAsnF zWe4BxcM_mLmbyPEV?!axM;*u!r6LeLCKS8ce%gF8VYGjCrq&QRQm824bI4@syTPoI z#!WxIMaE@H{eg<#^ZeogsVCfm9)_0q_{G~k>yA$v1uiF>I?)gLaQGZ1LhI}K5vg3U zw>MXeLPCG0O43W5=37622d6lj^`cWsVSk@582OUXb10<0TW?m#dcdAK!HTliVBhMy^DZFF|x}zEi8NwffVi^ z?KbVbtE}XD$Y&qAuwcIZyBh6iZCGAK1rMCl>hjY;DsnDUnVuLL*X`dt=;-Kq2DP>< z8u{q>G(w@JS|yejhbzD9UQ>P6E=?$!6!t&ohCBksG5%Rc`H1I5=5twag!pt~(WWiF zC=lc|WqOtQmR*sb3~C?8&W7Rx`Uh8m$Xy)db&<7#rsEwCJl%ag5e@HST9y!5LrF@~}PLnclA?yn8!_C#^Drmakhc`kI6}; z*_y2E8Oj#^_084F|DcPUMN{U^`LjYiLmICQ&P1hIY`IbW-}8edVCDhEl|DzSFCam& zv1*O62PY>OkRLyO6jDDe&OvVLo2yfc-Z*;ilW{#F3W_w?)&64V`b@)9u+!Fh(aJJD zQNdxoU6ch-u+J(wy*TS;-8TIxVfFQ1DW*o;r)ps{%bdW+4#(BHNjxb0N zF|!f`^7rrGkvHYPf9pena&yfPJWD!{JtSQ&ae9r{X+~hI+=zdAxF5f497m$K+@bFYv)#tw0X?d;Rtd!I{!Rx?)5KBaq1$Gc>pwpxJ%T_!e*E~&_k`{3+qdcyzw!;lN-R3xEhego1(%dO0mq33a*E?zGo^-xhWA1+ zR+Z~g_cMNRe_)yiz)(K|Uwk#!EQpGR=DPlq9-JvH*qzS9mHuB1Zfn%W%nS&&3E=wN zR!om-FG=;XVj|wZ|325^r$rMR5rItJh@H^TQ0>@K{c48O?WquOjFuZCMFPIZEFkTK z2L(a2;rc`&nD;v#sENdvSD`AZdPQMWI_nH&!&vd6PYtPTU@hExGfrle=Mx)2pyZ%(JwF|`uL_f>)xLArtwxLoo z+CQ!RLW@AekBE*|xu|))Cu;fQ9x~m7@Ae>*GV;uJ{_v@(r2&wFlk3Rkz^PfNkYO|+ zFE4L(dwrqb?9F3X?{pucUuBN6+qlIEYzYhGKeOH86yy~}j#w$9C29pAkFXeiVUd!O z;syqXj)k=ZavA_DQqy&>wP=m%olL;LS)J|9ZeXT_hN3r#;pvup5!F7%sYr6Ik&3MyFwM935$Lnj^sLfiNLeq3hd zlrMg&Aosa~rQFTjK)z2CaJ7t4%>gSKD+5;qrh0hoQA?^H{h|+&2aFF`AqL2jZ$bPm zni>*4>iWE{(^%UCbP~qjSVXtFTPE?jJwe=jZ8u{rUx9A;9`A zXE|f#6p}yceovUstZiU3F&E)OyFr3shCj1k&N}4yypf-A#XIr1sP^1~91 z!v1r!y2F8(;LRUpFV2Rmd`k9z;1z?F%{V`LH1+tPgTcz@d2 zHyswwAe3ZHqUw03qKb(~POQ>wYptCpvO)QG*I1i=kWW_ptkPkynlIyON(qE+Yq@=W zLWLCd{i&%{nw2?6bGSCR|Gpe9eur-AuhH68d(%`c)oU5QZ+TS$UZrSIPQT%5_gXX% zL5i%0U~lv)mEw2Gjd%_7wKsoSRvE5{mGOCaW8u&nwa}i)h8NRw;7MN zzG=^sJnez&UR7C=OwaYD;eXav>`>bIgD-9ZWB>Q`qVe(VT55`Bq(+Yu-{|+f66(DN z{c69`&zfk3EbQVP6cr$i9%!7VN#>UQo}ZtTo1}lRl9VLYwVxQMAAQ{Op9lI#!tKsd z<>&RMfTdeo&CsIDJ75KY2gOh)dYKC$BGQQDYK5#0Chm>mJnsIS_oV|TuT$w{6JJ~h zVMYxsl3}vS3Tqz$z4VmR60^g`x7BBD|97w#9UVa>xf54tD0XN1id=B*(vB+4c2^}3 z0kgJFUmFk|&j+6NJbn10+9ovlvkr}`=Q4vp2QbH>0upX>h|9YAguIrcPC1U_{7{wV zy?^_Aq>_v8f7jxln;c|WX2?frP^!s1tQKWVfIN1=o_F`#*MAB6Ih}0cLBsGIfO)ap z{R<Tg#5u*xwV zu3B$MbLB>fbcyQx{2)$~!r#w@H^<_uG(WzTR*kB0zV+WYN=@uCY3O>0G+pW_jP+S6 zfj2^a!(~Q#_PW47yKirXaG?-+bFJLDw+yynYn-RtZ7Hc$|!ikb(AN$ zsCq!?c3WH4|7y?s$d-D#2IG7ax)w$ngtR?sn<-xN!)0*kZqrJ=)x}|qV2PCDpJ(RV z`lWn4nan{m-#*4R2q8@n;TL#|eY}&|vNl$R!cYg1?8{ga^S`r6y9%M)gJ5_Ij`5u5o)CZaD^NBHpr zZolV03$Y2wpNQUEU;i^F6DDR9QD2CKg+ZX|%_Z-B?K=3~|Jg^Dy=Ynv<@nmql4z6$tkxFH1%LIHerMmPI!2ji6X~ivUidm0WYL*5 z>XL?h?ZfVT*><>rL7;yKCU1>qarDwqAI4Nn3PEu1vOoXCc`ZueTy4K+G(?GVv-O-?}`7kXgp=VlJ3jzacU8#Y^ zsahAh*9_Y0+l_rvkAcg`C`dX6gpwvIwnDI(3gl48IU#2L^!@1|iHH#pG-OX#CC~{l zgKQ(18V7OT!7*-3`r5HyNX(WO@5`9htZr@9 z!3@~d0OiG;CtHb`c%F3lmpwNdr1>U2RYIw3W;nt&a2*yU)MqoQZs_|hzMToY z_1`pQ!7zxC*FW8xkL7B+CcaPgT*YHP2nB5)5F5oaoTkm*s)2YQtz}ekFO-&8KUp1k zX2;Np%B(DO{RPGdeWT&HGtb4x+OV>SB68!tIXV1l><3MW+o4p9oW7-%)xmb{uq7zt z07Ieu`3k^}nD+MeBrZ<1#|&(boaR&Nt|lvA-s7WWEdYsSH#gtp<*Z$*i2?Y4AHNFZ zc>ocYCFFqv)rBh@9RNzIXnqzrCjuTCldOBjAh<(1!h%HoZh=PVyENZp7xOg2?y~}2l?bO-X`3uyc zfHUAJ@+<=M+$->t?NC)R@BKkL~_|$Q6 zR@H@VcIJ|c>#FrrIP7J*F4V+6bO7Iw<-ir>5ho{pYip~1y%WH3 z>v0>y<_-Z24CD_UvfZDzw0atlmDm~idZ{jJA`QZ8m@wxiDgrP{ExAe_$QI z+S+RQn8%7=P*Dqe4($F0q*4SZiYx((R@#9Bp%#RpL)1S?g=OV3gY+d264H7>dU*2c zAP9&oi&a{RWr=ViNb!r&Z0n~u)RZ9hMx&#zv(ikrveYdur@ySBmBQKjoYS0A-maN1 zgFRMhHouz|8%v;+%J~6sTa3@1kpPSAE{GM294S&>TK`o*!DESTSm&6&diWAJm4zqk5k!gyv)k0m?eW~(fpqcO^(cD~y%x0r6EjoW+U&%`1t!yPIh zo#WYfa(LKL{34UvZB^w*SJy|tC$3MFQ-Kn6u=$z?SO?vlAAx?;^Q9gE0c6OkeKsv& zsjjrCF_M@ZpCTCPFdL=d@CeX?ca5jW0;vQ}1!Q2l3|<;rW$wo_uUHU81~&&8@#E%z_uCvgNV(Wjl&_Z(J7nP{48g7=+*9arw@? zx3t<8MHA&qKF2JvY+u&eE{4jU_JqKHaKuoXBE8Bl zR~gINo^q-+k&NsHOY8IV4S%lVK>0}+h2edu7#^N{al{Nc-cG*(TiKsqB;3@OF*x#a zr6a8QJ~Svap|Uk0&hi?rm`I^}NL3OV5up%GiRL(;b9-|(`^17dit10XPG(JDTMjA$ z->R`!zt8IUxuQellY$qxZlBG>7rO7aXxhyP7~BqYOka1h0wk7j-^uqx>F(C?U9#|1 ze)Fl}P}4y1xZ-osIzAqshK%r0sdTGf9Kg~hasv?+Z#MdD_0xrPFdgu^SAzvDLSx{e z$r1Oieo>X_JZ$$^kGoR;-eI(cEc@67Doim9>s9?q#3VWpDI9>5-)Ifpc^uLe)!(b+ z>Eo?nqEKtgJLq=XOg%g#7aW5}`qjQ@PP(^Knm>iH=id_WgoL2eo#3s>(bhKEC~b?C zq06|LV?nKsFG>cVGX#Ln<4!?*hkd_57fa8i%_mDiw>3sxF z0asg6>#r3&27(G=P?|PBpk$S;v-=&g>V00hqu@U$JSpCt7QOmvd5vD4e_soZaKYH4RV&zTa4X%N z4ljQ7e!iAkcNeb6Bd7KIB$@g>04ARxyeV{7m#Fcpaa~ zErs|V;%gk$p_EUv!~oUDe5R+Eju_03M(CyJDF~mrAb;^G7#=YoJ%5RKCwi-v>X6 zoA78m#sq4F^`eqSvS$1#bDoPCwO?Hq!nSr>`A5;8iV!UTJXKxRlyaIi3FKW#KA6`D zrf7d96H&{R_))}w$FdO-0Rc5u%jnU?QM0Z=7jUV3RNK3No={S=9}9#Jr^Axdc*hsK zF45Hs@4bC{-p?;uqE>QyRi$r@9yvL{hcwm|v}sZ?tL|n0H7ih*shH@q2Zi@VD(8IP zR~qBWGXBVW-EoT&xgU6vUaF&9v69Wm&gUSsm(`micoYsw4^==Cfcn_Em38!fxe;1{ z{2DtvO{Hewcc-+IpSMD8($U(=%OA7jBx3J>U1A3Zvk-fxfKc)FZJ}+~>17S!)Yqza zVG+G3hmCSJo7#3WWJK|DAGejc6n%M;IPV*`!UL}~Q;K}vuqq=9mu1@;tpdww6EetW z-Q<=)+X029e#g&3NzBUIosqe8ol2ZlLp>hIQgS8k^)S9f>wGii`FkZo{1CZS_B*e#muV z$bV)%mM>bKL$kq?4jMa!ndQ|o&nIQGO-)bhA3UJc{nWnnBr9Saf3$dGHtxkgU{5RR zes%q~YsFhvPN!H!(WD@uEMGM+@DZ!x{Aw=_DY5Z{ij1`t*re?gqwdX|Uj=S=hOBIQ zDIe)NitiB49E78Sf*g2hwieMqWFG>X(&NMBU};L(Xg$_5~^ zHp^5Ug1f_D`V=ClY3IOC)m>jful7vG|Xj3J!^^BtY;37>p!Sl&Uk)9K?{Ni(_qh8A*h>t=xTn@)B#x~gRlNQJ`xk4cJz`hvbm5*6#(EXq-nR~gCI)w}EZWY5MAea>spZ`FOJ&<7& z2!E*t3d?_w(dTMD)fOn;dVQ$;%<=cn-E+W;S9$IjvV)E_Ao+VhALQ3phe_jH7NYpY zp+T(Le#exQ3%4~T1r+z$NG&ucKx8H-9}u$)9vqX&Sq2jU%rqD)0GKj&*@Xr2gW*8 z8~pf%wGL>{ZH|l52rYlN4Q=4@gl}V+_xE54_zRp65^B(=6tweN_Yxu-6`)7?6_*{0 zfL2CRllV{F>r5CNP>J{O@w<0tn*ck&Vl?tuBVCx^!J>1wKiHJ0Zc;5J)mb{6cO%A{BW=Yr=$v+o2OSJdJlS92g?lu>kc)zYWHUU9Tl|?6L zi^!317(P=|HUBTeozqN4)X-)(T3E=~1by>Z1+qErc9^gX_dR;CVeVBjY3B9Q77&iZ zh1wH$^;P!cY$7LPTKn9e#~}LbWN9jo(*|wfW^J@!7rH<@d|S={N#+7uvHB4~RBHOP zoG1m63>9|tvuA*D)QyTAt@S@sMdA-~!&Cw`WD_xHP}?{1`Rkw$R0j1@PEb%N+}_^e zU)^MbOOdri+D^ZH#Xi6X7U#R`-24iA0FDSwfH~ux10B+ z%yP^jti-ycVz;m2xI?K(shz8h8%}8R2y_Ev-V=jPZ0jr!=ouw(nh33Uw*}mA!ep>gahsnY%H=chiFyid; zB1w+JOpLkiZ~BUl1|PZYBoVftUYp1zHoVvl+y7wb7AxEggVrwcK_IoT|` z@Dr24|EtLdYJ7wEOgp+-gT}F@>zZYFFAH4cioFv@<2lG_8aW8nY5zn;+Uer^>R&%+ zju%?54)O;Rh$&pPUY-PF;2t9HOAW%xN^iEwE0jD#zJ;^-T3SG`7%V>Zs@Sf{GSD-u zkJr#YIKz7Gj42{|be8p>3v7%`;m0V)N9DTa3ldY4Jv;Jxyf{#hu({MLjBj%uXrRO` z&1Ss+rc9=?CPia@n~>F?)-1F2{ceTiO3ib+JJ`hD7!W& zO9}k|Kisb(fCl;BjqAa34=Cz4bTd;X&4vZwBKr_-H`~^1d<{t?fkl}iPWMR@jQ!K0DN+-D)vjXJmP{cnwmnBXcINw-$0Xhl}0x||e5MNuD?B3NGh3)-M} zP+H;?T~YgT2qGqSSy%mRs;4A~Lqj!6llOiS*r#K3e7cm^h3|0$p2sle`;!vU-`6iu zQ)|-gVu^V@t`r_`J9v0Pl08gekS-#))Wc!WQ6-fm4-h3w*Y!nv5DI1ePp_-Lzh^XY zD8y;c*9)TQ&bp~2CMz!7RAs^-;G~LF?wXG^SFdiODKvsge0Txl>O{?LqtqR{HHPhd zHhV4jBwy-naM-7~e$@v8wFal>tVv0z-7y%&s)OgQ<7NHY>Ygc@L>k55o;c~kMw>7B z;NNaWmS)s(D4t@bJ?B{Jxj2VxO`sTaOC+r!zZAb6Qyfi=4b&6&bg!*tSk1>+N~MMd zV#SpT9x@=@KoZ4BGt)+nk*P2alf-BW8=CkSg+^HDHY);$6_YF<72)}; z%NkY4Ye)o6F)B9Ov^Ff*_^ik}f)z?*-{h5gNd}shVAt4!7#IqnuRYJM4eFvTFoHsp zi5Ls%U)XL=Vx8_{M3Q@5`w%s7Be&PFzYjBvmKHFI>#P`fbol;Y3o=~B6V3K4&kQ+10EI*FE38-_7=Z+u0 zgALj)bc99AtBe@xEH9#DiJP^{8^U#w3~dxw&FML8C8#qzIFgjc&s4@KqAWCmMY)Nk zWUU~Umw?8uoUKN`u(hZildO!?`@%*s&_JW`UX?v*Cr*5#OEO`6R8&N-0rCK~7BvcZ z10Bl^OZ7-WeCBZqw*HD5f@vcPhw$Qbdd$nHBAt)ihNL}5B>ihuLS{?g+qcVJXYIj& zd(BG~G%7!oTN~`ZbbE)#%7h^*QxOHi6z7k7tOf=dcDgBdG>Bg+vHsI3E2_Q{C9 z7e|0e4yR3MBUDrC$tKr8X@5wTFU24%%$ljv?of%+`EKQP)jb@xJV}f=-03#)Ds#z+ z+y^8~!rV{cgn~5SEN}sp=BuC1Eg7&!_S<~%9$A#}moQwgYQAjnc$tk2A<=)n_WLUo zB;U>u3+8EdvQlw_FD!n;nc{Tc&P;o<9uV08a2B6Pal(d0fNIrkeS3~-a&L=;40r!; zRD1or?Vb;yY+L+S8KTZ}GI^IoU8^4iIuv_t!*fTU^{`Ud;}_W(V64E2E?5|(PEYzA zpRDxITB-L{FI!_nqsU+G`G|?NXYfgsYQ_k1G5l+OVbzxFPzpaks_GC*Hdau@%n3A= zQ>@vVb`JJEIRxIug6wDss_WY895!AUeN4{66FH-1cI_pXp>A^l|#DHL{kU8L+W!t_rInS|zbs;R-Y zbckI``MXxWBa&nKr`2;bvp38p%d8LHzbDq!tr(a(dZLCYcZnkn;|yUydENmU*v&Q9h@h8$iOzR!9+0f)c1f$-iOjq8ZhN37P^$29Pp3d0mANh_!?FsCqe^lhm%+?ClElAgi;K z#0^0a_og%`Ar&Txta$@StezQg{z*rnQv+0^8S{VPr+r}gGDEz9VuaM}wS=O6s3BM{cYM;r zV)GuQv+>rIFCsqTF){T%+}{o*oz@_!HAoTFE8ncrVq)k)c>da{w(21yCVmUFB%mm; z1o-UR)ov3Cq{Z({E}2aSG|yzIMSV#CcIyHH!zzXlwp##}n3$LfXJX#J@B2Re2m#Q# z4lVbirND1g+4hyj@p3L?$`hUPZ2=PD_`LUjaMo`C@dD_K23#=T^c0fnI>ruWVSlk- ziKqqH)>4xV8ZvEYY01#h(LqQ<^MNk#n&@bCuoFmAw4|cSfxs{iC>N2E38Zptb*trQ zNEoT^_>3$L_N@ZZ5%K^>s|deoH2pkNrnl<1&SCWUDQUL@xBv3Tb8l=YP+cA*srfRp zE1__;_BMhfL-?PDQTWa6kf(Wr7U2B>-+kZzVkNb7H!3PB1c+%swE^UgLWLLCU*z=J z^eP70r7rAmuLtBcNB$zC_^``g!h-{l~1LY zQyk3Qyw8Jg$f9PlT+`XNh`_9gLGdY+VF@UZ$_z_1B=qk9NYuvf_RJ6-% zV{~U^UtxHs5YPIuFntF$4Vc(4GD1t8X0!eW(x4^oq&5LdiXFB z)LcuyM6><&_Yu{g*-?>^S>VCDDi%@hHYmKHQ4@mTRauIfUQ?^9`FB?wQ=d97KA z-5EbzAk+ws-+GwRyt*#Poez(O&s-4rT3v>}KB8GaeVwOFZobqVEw6^x%|k$7kYOX@ zxo?imE|XMg-1;u8*TlNWwCnd#i4=yx&eBrnMy|i>R!V5{i%iYf4D06|memm1NJw9w zM1M+6XnF(=H6|I`e)I~0E->rhQ)Kl;UiBIQnvz(92d?+Et9d^ejcT+;qOiQ$t~Gkb zvUMKJ#twgNBmHhKID#7F0h}*z)w_Y5`y!_l(n_sSQHfPG9uAil%+QZT`aI_2Yg?#{NCj0`?djbO-mUVff2 zsFb>3d9K@mh@mkcfSQ_u_U5MebUoH%HP2IF1^}MG7o}v-_eYe|CqFkI6aOs!@MYb+ zCGx?KZq!&Yoag-9a95gaI=Jw!QWeW&96CkZR_kElSV{bh^ie%7rk3cs_G z{>4)47YD78tEa4rw<;=0Jx?AZe2>PZYm;Ja=EMGrXwRDs<|n!h*)veJJa_&6B=;hkgu1BZq7C^Qb4Af@>{=@mk;-3Utpyq8*F;D&X-hF-o@)SWhc zsx7*ZLL6x4=NF1czSifl*MVF_Y2vULYIj6dRszD)4Esq} zWM6JhPR(#!A5(v-!{kt9y|N5vL~xj~p>2Qi{in8&wc*;X)&kHmx!n718BbHbLt$Yv zFIFnf(-C=Kt)}LaA4>p4Xh|&eEe4U~sp3&2K!Y+{*7jNQ3y)dn8OWcn zKv?wU6Z(VczrVpQrRC;^l32-fIi}drFY%D!s@D{TCd++TMzi2uSu-oo-6Q|%req4}P}zO{74*_HqK(6i(m1-Mtqv zS&8;~8gx6hs!-RvT>=6|qPm9FIwGsZ3G?=#CJ(=Pz9^1#nu%NEG#jdtlJTU_?`7RJ z_Q)rxax}P%U4z+>yYFO#CNs*r4`S!(VNw<_Gb<@@qqxTbv6)2B^~MHk0e6tLdcFNh zH1K22Xg>C361#FCMS@gl)1zr1u`B3QLJHncf!vLRi<1u;gq|9To@XrR(^^>>{S!hA zOG3Ro#dwGB(Jc%bp+GEr!O4JnzSjolV_!ku{e%s;cqnOs7fxO(TPi1qWZ^3fQCSkg zN8gJa4Hgijlp612Q?C#y$&;_e6l43hrj~0 zlhEU$$eEk<%MW!LcnN7a`_s5g5_*6{myq~xw3n=mQ)qA)H5-GJ?w!kJ&j*tRhV1Lx zOXb*Nh)`h?XL+Ym1MJY->KHu^;Yyt=;)CFw}RpOW`Muo1_Td zEOl_2rBuQGhC1zHuG?h;dy0nm$`q+kiuw|hFqQIgt9Rf$D&S4!LgO$(efo0sh>C&1 ztE*kg2ON%m6Bz|B(~cde5-9|U*MEhKigWIaFk?dl@5=o?LmD}|=FQaZV_>0KSTssf z1Ccv^mMAp#X$sH?0XBTqB`4?Nt~H{UgQrS82Lb=)*@2#pVlLt8n#ze1D}tIOQo5xL z5w-lg1yxSrAVYFLGlB+-1xfBT6zG7 zw`+`n046VjD`hoZ{4 z{8x6Wb8U=uLyU@)8M{{QKBerzVZtr+*RPSA;d@YzO$7y39VL5EKIciImA(O=Ri1n2 zz40?Yw0_wt%>c8)V^4Bu@+@j2?zL8$wVUmfR-*0=yS}OnO%A+`|C2z)&tx$186)%^ z!pv~0W<;bylUY{?t9lB!^rU+|%QeY`O6!?g`2mhvZ_Kifv^5}ofx6owpA z+I}jhTA#%79F7#ekFGgCSBQTt5%hGPnW#aqf;itXDk5&)Dw7|L&Oh!lfH8@JitKa? z%YFUPsDyFHwq4%C6apRIFn<(!#_2J<1R3 z1dWuo+k}+?5WU5dGx(U>^~-BoPGe{eo3Hj#i6{dDS!+&?+(t5)^4~`Au_sl)PxU}2 zRn%{pZe_UxsL?W#kJfDX)U=bLQ=Yv7N2k>1Kes!3cn+G{p1VnxNt@%r;&(|yU+bOw zzr^maC{Ne57r!8e0U|+&oFQN22N9XlB#^>Q+g+4Z0%76Y#Sw3fWoU951vbsemNH6t zmnEGpt&a?{L;IC2@RpU4-3Fm>UwQnq=4e9Pqwls`x;}G-iV{6BLq4(KgaA7>LPCTB znCL%eKHj~1MYeHOo_$D88rY-O;Z9-k;NmksXY$NrI{Z=;N`(#l?ZHd!c?l zK)FF&OpI3g9iAkpKNh#PqL3v47}4+v7+Dq|B07v+`RXv5gR}WdIza6MEk_#~rLOVJ zRBd}FfwF$7p^ltRem)c2_}e4dFN2xN!z5)oa=IWVtrz%~AWnCf;oiPV^U2_levzrE zEo|zf(`JZ^dl*@P-AgEM|8Jd-oHr0~S%83Hg%6x2jSH1`ToY74fiqEI61CEwY6Zq_ zzIh)oGMG^ila%UF3$xPUjV@R z5mpLxUG`uyj*X2?$;a3CGkAcKnKLjP2!+^#83==bmi6^l7!tDb@@uDKEL0tx$-J4# z39iXwX0)_QgPCjFwT0}$ZgQo0k1qPlOifB*E6Z0+yPBU>C@)$y7>ksW6ZVY0sDGBh zzG&5f76BFg9^D)5+e4J1Mvqat2wKr&EUPWumu*H2FqD|vo9v~0BQSph1|^UpE5NS^ zc<(<-NJ#iu_j)?12ictY{{8#!*CdBUNEtm3509r=(j70f>ShsZ);`yGCjBYzeG(#i zQEjK$gq2Def)AKEm`eybj9m}zDWQ|yW9)7I!u;r(k_-5b$AEZ)E6wS{?o zUf?fo^)C7^AoTR>qMTyEm|eRAe!@nP}aB|+D8c9StPPI(D$P(l5V7a@6lK!f9-txSxoA2rBI|C1fvYQO$)d9%J zWhY~-G)tVT>^%q`Z$gNPnX(+`*f;8&%>dE+q|JhXjlD*+L$gGc1}O~lJKOE*=W2@< zdvm!E`U@e9g&YW3UtdqE1VatfZDcmtuUimHu_f~kVNKAcc#uvc4))q=EG(qn;&YNk zk<96qJq|1dN-3=NX(Ktkw;@FscMWc^nNDe1vzEp$Q?b$Ln-j?z=|Igtmi-?f<_vEC zcV#6EjCP?yz;MRfo2xS`Ff6+cMzx3^JRl+^wc$s=E)Hz~k5qi+J2yACe|kD}o2~^o z14xsnP3x1mK6G{yAP2;QIxUQ`QX0IEPSQv`_hzjtH#NbrzPmNLWl&B=#ivQYbdi)C zaR3MgTOgCaKVb!wI1}ZGJrm_njQS#Fj)0`$)5jr&}A``Z{UBO@uHa7OFkwR=R zgIhhNPmH}VR;qOm7gze;+5_XapjQrnBNfF^HdL7NDf}A>$o};e(GkFX1E-J!B&cXM z21g&ICHfNDMb8xU4-S5fipH7ryg2R ziU)`w2bjU&>kOE_Lu%=Oc~%A7_#*iSFnviO2xCG;MO|213)chuJ}}j9d#zX09=A!d z22*yF=9zEm-3~!T0Wz*N6RV=yK@#*y-~o8S7l?QFB@X_MXaTJ?Hp8$;!BxriULfxv zT5tHu(eTO@kjM>-CGNc(wv~K9Bq$3gJ)n2o@4)4H#LG(zI-0M55*axO3TAgu{+}Z! zNrDBRP8THYBr>LQB;;Da3_>Q*#9>1LPV}1R@L&V&r(`xo^NS^dsh}zw<@An&DRm8*$VU6Tm zh~tDQc8emIjrj%a9Vr8h4KoFG{di*_%3iNB#aG42bloVkdIeMP5VvYDK9u9E{H8 z8&?uDOoCGXBa~tqlM>Js`&6Hb_66`8bjj6iz0CWFz`Y_9)b6K$731#O`U&5<` zoRx68rC|g@v3xOL>H*pr6i*0Y>o_65}2P7g;NU zX&x{Ftu{%Ag9r_w{U9p&8!(SKJ248(2Ig%+vxw9{RE+MD;cd2MiN$M?0Zwd>& zr0uy&I>WQqj#Kbugk|JFFA;7tdzg=Gq&_$VuLSJ$hvEevWqph*ZYqc(8WlGA@5 zgGuYJo=}Ny$3WB~;Rt7cgO7(EaH&`vD|R6xr<;&a zSUuAf)%eb)1N|mAwraR>R(?nvHwcr;t)Jv+%58@zjSYpnb?| z)h)1=o?2=J6Fgk4FtdibL6v4h$blDSv;>VV z5D%2Bnbe*;IMH-m!&mE!=|h5Es&ZDC1Sye@5^`2#9H^kA3Sj4IW1n?Fp)5}qqxlAt zjdWcbPR*4C{b~w*V;S94j?BT4**d?oYe6np&}>sMJ`EFG=5hZdvR7UoG#`+-GO&VBl-L-RPuN-bUL%>W(aHO!k^Rl{NLK=y1SaGEqT&-` zLLwV-v?$zOQ0~_n+*-`R4Q{i@1%arJSl803DA=e#uCeR(cq2h>I4hngfye52y|1hi z^@-~GxFqnGvvxp?DU)yL3;WfPY!2me?OZPXwWiD89AEh=B2su>XRq_5#fKq33miF$ zfkB<)SQ$6`TXnW@Q7_+fvV$}6xBV-b`3QI^Y`%vMZQh^pW1%K9rKrz=?1uJqN$glQ zh3r?eK#oir(>6{IwpcMXVQw^Dp{G{w+}i-NQXJ-c9CrmqFlc>#2<~M^u%zm{Z&?!& z)nvkaK~JI?wm{US3PN?BT($9hv^ZNO?^1@oFyqHHME*>J?r~k}-)>;*=FSFo1Sn9gq>nn3eR`UMvaWi;KVf=_r{oR;&@E5RI07 z_Tk61XP9Oh$4Ma~SEWkqWvr(g$S|3Ok2;?y%+3j`8cwOT{`joPbGw^xvzI-@E2VbU0vj-i-$g`9GK_ z3TyW&(MyCAz`&WfG1w$$&)*jQbU0l}SIPskawMDgt#(anIsfe2nLbYq8@g|uJG73G zkEkNp$RWS6`^aSaGk=%r%uoL3E#WaH2~5Iq1biqH{?^Z(^&a`oS^Tl@Zkk7jonBio zANoqqNY&nsvIeriL>;o?XI|pIe~JDOdQ#AFLZJ6%rL)RXyJaNyLWlqB?!UVmjEev8 zf3bRL*ZlxvT6<6T?9QIb-tQL_FTOwgU@Dy`u{dTBcWY}|Fnk&~z5XE5Qc^M-DQlHY zfMxN)(ycQ^ve$d?IiQ}I_1SnzP2y;@vSttY4tCo<9YU2@(pdCcQQR@Q=p3hT2A{gj zDY0jlRLQa|kDvP|yf_N`V^B6J^m$r9TxU5Pr`ybT7`JCQFWuHh=ien_Oa=QY3tuzc z<6vT^5zxORhYDq)SgGgl$~QLfKyPlijaXm0f;tYb@NMvSuXyWw{)4Ki$)ZM4S9pT& zH!ndBK)k-XdQJc)&AY@`%DlcW^`2cM{H3>I=+f|gxf;MmHXsoDxY)PqR>Wu}-N}oH)@Y{{T&F`JpD!#<=I>IZgsp_ybSo3D;#ey$E*&}r}$5uI;RVnx6U0P6g9~D8r}NJJxN1GRvTJL z7ISf`@0#~=ycyy=)JDB~`@XAz6T(l3_H%gDpD+Ql!(9j5TM=^J$Hb*Oq$rL7gZ;9E$mL~`(Uj3LUZ=-gAi z6;tnc2xxqKd6z1RCHB1p*Eh1Yk0VuDS+5}QXAyeUu?_`kX{xMs`y~Rl1*RqsB7%a> z3mpSyu?TOhK|}w4ublqnhsK16Bq4L-#-RPXWXMo@@$<76m$COCdKr9$0w$n-JN*Zd z>pJ2IoM}OcGimX-B<|Fx^kH&}>3SiPYh!?`ySou}Va_oB%ian;XnqGs0)E8UGo#^b zyqr0(wv!SQZ-Pn|iCgM_;On9M~qvO@Q<=&;p=8(D3J03hb zwV%h9yX9~xcZf^2X*%|ULI>OA6qu2ElZL|t5yZi6?%_|hw1PfJO(-fX6zUuNMvnmO zTBRnRiJ2m?aI7@FJ|A+r>o(lIJMFD~FV7$Ylbua_l~rQCX!YB9#KCG1vc4X**R2#Q z_3R!lnv3Ak8i8P!&e5LhLDk4nVPUj_6Sdx$Qcu?4yL7MNu-Fo@v(vWZe}EY&RSL?e zob24HOdANG*bh7Z?!}8{g{Q;Obww7wj^p!-H?!{+qswXe$7}FZjm*5>8=Bb7rQTne z?he=pPCdRG8cve|4alSY4DDw{V@?CAxKi8L98EbV3A^;ZopnTi9&hD)3BCEo6WAQR z_)(}{mk_aTw@dWb4$ft6O_Iq@{pTKCg+HG855Z$^i-KDnF&eg^n()Q%IdvXX6^dNE z%G7p2w6RGSECVCDAIS1ipFH&r+ZHKHYg~Q&)>EG5Qj?lv=H~a7Mv(HOx$%n?#y}jm z2<*#Cmb_}>6fYeAa;(&raM&D5SUoyCJ?0+&)XQroNRX3Rh3L3?^O5{c%ViNBCS&W@ z%^n3ZxmvR8f7-TML^@ZP$l&037n>@LrNqjgsv6GFA4R=YDR4YBBD$*QFp?p{R-%I{0(xU4e&VB@DN8XBO7B}qj6 zg^SMp!bF|7(k-+Qo!eX4PxJ8leCD02X#<&l@dMlyg=yj4MBB_a-zLqRWcQ0y*R}Kc zDi`{-=Eo!xJISwoOP0y+gAET*>R{w6D!ik!GtN8lwq`(-_)`u0KdJ|p_jYWte|~gV z1|0OaG0BszXXmo9;=F0DEN4?Az<)x(gc`6-)eY2J1Ta?!P zB50HqdMnlEkv*b4u0Pkau@PfGqCJ?IEQQsctVbu=uG?T`_EZBN11~#nklFplRi$?A zcg3|;4tm(bJ@vw~=)d=|&>D!9dyWie;bmZ5Sj>fKC~tg@`3_JbbU~}&!{4A zz6TpB<-L|UZpq=lZGPg*vco@LUKku++@aTRY$A9*^z!<1A4ck?=J>caJ>8il#{kNz zw}8mg_dfLI^%68QW$IIufB1py+A}uUg1%t-YD(*VzMUv$&aAiRvGF0ATX29O^$K`& za^p-V*ciC*AIPye+M4q{TqduLV5--AmcEKSo>~A{xf-V#1vFYCIrWqx*fc?d?GrUE zt!}aS(J|lcUqSuA^VYVqvTE1!cr@|OdFUkfup?RgxXk%Q%K0~O0^Q~y$6`>Y_3rTs#oIlti23h@jp!`WOek9&3j?S3Sj-I~8hd}3$^~4Z=|`P^`D1v1xW_LrY?%0zK76UG;E41@9(ZU!Dhw8vwz>Hi*fsnGY7T+#ny*NI z{eD8wR3NZiv3SAASy|+%{OenGqeb_1Pv)DPz97h#`vS_gKQ3g@b?LcQpv67xQl-Oh zaK8_^WF11xDE-2nZSzWu~`?mvj=^-dEh6{*R0fQ0m=`lE=|;~F1%^p_*z>``1{oBxRi=rn^GhN zl}({(GozCJ*muv#xrRLdgG_1va(h&bha=8FgxX$O8cWwcQjVUVjn%`1g!Kt-vWi8& z9ERjILxhTsk9e@PsqmRweZD%5$y9^yx}qW~tZ`zrGR48yq=ZHoHT>M>=s2_OmgULS_HYS#r<#QN#<-XGS3U(7dv+_N--sxcHBe)8-G^MU!! zrqM-S5qoWp0At*H39OjxC4B19juNi0zK65KdwnrpSav7#_4z5uuU`=+^?7|hD|7V8 zDR)x*tb>D5Kd{F_`|WjLo~8-n0NSAGryiHO-pU!kLpI+fd-S7csu$hVa_*PkUP*8Bkwb(x7D)1wSNYXsZ|P^{*=n&qC$zsDrUg*Y|l@xs>48i}H)y9tUNCE|HP7y=@-iOd9fuLo$A>sn!fGnUE$Vuw<=j!PJ?(oN2*XMN_^^_#ERI63= zq?k(l{8`I=Nq74JT?%VYoG1g?X~tQ))(`hZ8_oM7j-P022?RPJU0c{i(Gd#)HK!i= ztQV%<3XvgChoI%<&s0VxIMh1f;}BferFLN0MMzaS5x4)i*8I|lxp|;MQQ(jL9cX@X z2=t06LR)98#NM|1%E9G}5|17bvp_9-ERkbr~zH$j^VKI z(<-simrA@#X)o5Hl?9boCQvo{B6A-BD|DA5>QW3Qv+wUO)F@sBU79SJp-1mNcjbl6 ztVWed?dSbGfN7a8f70x%6Nj2v;|WFRFkAkg4i%p{7q8C~(!&Y!-cvMAw;vvLRd{)9 zKbuQj``d&Xoixj`fGi6hieV!PW%6T0Wo7n zuTbbjgS`9+jgK?}!`@AEOAOyk`2)k2Xxl+_A+UI96z^zeHf+5!B!WG5Y+4^5ckYSI zp}wqhC)-7?sudY_`Nl>o^!EfA7AbAsP=%G7(+m9J{~YcpsdGy2)E+NPuDmpLdY@z0IuY)K7&*0fg% zOG#K5h_!KqQpW_dM~sp`k*jqh%D+O-?w0S!U}gqeh3>bDPA^&ce%clLDt z(0({9BL!G2Rg&AckT$dTIo+d@;QvrpLG-}7kB8ln4T7f+_H90dK64seb zpQL$_@*Z*#Z@c;ZKmqRHprr#;S zp_L|+ug6N9=jyt-TbQ8Q(@GK&;4OR6Tp=c_x33X`(}KKnLGTp+!R{PgI}pyy^SU{) z+PrpO16I>F?vrEef8JA6g?dj*PTB{N-}dsvrb=?Yu3f9MfSC+R9`}hyx}y&|ShehT zHl9FO?W{+DVjSqgGHctQ4!r~+}7ma*Xg>gYYDZhZ)C)MD%e2aX)qB` z2(4icj4jK!Bn>1m{F)E4p8uY5e~!~uw%2qT`-zWVsZz?q!16lYT%l;)L^;moIUq1& z$_=1az^n(x6qhkaX)P-M0GMgLoB1IRQp2^n$1o z07}*3>Nqk>cAoxn_+%J;LY5lVhU=F07HV!Z9uThbApoz>czb?{wTjnTb_AvoY&UiP zl9gn4rL@)`jvNwIuj8aO5$gO5yy+kow3#6)BO`h&COJ<+BTrv*w{WZ$r^hDdEYzzi zFAwa~z#p$qNj-yZeJhMqIbpOSX;TyQ6T^%8@np<~)xLiFiu@vHkPf^vHZlTFkF^39;q%id>DpRAq@Gfv^lD)49m(>x6wJ|gQZho&fXWm(kR?JzqLBF7QyvCZ!_TJ`x z)%s9wVSCq5y-DSQg#U7q*e)b)?xXXz4~lpS+KcGDT0SE!`+(di)3j(SdUzOI$BlAcE?B8^ON7A2+ly#M_0DM z$J4v6;b=gOKuPB@Pk=?Lb4Eb>nL++J#pS#^#g0G4(Pej?#-$8?QScBOPoKL+%ii-f z)72KBj+=RX@ni_;ji|i&DqjN}i`WJtZAjms{^=rB-{;~By^2cwI)$lhHCv|G-@m6_ z${iMfT>tD3!__M&1GvTwgM36dXW=WzB~iY=9!L{KeLts8h$w1Sd&YOa)5>;pt&9`o zN-(ZU*UmRY<=v+^#p>cxl0>DEV-yb{`r$$N={ZT*(t+1-hx8hTJU*Tv)wPm`Q<2pP z6=t$HbxD^8ObrtO4F!PyQYKs%<7-J$Yn zccEQaMDm^NcwttRBuk6T8%$AZw3e0xuZ00r9@-sSV1i%ahxum(Ap7eK@=HcqPcpjx z`R+1m-40AY{ot^^TwnYC=uyT{WS4ZdgC;;*W`vCssy*?=mgq#+NRG8JR*8*2f#EF5 z8pZliT+D^&jg#9!W;}kJ=hh%kikaidv`9icNfcY!5%Cw$8l+5B=P` z;Ymz@m=Xotyt-~~S+&H2FM4KetB^R|ynipt8@Pmu%{*E88u#t>F+Dz~6IGG%>6o$} ziBu>eMGeof=W92;0htSv#P(uCELVeOn1kxoVaoGUVq44oj{D)#L7*mR1P|muKOZ?{ zf1JW{C58QtRrQIeH&0hrk$2XNGiEo?)dtSCfwM^9w1KbM^WxU`?6n>i9HoKM#5f?%XXrkXd9oAv_Oj zg=+ogc~4zGb*jW_ggNn-ZA36nD|~rBeSvC&_idSdgJ$^EIv?Vn7mg#}&kye))Xq!a-H85E=i}}dR_wao@gCj&N%Lw|K4x*~ z3=d&NIREhNe?DCr=7+CJ=yd^6GDSuE@Df>OB*HjZz-)QKq;P+@LXD%wyEL@~hRdf| zE1iG^62f4eDbLIMkC>unm}WA7h5I8#tTC8tGsNi_w8GE8(`)*c5>McH0fnaZv;vrR zh!jOFl$(%(TL%<{EXc+5i0obh)u{8AYeZN`~Ms^Ss+n!rKzC37C zJllW!dQ4uUCZZ9TgQ)%by=(V|mRF{Jee4TiSQ~0M>}f7@9C;{G(9h?%8%}5iVMxoZ zl|je#aLt5o@^$eVfz;K7?Uj@BnhDMgv6etC zt0wq?Y}u}PO=Q%PD8Y5cDhEQY!f6w;wHDT0cfA6P<;RawPs^Nz?>F1`XWVHHT`-CD zTp3V_Z4HmHgy%@;g?;u*2tN4~tbH}cP!4jD_r!=6XfR1d`>e#iG{9oeGbw%ep}0_ zBz-hAIywEfKZ45uZjDIP0fBHGkigdjA)PXxA4{W^{eUvoxp(jR+UlyN3Cw5Wg-qJl zx&RA8!5FIA$_zp=f|7oQk#V=|uU(eoW#@Yuf6=U=KyO()H>(dy>{Tw6YrbR%(3NJZ zaaR$Rh5qUMZw1MEi$MRyjX9KnxbCrVO}s_eknetRYRE`Q^RIY#S4A$kFFhaSsLCII zJ?6f@?czTDot_BZ0y%({WN^4yCiCRyC7mjibvg9V-2eGP?mp?ah1*+ckj2ZsdePj> z#m(PeSx5`qbo}a1jd7L+Q)w)4Y^Krz3YyxfIKLMU>9gNEM&WKd3eAj`z?SIgX)E4F zF?2a|H~~_1c4sQOxK=}f9?KI^xT}^5-7Vp$g69);i7+_CK%3)^Nfkv{+2wwEw-gDt}U1>0QuJJYCHQD-2;0m9|L|?MLu(7#> zzXF1kR4#L0P`ev;C+@ND9i=!*I8Wq}eF6`VA!(u8xAoN|-Yl-1<>V}cPOVlwh`L|Y zH`YXzERI{gj)k1cOFuz%jtpsOp*kpFlA|O>D){1<5A;Hq2JvBC$=%Im`9^rY%UG+V z){}P?Z-)Th>6-YH4>i61M|J*r#mKooY6nAqI_9=k-=p2F_#%s%iyyPIk*wn1Erm^xIcRqiRfqjLVWTXl%y1|HUggNn zVt)qLyLSj3+?7_j2Ue1$$e!DsCogdZ2($_?N)xmy@@Un7#wB6syJJmdcJ0a)(a+kC zy`h~R+tAQJ5|0WYIV@CL?^|e!>Re!B%L7H#bXvCCAAq>84F*7Q0h9oMdWeXwAS&vM zNOhRjTtCnuvwPwEdLToIh)9O{(Z7d`qnycgMr|?OSwCORp9w74Xu=ES|DDPMzUBTIE`8U<{Binj_ADSq+(!)Y#6E%9cbOplpC(Ye4vjCF_2Em-{1V~dR0nPf! zd)@6leW}4pr(DOdM-OPmgVION@a8J>0b0vPt#RZ*BKod8D@$aspt$Q2_C3g`Z z1TO`cyq|G`o94~iBh~%Gws91vPN9$3g@s8?`-s+N!2HItZEX$q3P1|eIQrpIofP+# z2Zev_#`LKl$0Fy4MC`sghlMb^^DGQ5{6S5%F06}Gk0z<2t)rXMvvb-pn(g|JjwSvfm@>N%}*77;>l8b6lA*c}P*|zVtw$T4{Gg z#L-sTG9GXg6DqU&-gQ3f2U`pD@l8R*`umV8D;ewN_vD6vnC^_E`ODOtkz%ig_4m;%sKV-g{yg=O=wgeyhNH*&latXI-~YC9mfwR2K7AOhKI&*;hzhb zA08cKXsd=H)!xt3Gg$^rA02AtJYtvh-x`g&5v1r5PoSSdw+pCwYF@b6-|Q=$DbE+xsqS*ShJiEfS%NuuX0lnYBs zOXaBcGr}oxbZdzP90|5sS`r_s654l(QNmI}7;|*qm^=w|cC>{)fu@g;e5Vqj@h* zt#Tn|Nr3s>S7GlG&U0^c`E8qzUmiROgMgoYszb|E+v{~VI(nqzl z(ls7)Q;P2cWM%7aN%1NNy){-!Swr`t{sbBf1L}c(IC+10)hI(M4UI9i69( zrKB79)$)YdwtRk_*TfJo4U(x*ANnZhX6uFbePNP(0rWIVagg?xzlE+6dnAqnKgMX zzH3%~V;=DY=ufxm6%Mp!t9G{r>}xi3>Y2?=x&E1bX1Vbe&b9c)FApSbYvhM3q6RE9 za{>aS{YrhS{5z>QXMf)CsgODBkl5Y+_I7u>+P#{5?C&qMX&wgUoI!qtm=TPl$Z_s|8*S2>RkbGK*!6ww%rJja(L*1NP8&Um1# zj1ELrq0mQ{b9IE@(?UaJ!_IHNYGwm*c?w7b()hV<~hZzEadjV8S0X&gCj{~M{QP4T1no# z#Qz333F|ZNYRaWH=;MR|K`aOQVFVTByh)7Xf(7ilJvwN%d*B;Z~V+(0rL90^BMTX z{#?{uNrTGSt#z&W@ALJ`dta2Ma1$x- zt%T3N7#iO1vw`6;m#sFhkq5~R;_7$}aXz(`qxVFqgcDEy=VG=(q{8O9CgSC*?#~^g zMog=G)|0QA#m|DYO@QLjp_H$@VtYa7^E?aDc?&qoa{T=yCu*xwUxIsOCA4PeYP_{@ zae|O8ZZ2ygSW2+{KbC%8o?|@C)1MViOX=c*kly~lCJYdhFMQa(*Qe0On>`Ex`XY_p z7;)J3g2CG7B1fY--eO#t>WXS- zdb1ab)+T&*x6K0Pu-{=S8Bfi9ZFb;*ON9?+(z}wSwhMzvHvvzK*7h$D!CLh-eET-5 znN+h9w)#Sr zBb+Aw+)$E~ezj;`qyRfHz{NBk_q%)7Sbd@FDNe~QI(ozDCnN-Lm^RT7+c_ zF$(qd@`3z3iHy}lIjK)P&zO~FX@qgO!vF&O=F^>X9I#7f(gszs>DYU^3~F?@9u*7z zt#ebxwa2=z<`-Y#ku>nEr=jlYn1S-c5gHh(O=F&ELi*Cr?oDnTY{BsRqJ^xx>q;G} z)ncUq4gts7u(LvM4W=J_*!NxDUPJ2akoGMPsvqscIrJsR#0a-A zNOUy~Fo8d)hxQlB=!`(1i8jWR+BgS;q@tVOixcX<$_g_ty?JQhXGehOh4|hZ0-osF z644JXB^x%cbaLDM@4o@36!MvcLgH%h$vWREHP$-cVUJr`R?2(g2l%+T!QJJW+8Pjs zp4Ns742QF#xu>3!?b#)y`Sgu-x=6;RuJxBd07%-t%+$(kKXHJ4L?07J=l-iZ9#Q zOMyjiK=H2W-aSRpr=b?%*3I?xoBZw|hhzS=f}x=~-BWdQwODw1yi#2jSa!YS+>!>) zZu%8@6I$PIOIU`?mv(Ke0vmVw-#pHw3qJnDF$xuPw}a{p1i96W<)~&fC>m#6tMgg- z=N*j5d({{G`6`yykM^|`ji7Po(Z`R<)8*|sagA(vAnWxTgfPQB93=T}k;q+1h0qa+ zyuEdGlP-%IRY@p0ceM+h8ZIQkB=k6CT;rczcM}zqt-e9!qbW7vOV|X7zbKbwdNCJXjdpqmR!F0X&ZM z=#k9&)G-c&8||s0){92d&^7hcTOR4J|Kk4hlF7{y6xRQd{Oi;=c75OLJEs>4-Tx-Y zm~b|@t1vB6Qt`X5rq{2`q`6DugE;4>R#&SNO*)b`ukwU4&ZWUX+4~vHPrfsV6kTA1 z?RRBB)Y__$qiG-?$e<6Gf|oFzK#Ta}9LlsXV_e7Qv%`G(cMq4}gYN}_y)8j&`N>iJm=vL<(|FOK%Ky-xzdpw04JAvkp6uJQ6?Fu|0V5`@eKOQdG z?7a?U@4^Gf=M-Z>O#O5jrtm8+{;dJF!agpTbuh9q`0?P zy^x3O`P*@lztm=K3i#2RJ6IJwZO0oR(3=V=ZWrg@+}XA~Kvy{KLOwB=?=VT`)WK4B zWj02AV-;Gs3fh$gZgX6q#~%IydueY)7AHuK;WL|%F|pAJ=6SF!60py2+4ozig7&~OU}w2w002hXa{|4G>34@g?EnX zu!Z@G;5FwQ9ro66#0xu{38VggFnu#tg7y1cBpBy6MdLRHNtd&ky~AK; z)q9cO=8FS)7}W!2{zy~5ei<+3T%X!H>$28ogb<-We$(`O?~){4-PAgS8>SDXfMI6z z_%UyAfw3mo674i|Fh4Q-gq{vgt?>SbJTY2Cz#v_3?hL1sS%9d;>jEx=a)d0m(4)d# z7+m5`Gi~?*`{?mTpH_8tC~`C7HppecdiwXoE7WX~*=J;kB@5MZn5B>IxkI+XOvbk z4@P;jVP^Mr_7&X*DH~xj!%X@6Z)QAzermUIB**3qD7l>AfJ>lAmzZx8CQ>tCq`Z-n zp1)ro22PgYo}z)Id|!POjIVaDUcPBNKUMK7{fVZ5qgC+R?!dBg`?d|tSC1XkWc}t> z%aL1>PU8H;QRm(5e52}NlMKa8EhsFsd2SS4xDYQiSI@)1Kf;uedKXvIJ>eR8fJlb? zRdhN#wPfoewV|;IMluMMjXEGU|%)Xi}8l9)?fz!ScdTcRf|8<9el@X)))iM9G^=hXT5} zxBMuqwB$y0F$oVx-AaTzkBzN*GzW*ubfAK>Q|S!bAP{I{W2Lq5z9wDT0sua&u^xa95l$8gh9)U z{Jl6iY$-pbNHEF z7|2rl@=0^;pp_HvLu$9Z9?N9Uyx9mIGx2N-^I0Cq$*t}#6lQ>e_)wjX#NE4hk|*8*!KKO)tTy4M)6+Gu2!_{zfnO&lC%d!tJ~V&(_5sX-PSVi@rKP2ns<-B^ z8vda%ZLMu`Nc8j)Tvv2+y9HvB^k>ih6E*1RMRMBw0r_q|M-A6!^ul0z8gd@eL2U<8VZ7tnPW0w;vK;z`4SupK#~3N?{9BO zUPa*DOVX%>Cin+vhJ%l=Txu%F!q78t4ATk#eDurJ$h*;~(S**q-fX%*KN4SMC`DR; zVry_n$OAC@?XLIpsRdM%T|_!qh|*gtR8XjZm6T{6nQ4Q+U%{jAqob_QT7UedjiNTr zJ7`eU`LEO;c2hj*MkUz%*wy$lHeeyiPak8`x(NPo@|Yly1O5-@0Y2~@9%f+>8{%hB zFF+7NR;fQnN3-k+{OUdisxhvcyj5i+S9+33S}q9N@NTuXwpv2tna8C1mam^*H#l4y z*ZU5?wOy3*SR8r*I9)b??Y;(swH%$?#brIjFVM491dn8Zn23})jxuJer&aj;0JJ#C z(X0_PZ$X+x9)#@AIxJ3U2U~dv!e!sjyN(oFD%G_9H9Q7pU=K=dIyAs{3d65Qt1h#1 z4Q%JFw-WO9CD<7m-++I42K0G(^a|J%BRRsSr>FOQ`5(o{It;@X&`!hOe?>VgomFIp zmvsH}0i-;6)rioQ1}D%4>=-N!C1~4%YeDn(cUMKs8;`R|xt$DW5qkg6crGej z(@{1XBJ!*8gW9++AP6f0whb^~po00%zlIH!&XJ!#f5x<0ZBCXoTigdE%e#bxV3^90 z#C}Ph!4v*_j<&U2*=_CR$AO(dIpik<-zXZzS;%$vKjOgumuL|1^P;-al!6vDFmhm1 zpa+8u>Kr_~Ef{B3v3mPf?pmd}aad5CTN&S4J&c{P_Y{};2Mq$HY&JUZ?YPUILyCrOw zjQ#z6ZFr%F_2f*bnR0E=#NhPT2lqXJ@tMDdS^57ZMznM2?UqO%2fo8>cfHPn?Sq=6 zjrjX+Fp*!Js2hE2`)Bu2noM{I1AjW2IPV3ohn|s z{elC?W3Ut4as>^`9#(nOc&;dd4F=fD^418Q8Z3Pk|JboSc) zHT-9=3TgMNjk61lh@gCq>6k8Ao7@1$jc(9&!w8$n5JZ4$a!*xNwY?$abjF=R>@S#Q zDkX|qYrt*~mk2f`A7gQYg4t9y;msF0_%t$^UUHL9%=9mFkk6;^~0oLE2z?D3LLplVO z|8G#)(J!_*L1wDb^grq{yFj4#J-Az~`uJn=9Q<(m7QAEmP)0#g;1@8eI0K8+^>-q@ zT^H!p!5^~R0v$RUlDhHJ(Fz*JkusOxiB$z)c=!*HR6NA&FgNE+R7P2FaG-y95J>%` zH;V?&RrvYveHpcQo&OR?0=DAzYAa`VwmRoipxR7!HCbo9ZU>D`I=V>h{$}V#Dn5Sv zA*Qqa03%><4#Gl9;!WGL%*?_6WpFM1X7HA43$bl>otc?AA?MOvNy&>~{5?bLkSEUf zYi6k?Vp1l(1(#^pr7p-G?cc0$8V~vK;R9yMV8>bN#*G{Qd1f&a<*F)ht7Ko6UE3T^ zd3k$(grkHcQgmG{>9t}w3rN@+{JX-xkYttMe?A5sX4k4DdbwfEY5#SsPy0Dc;#H4R?k3~JuImvGK$3Zlz}e?f!{a_)I>|D10OJPm*Cx_W9JB2ECOTWFdOi!lcx zOFEn!Sx%GnDQhh3cRaMWz>s^S#3Kwd-;R%W_^PlH7G?apQM0W84V+Z*?%<9)8Q&*tqtjIm)? zs)Yg1)vM@T7p}6z2B(Voe0_g80aA z^`zPb6OHX~t|P|rnbp^lLOg6V&Fn`hB|hPhtl~`T(7a}5W`voUY?2j@J3KA!TGpBN zS;L8Hca?JINz+(CBVCe69G_0kCpe`tcY{tAViD^s$4Gp;hu*5Xhwo(q4r}MZvzkvg zFM&@hD-69mVW1h(S%{$TP?I1x4|1?{q)j#pNg=R$$YR>2zm;-b@oXeH z$=rmT=w(n4)uYtAZ$So3h_Fp^odS@Iag7H}r1T~;yx~@m?H&I2r?o&`t#yBAT{GWM zjO4NE;^OjTxP%J|iZ@iC&;siOY!;i7{gS|^4eo(Q{Q!=fPdd4bumi#`-n4lP%J@UY zmQ*aao;-)`@WHArx>H8s3Q8`SbOV60;Hur7&n0_Ke^v2uYXtiz!*V`Q3`?`ohk(<3 zXQlQP)Vyb2ym)aVQFRs^vJO*k{pZoOyB5~(^8K*cnN+!Vk4*gO&~q?3%iI})e9HoI zXOgK@lDK11TDG#hQ)Y0f`txAwIM^>|*lwQ%l{T_xu#3((=#s)&aPUd(9PLw(TID%k zPQL{zkilzVNNUo3Ly;R+VvSFS{TK`;V6RV|@9~QOw1jwGex5Y@AU4pnH3rQNzqM7=Z!@wCh zZO*WWKRpQ&gYf$9>|J>KJsgbeGzh`MVbs8G8~Fr zXCB$6UZ<}TfmPHVYZh?80EZ<6)81@#rIm@grR9L%Z@EEW=QPzpJb#9+u0RXGR28MX)~ zPEVjDd3FQdne>Q~mrJ{3K$}%zt839 z=7*eS63XvJvFZ>`}M=j?ONKKr`%wNJz|bp?D}N?Z&K416U;SuG5VTXYy0 zm>GXzgI_9<|g;tP1_0T=4tL~iJ@lh=4|ieW^eQIZx2gXn2nR80JkW&0O#M< zZf?#naULFrf4_m-$<>Odd-=IGcnOZPq5%v8gU}rPAM=xRp$!IxI**d<6CJPgt!dx% zKKGlOz3#rsv|;WMa~p$~nw`4b6~CFYnU1vGJ~oK2eSEL|JzLhcYx$Qhx9zaIJ9Ci} zT%}t@R$q*Xh&hdnuOhy3<9*lm%1QS{YE4yl%DC88-$6j*7BWCe;2`BB;01E{V%KMq zv$yg-5fKs2ecvxse={&J#LA&$WMyS)a9s=O+o%eiCwwd|(D*9HypFZgpKQN=D zqoSf(90>>iBwSrxt%vfI+E=^`o^tz%!e6|!uppBH&#_Z@7N}Zx6oH#=$19)~_PXi1 zp;h&MH8#Tqb9*F@)OlZhzdygQP-IZWa&>XC()Jol%BdRMtz$xa;#ci3nFxL*_w&C# zTe%YxMJ@KhvNv(>8m z*IV-8W?xT?2V5^Y>sK;+8{9Wmhw@dr3^{=H5;D6b=_EWhKY~7|!}`Uhd^Soq$E)rJ zMNx^kuK!~5Io>qbof3AK_*reEJyK?DxPIgcgZ1?ExSSCa5ykEnUh>oV z9}*p`3|Nhp8DB2(1fssjGQP63B%+~F+nT5`HW~h6E>l@qsoV^;wPkm4ak*pqd5@lf zfp`W&>9IE5=-GahbwyRT8}NE;B?CqcIC`$Y!Ut! z$9&%VuX1v79*R2u4VsKcDHyJqE3aAWXbgsyLfHNx8ynk;HDE@DI}ltt0(i)4th=tO zKk3&;%Lnq4Onv}Ue==>A!l<$u_~uwU+!`1NjJNi?n0!F`rpc6&8$AGV$VyI*u_#u~ zM~~ojb)uD3RYEslLg#(hT|6-KZ3LZ=jl8-*MN7x6M#N0*4rHj z>_8AA)`p+hMRza#1{TUAKAXdO$al+QlearV0@39CjMfidkeZb;&xP~Qc_$*ED!`w+T zczL)d0d1)7HXlrMq%4e5=x-simW%$rlfT;MFxSt(axU^y&j?=04C$tWZ`#AQzfPK+ zyNOnG}W(=67q`?SjK_=8IDBsZb;7`n&&r+W%@*FJUo$|R8W z-yvc5P`x}Hy1N)hf4cS6qPx%eM_)>TmW>W69u02XBbf~GcE=2TQuNY%8f)1;lwTkZ zN0|2?tzyDfQYmQ@k~`pFI(#}?rUGB88t8MWg6{SSK*yM6^}l#Mh5dQ1D_drFE(A)v zW|j4%#+KKe-F_1L>O4&DU!T1_yEY8nU(Hk6z1UfvQWHt>rd3PBu5}3bxQm|js>OOK z^oga0$i1_bwEU{+hC5Zd0r`K-Y&KSP*Rh3yyLIYzjJUfh>PvYm!N$MLgi|7Y9aJr- zjeQj(-N#*ZGE1ld!Q9(xcQk&?itg;~V9WMNC&cRD7vEa3lcd&U`b6m~wq&k*qUbRq z3cT2s&?ffp!iA+LTl+{mHn7?2{ac4Fmv+s;v=MjXZD(ZpR$@KgGTnC)-uAB#?=?3; zyw;eLc`*a7ey2BXi)*uPro)0Ks-OMo&%BDMpLt?`z*UWy)QOQc@l_;8@MPKj9CU|> zOvh>oug~@C4z)-iFD=ZE?X}sB+Yw@|D$Y|(0o8dl!YGJA=e-X$Lsi5`!&5JAOd|Ats*7x)D5( zB!&FQ&qVjtb7?VIIS;m+jGX(d7Z%Hi+#i2Y6FlAUlA2(w0_#H@axa?ZSrrSlq-{Sl z3wELLpJ}$#GXU2&dF`?=*M>rSYtt5@X^=zX@$nx8A8{d71$qWVV1fl2@Q}M|3CB4I*38Jr;5+w%1=e)Xd+4hb z^@l?1s!30-&fllvdQMwP9btW3{Sj|7tSajKV*p-Z!EsFMApzMBXRDj2%-2J=^!ChP zF3YRD{1j9oyRO+7uh%BuC*w&Tr!_nZA-hZp?(xblK}3c(<;<5!^B&^i*CZuvntxWA zENyS_sEL3vj`WRv|Iwz6aFE0fq_x>$aH;(D9JNXP-nX`9D{r*zm@4fjUU_6(UBX~f zB`M=+`A(+VcnHFD5?L$?h`sPb$q7|+oUobbjz2f^U!E5i$u>A=ubq7|q4^dglJ)cV zXK%Nnj$$?Lma$6%E#^VvMzbYlFVvk`c(h#^-&^NYp^)iDWPQgh{KtJ2CHq9(!L!Pi zgt#~vBO~hZ@$t@Y->@6S7#Ot1GoAQT87QbOBn&S4B~)*a~#@$hckY| z)T5>MG^A`kgdAv3$q;m>5K);XOViCSAWx8~?G+YQxB-^X2JSE#!M}Wt*aKQBwZOE9 z-F3OFTjK_EPt>KujSjMlp_*ZPOOY*756^x392a{1?OPPo{9Splf=+x&mFA0Z)-}JE zFP8{u)X_^s>&)Q6huzrIK zNuxJv?4O^Ks26HvMI)gWo#8}xR=_^`1__0oQ9`_&pWmfuUPV8mn+7AZO@=LP6z{qmu4+0q zAL*HZc~+p7rnkAb{<}Et{rhLAZxP|)b*GoGDtnIuD9mrh8)~8uL(47EmMEytC_Q^S z+N4>Pb+2GG2?_O)_>s!VzI0$aX8HX+{o&d$JX6v)@$|H~yhXX$=g4}rjAo%bX61Bm zA>V{UL?kIaojQpJxIl7(yHl?BKrF`M)!CJDyTV%_dPMReVkE4}8-w2mL>jxK z4pjHL?S-o@-RC=pL@H}It%v2?b8{fuXU{8N;g|+q2~i2#v+nH~I@X8fL8ovpi3d;;V zKT=XT@Wa`>#}j{fIhflnCg-wi_PlX~^eNYr3^AE|!2`J0K<@rJh_IIi0+A1yi;0N|+6>8}10aSJ z%l1l3URS2eQ$`F^XFfu{nDVvnS0`yNsLNZ{rY3ey$EQPdF^Bm66x-ZH#b&c@vFojE=KA++@#s(ta=Zu z#5Z4^;6#jb3o)2u3XI=)fd5Fx|F^mFC$ z0jjV8^FzXO`_%ZS?%7nkbaFpq+Y|e? z*7`)vzL$?O)xJE0jHy24YP$W^uvXv+cpr%yH9=UU+5TGD*TKO-zx|#^M&3&a)i%R# z26GkA0WO#v%e}QATvYynYO}QbAy;BWWBj~xT5$1iis~E@x}QmbzNCcwnx^Y*I`aDox4YirQwxxOd!3G&hg@0AK4l`YAX6$nW?2VqZjskoWbn2t-p zj(&G>L?(*B5!w+EP*d`i9Mwh|E$!bMM4W%Z-`QO)Kxf)r`wj^HY4_$2U)bS8Gh5bP&kL(UGaFOc%E zbxa&iv`csC?Ms2ukv;0=CwX$O@qJX^0zJ1mK8A!CJhl%?F{)K3ZsUEx6?t56%D`$p zWV8AcZ34E@H~0mk9|ez2!|qIVV~e}s*on%!e>)&`IE%Ktl#axXxpVKwbsG-{t5>hs zS~ahlI6eV7cK_?yz7gn?Sr@L?deMgyrJ@ct+C}dI-js<~Si9`CywQa{k;+U$WT`>| z0}dm7?otW{mlfh&;1#R#F6&2sLH@Kj#nim&$32;pdZj;cSwj7$!3gg?yHWn463>P6|=?; zL86g-wOPDs@zhTP4W-yA;E1cGim-8e=-c!55VgUwhw8jN!ciHz6UlStRVklMBs|)F zX5-S%i<~2giE!wdk<+YA8BGXGl_Vcph>=HF4QJ-+DYp z*+O`{B4`JbEa`L^t?GAYM`J>(We=|oM>qhk+K=WgcFa$m*SSm`X(1Q(RmNLEm@nEH zFmnMyBfh0PQP#41B3E1HnFP~_SMPzFFOr^4&dwd$gh#*OvzUujP(9*{#Xv_?IF%rlI8Vj5DdHNU`**95wwua(eq5)3z1?8+hUe$;(TIaU(b|==?Ak z<&#CQSEt4~Gn!X(A}^mOsJpuEU67MmZYP8ifVCKl%iaJhK`#4iboZq^D~v8WT1tmB zm_6AOyLTsh0ZwPOs7NA(K`9(snDwUh`nMmhLUO09KzHuy)$n^2>p|d3VsTk*qF;+_ zdL&Ctmjt+*)IQ&lH&=*mtG40w6;2nwqg$Ms8KV^U_-2Rm<~m})d;hEyfWcVYWQozL zIle$Cw@qu7$F~ISu)CwlZr-b^axTdTNYh;(@d#uKa`dJ*uCpf#beBMhKEAtnM30`r zooaF`?wp3u&mS7>mQ}0DaWBg!J{7i{Hl0cABro_J z^~rMqST_n4#y9N14=X6rp(L~Xk*$$wj~f^sDhh5PatVPY zFCC3G-=h_#g4{riU}|^XJm>5cH0ygf{C5zoWFO_sSBK`NPm0!H%Zv@5$D^haN!6m5 zIrfOx^Zvy+>t~VJe|^%rTxTFq_512*)NZXLR0vFoh=+2$AAJ#yaAuW0S`L#F4{Gt- zF;cceDgjbD#n=noX*G2Kw#|yhDnA9I!O-yrzXgZ(9(hNUh>!Q{;X<`JuS3n#D^J*V zL0TUqra-OPDOr&jy@1Vo#X9GEwktg(4ma*PHCqNpP7|EW*cF)Te5$qh&F-~IKi2S@ zIxA2La0*5qDM{p{MNME(m`X?qsEdj+kK9O2xHqbzdH`sMQ%d3%>ULjG#z$>85`JC{ zY$r}ROyglNXXHX&DCPCz^>pnKtjtbdJEL0WE?v`W#ic^f`h*WKuY9Ol z)p&7jJ0trKc>6-*j;g^gGLAl%mpNqF(PY^EDYX zzpP40HO_aiGDY>|Vf;77iQUUQc6a6Xm)`gEGONRdgn-+16Ki!@kXO$TUvh0xOA{7! zn24{j8`UexXCQVN8tTU@hn(eIOiq-WI%Uq5ro}9~k{%xnI8Qo&Ed*euZ>bc;vwpdA z^z$q+zEX*t1|6fOfyg)bRFRU22?=s;Zi3)t9%8fqBDR}M{u3O@6jqY$c!w}oHs^dk zH@=ZhrpVD$>aXMqQ~RDQjNE)|SCtZFoaskQDY%QEiVWq6>FAzm_N9>W69vF$rKGBV zUkOV~TRVl{GE$?AnIXaSMXEvlytr+W{f!hrm+!NI{h&q=AkQc$x zE!MN_iX=PSnWYPQ_YUuPb6iGQSvg|#T|@*u3(L3O<+qBKi|Mkd>3DR3_Q&cjBF^#E zK3yxWuByyKVz54_Gw|*?<|L1vmc9t^l8OC3|KFj`y?(;~iJ}kM_x6B zZqMseeYSaG=hWR3w_DrV9?u4izT37{o7Oq}DVA>bxh(Ksohy+9Z_f?zAC@~k|jy%_#tW0cTR@uLh#Jq1V9Z>tx+b?`+(fS7Ma$$^fSpEw;3tq zy!U|T%}6P#s8Drxb$oae!Ecus3|D;rX+=i1Y2G=Rme5lz6VG8XlVaNIKyCCVF`1>U z*J)pY8gNtt(jwi+w6wOt+MN`GG6rH&;AiK*b|ffyZtj-golBn75fpJ6S-*L)zu&iT z@4>0{_oY!&^C6}K?8H02ixHtXP@Jfk<2>TnNHkkoOKKv%QPOT+nH+~xUs;uLVdo&o#K2H%sEnR~nD z8gC>5&U;94ybsi1Mz!3)D~%U%v$JF1-zRbc+qq)V(2&{Y*oPGl(MRDdEDhLEL7~wL z-ALyj!y1SPl7ix;*LTg;~RgHM|5n8Q{@E z>S5Xb7Z@V)vQ7D5%5tNfcEP4)wMS#hOQL6nwW%UkhuW~IJRHaY-js7lVt=F#Kd`G- zTLyB@uYq%fru7OM8QPcS#FCosp1AgbLZqKFmn>FU0VTr}Og6pW(lp2C#jBeB@Z(%; z(p{bw>zUo3^sutPKmnqBgDMQc$Fi3o@MU^h-?${1UbMjneRnf?C;4+8;!XQ9a=FgI zP@o*7>oA1CeM;cITj0LtX#$nR+tz8mR)}xWVSp^|c5#8;>BS;^{QEPebr48;bifsF zyAV`e?!UcAP;zSG!@!qt>DX-CUyOrNlp>+F?y70fug&DKUvhToiRmE}P|V@8xsy3_ zgD>_e2DKLpF=!-)s2b=9BR@Yw$}v6PYz?3suup-RW&~4lt(+t>kPW-WZp*68-ug$c1d4O7op%D}(%0r5=@MQ)(;JUp2#g}?`QC-g z-VP&-Xg{;IA#`YSOcPN>S-F&;c}>Fa zJ#oBFnMH#xi{WCPD;Wh6EcERm_aYQ6(aiT7V_Ej1LpN<)#BiY0*cS6$LRRmWwkEW% zpg#Adq%QBvzYC%Z04YoHl>Dj;3Ez=tL^y`PWJRIW1UtcZ+lDogXqi65sfn_2vj0Gy zeN0J#-dg*upEfu65wq!#xWuq<4$NlY0Rf!EO5}Fu@fx$Y(kq+T;vnkwgt5S2)W3}MQ68OBPw#nWz~(NBuW;qd@dGj-MrRJdLH9n|lfWLO2B z-CuA1(sOWtdVR-7?|OI!8~8uqzMNQ&=#r#RvWR{QveZf;XMB38ySowE8YvV-{Y$(I3?|P`@8i&KmqAmcrhjek_p&&5$E2a+ zDFo&^aYzJd{q7g2z7}`)yM!_jM*yQg4Ml(@kPM;NuJ6{6q)EKv)MSqPdUM*Y-#DP2 z;-$@KKcN#VLoASJFx?it2Tvda(ZuCL$X9z1wdj`%cdMnPmTq4h4G$R*?TG=ud zwV0{{oiSbh0|_Lt18*8_+6=5xa4jvqC0ka5y%A&{iEnTBZG}hjr?s71Ix3iC7UfFW z5MLgriFqzWK^rgfnCMz!!xdeCZ7`Snr=o|xHl0KaND0Vr0zeWyStD>D4%iApCl&^+ zbPqpboWJ3S5)-cSZUj%e#g55C(fizuedr`?pWaEDFq>Dn;^U$f8K%cmY;oI3^)!#v zAHPVYK!^oQss7!36W}$E^GSaI?!?3}PYaNZw5vLMslhN_P5cAMb}Jn=-tOKML2t0< zY?x-Q*(f(`dq@R&zxNLL>8hHnECdAo^LGjE_GQ@V6(NCG2=sJ{CRbQPSt}#7&WMS~&=CoUSb+VQR(B3%? zlV35W{w>!c^jr6nBE$D+nxzwuARIbC=0ei7hJ^O_{}!lmm*RbNw-Z<% zE>7y+A}7MR4FcwxQIieV%f&bie$bPVQbYawQlIt9)t^2M-g&{Qg(FJ+1scWn(6%;- z?(zPC3L!~PPggk+nI%hZ!&vQr4x|4P8H}3BPB@T4{1;v=AlX>USNs;2mMUKL5Chs# z9t5ZDXZoi82_O|TSY|ANmZIz}boVx?gE${#9Joyx5+Y#H-AIu%r0Mk987rUarN+yg zl)Lj&H7#TNlT$`j3-%i$R>9rVo(MweXAoxU)c-ng7QNEH_;}>|#+3J7e|B$Z(g7LGy%0S$AP_E^CPgeG_A8N3q76o$$ zdKq-=?cpKp)N;nc({jpCtY6Ok*WY2KM)e!aK-ma zi;MTk$yY{JYP(UnpFjd@C`azz1J38qHY+T;qcy9bYEtK`j6U^ZXUMp3Z*LFvrSN)` zSd~Xa@^ids;->ak3^yp{|IZ{(A2nch?t`txGwkiVrInS&LnG3!-Um<&kVnxOtR=!> zha(QXymFrA4;>t!OmFy|QWGrujolLr`u2QU~?$K&$IuA&aJ$xzVb)Q8w zD9ME138Vuc=btE`5fOX)ISdThg&i;{KQ)*X6KQ-cRw;7%JbBvDMW8Qeq@O2-pKe1(> zavx1uf62gL4%|J1iBH3ZyrX5sB*&NFJAJCZe(A(H0}%Z4p*SgRAhqr2F}mpqZ#&?! z)j1O16PHu%=8h*hc$;1tKue%~$pVwZ$E)Vh>T4%cCZbry>|J`IUKB4Q-O?SxMw;b; z^2biy%gEiIGP|=ksS8k~*$8Ldwm9HMV#D(q`iNtPh5&3-NlLtG0?skAt9Z_3_5HX_ znS}xg4-H!PP9?A0VL`vO7)v*{;QfN$#_`}2DtbSZ;Y8<0_KHgRi${A zi0lqelUd?`4>bft;>}b^rjEf18R7-bW22@VUO?-Sok@t}OK`WuK-&ZLr9H%aUY6%+ zH(g*dDt>JkdE(JnKlZB#FiNPeZ^J_w!w7NgmVWPk8CNAc;In`n0HhG6l7*deY{`maUu?0L(Jt5ce?G66+ z9l{t~xc^?*8g2cK6bYnXlKlFBPGFYtR*1r2cFCn*-OaTC*@B$x6c}*x>?X@<^(rgG z_O#=r%GF913QXZ474u=1@V6miu(>p+xkwJbU+X`tx})c147|PHr%DP|3)hhX zlR=q7lIFvQx#hIpS!!;bf<)?MF`!JvVpsKQ1$58W6wzx(|fx0K&E$-SN8it}2|Yuvj)-&JTDD zebp9D1kzK>b()OYmkT3?Na=(8hj0W49lTBDm~y-Tiw(LW_=Dr2-q`A3!B6WHSJ%0S zM}0=o!-d(lx>eU6^Rl0Gd&$)Z3?m|NX&B}u!w8E=(YHUZ@3jWbFG0VL0Ctxk8TK!> zL&~N+JUm_DZBZtF1KQRBRzJmOqSOUm&ka7ir1wDjYtL4+u0n1E;-uf;@liG7(b^{h zou*=bt{5FLsohAtNjDbf`9UBAVf|qYt1TklG5zSI{%4DS+XO2E!!_Dh)l~~Vu5jwex;Qwc<0QPJ6P;aA2#-1YM$sRR#vy+t>)& zjd0FwkrENzfGk6+>$a+do!(voSJJN70ROvtV|WTdUmcKfzK4IwYs<+pJtmdvbOJlT zeU-t8e5(aBY>WD^Q4CSdQei8#tXqT-4BcYv?0lf&P{gI1Cuc@(g`;lgCU?nZ=3#gD zbblM^KN&I~7pzh%1qxgM#P{j}@!P-kr7qF356Z-KN)*IXm%K2XwG`<>j-4L`-UE4I z%ORDJNsu9tMPX}$IPvS$y-aJVo>K@Y;H%wbPa2nAnKDFMg(0>Be)<+w$g3}c>kl4qR@+ECAd3A9NJ95;(17+1hjdn>SBlQJ;rAgJmuYrl zydDn%X+}Q8t6Gn1U9?4n%kszgNG%U!X#i0>pdFcog%jiBNu@4#5y9OW>7wm`6c3My zDTE?Z0Rfu@q|&ENgTya}hUwXG5~EGJ#T#~sL#)3);kTBfo4hM{zCSy4;if`Nl5Hpg zw#Qh-70pw{e}Z}Ysk+$mmh;H%>Biw&C({<7Da8O{lAcP-Uay5Hk>|}mLTFvRX=^}$ zOBlTrk% zToL#p&sqcgAMlv;;fqXRv;m2`*vS;kpwWZNxWUb3!v_T4on2kA85wH!_V#kAEZ0CM znSxjzGDDGcy50_wo9gk>5_^0L1IWI7B!F_T2_yoyjzWi{0E%c$wi8bJeoO?(NF1-cvWzEJh+S%F3>$Ph(6L8_s4@8VW>mD8*UEr}b!9CzK_J!WSz#!j*2S}yr z>gs~aS=3U!E@c!kETNT!h?-xGSGJ!e0_HIA>*D0ll8~YLIUA7KHG946309>GEj$L` zn<^09j+C1YU=c#vXgsIdzdB4dIko}WS5JRG_vu8VXZh$Tv9!4BZCdZ!#SVt4j@~ia zI`mP4)$@0++cTbr1tdTR-b^=||NJ;7qz|OeN!=M_@1aXY?XP zX8U^L9*Oy#eo@)!28wn?MMc&lA3i=l&_k~oR~)?FV0}}enxT`OZfrkU9(i6k-UO+y zj}9py41K`#&T}K<=1^c|<$Har7Aw_r?$8X8zB?ISbfZpM+rZ+5Tc(A1PG<5Eh8|7@3*7wi39B z8GzP2ftDRCpsNU2P(t(i4U%G4QhO%?bDOcG)Wt!kmz7xA31-KX~QYnVtdka7a+?S5?NIkhCj$Y>U zY^J-uM22QxWsR_EyzhG-;FoHFj<+dym&k_m-i#L(5R0Y@={9)60r_hz5pWu>1vhAO z`+!GFom>zJ>K?RC!qwR|1} zyU~ga`)e7v+4uW(bGJa~CVmgZ@hvyB=O=g5qN)WIm4nlqxW&8xB`8KqX$w|Jq}G6f zXm77T1fbqew?tsu->8s~n7q8;LS(uPZgOHLG-T9tH1Yx1b7{h2oR7w>fO;d%sn4a+ zgV%}HD4@P~SlB+uWkI?1oh6VY0}RbDFG1;nBjS6~5rpYHZpq^Hs|X9Alr&+od$cw- z0QBNK%#Vl+zHwM$1ox7xpZ!G+OeMJYOMADQ4%)PMeSwO2^wFgGr3R1Pr>-7@dYxwU zOI2{`5;82?L5f`HOQS~$EXl<7&2#R$k7L6$Xp;Oe`#~B$V01akcqP%?FT=bYcwqdi z19WTSQC9Lo)qt=uB^Guvsiv%t_>`yVnmbS>KW{bhMHlh}+Vm?}x}EX@1;Ey1+8hy$ zgGV;dtYQ;z@&Tc^85jeCJ6$MP^iCm6%2v?j{Y=o$kU=Ql5O_>E;{gP))n<3SK;(6!%wcUhDkGc$nFu@TAi#x=e+e#GV%D{>EL zlII4~W1a!kLj&7HjX-;@t?oksY<~VeKSGgUxP*#LyOHgwGhK}#x&#XhXThc4>1eBJ z{a^_vtjyC%U^G{kBZj-iLgB1k1_pVW1smfOGq}l+W%4UpVSFxZ&&%PbP!+x+c$7L7(6={vg)&;iZaa?Gsv3kIZvkT>BT4t#WA`H) z@$rxfRMHbPCp5#eS2a$;#4xi5aRAbv|I^K2Fj#O2G@FpPa8PZw}%1zoZ3_Csj-dTg8YQ0&s~*$t(jyHcKC-kNRXcjespz066*{G z>hbdyYEXpHtLp0d(L&*L{@&?|bTa`h!CerdE$1gzr;k(uQ1aW~)F58a{sEa~M=k() zny0&kbb+BD&7PpxdP56}V8~5)4ZBVJD!P+kqI1Izk#QnS5T3{SFef<*l&NjiAe5p-PQZC z&V}aWrsGW%+>LnH1cF&CK%5TH>KQHBU$k>*Xi5X^3(_~yJn^^8S*rQND6_ARnxbCc z?PD6cxhDTNs4g&zfEMo>`W@+x#}Lxu0jw)-)aEw3Gvlxf|MXR1mEFO+ba@4s15}69 zs%Hrs8srwl97bqQ6)~D%DhBO9nZ- zZ$E7t4d_xp3^(?zIO$Hj@BJg#IDh}SFTK}JNLoRbA?l4Wq{51D%8dj#CmdS$^)}c* z%GJizeaOedb3$C&gsjBTNX0y@0l38VDHce@Sx^UFnh&+jwL={h{F(-4zSXa1L)Aom z4*S;OVfTEtl;%P>J`SaOUWHr`9kO!u%g}4;1%qaTO_fo?XOs1fjHT!e1IXzTN0nFqbvva;1?TgxcoSd4a7a{l6_sA& zQvq4SB{2jt9{Y9ormaT$Z7BOc?McrBm=yRpsq^pDBDSxN&Fhc!vUoDM`Z8#2vKMb& z7X!1f|IP$ETzLBK-q9$Fmrf~eu6%oE#IxeW+1amo-0L~j8gF&val0AjOTXjLVPUr= zayg$&vk;x8Ak5c2ON?yfeU)?lUw{yGNLKyy%lO|yLVr5}1aUHB=(Fm499k!!w{66{ zFtvg%bE`bC?yv#1lNsXfIiPA)(E4Z4Mpk36G8>0oE+6v)^hUPyepF_f3O=Uendyt zgI{_T`V$y#4)%L_hCe>R5_X(Y1oHBG{rcr58KI%KHMot}M5$-)5PBvteSRMY*!E)F z-)G{VdPB(C`nED^-g3<_uMvtwB(gBd}7&@LKN}%muTwJX4)5VtXsG|ehsn@Cb zz`DDreh+EEQ*{sy5j15wr)Fgh0Qpnh;s+H_31QrR_CHrDm^}JdrNZR9k4oyo**Q%Z z{DD$Nu&9-0vi_&)pIzBOk>oc3fx{$s+pzpjQE)#{a?6ys7g6_rt~_93TJa;D$+8^f zu6pNz>KMZM4(biNb8~iz{xoy_Qg{Uc#L(GICo{f&$KzI(*n~m-84_6Wlu|EWz6=Kp zZUF_R?#MOg$*hyl6BDoYL#;7T?d8)Ia`)38W6{NQz%32%sD$6u&IY6bCC%Ve)Yh_y z(+u9@T=}Rb+mF&@+dZN_)rT)Am$nA>=ifr5x;rD*^MQPwEk*%l0qRE3T(;+|e-aqk z*o1^Tk3m(_@6Wmx|3{X)mvF8WzKV*PP;8aFL zURcrf8vw4wfmWZDrx2ZD_+6~;>)I3Kx?RifXf!@>zyt!G7hxdOnU4q`pUf}8$<3@B zpF3Njm!j3uLI+H;5F#Q}ZWH+3d1TVL_IWZ0w(34V3mg8Clc%+$?jd31U$cf}jhZGP zVX3R70In}Qo{OPFK`H;omPZxImWFiu#SS7-&5tEC`40HuYz=iGyroOR$F7Ss0f6yb$%pB`|_;j|4Ih^G1cQpY6ss$_Sx5 zDHRsu`pmHp&OMb zi_w8nLkz%#kpGto{Ph1+fj=+wUn}t4PrnZgSb;h@BiA10YP(T_ppp{KoZQ?Z~xKHdm|^$1(%diC{KjmLs|WFLZi5>10s(N-2zzH{j9>wEbSo z@%FS~_6E9H*2VM4w{Hk&et>Lkw^f$EJaAa;XTYPYXF_^V2)MD2Gy%2f;d4atWyl zl5{d}@XSH6Qq#qD<1cUufElgAKfa3be**ob3FxsPz6J!GUDdcUq}6(mVY}%-y^WND zO43KLy!jZtl^m}Be!G$t*z(IfDW@99;AQjn_ZANtpSnw3(rW>zjw#{s*p;6&RUV*5 zEw1BZuZwTb|K1d>Vx_o0F=wnHxcVCh+ez+v};g$gniWNC8FpLyC~ zg_@e^ijvJzqANA|Ww^Ku*+EW7(M$XEFQPx3J_9iY;LgE6Otft4|NDi^)wl6^;+@Cp z>gw+e(eK@M4RDl@?(QXaMJ<3lCkF7wOy9Y{`XJJv5pxX%q!oXbMb%UUD`q^{aKR!# zuQA~?WZ`IkPfs?OQ)sV0HugNrL}F^y#9RKP*S|r3d$@W3-FDK&rAs+y?>u;|pySlT z#^y}}8v4-#P+F&ScrddM#0TeHZgJZQR&K3Rg}zHt(;Ne<0rdl;C!d>W2_LD60yh~O zgf6rIm&i}ML?k3Y{1O)t5rN~O{WSCc`5e#K3Hu^T`kwgNXm z>H56Dn`>%t9z-}7LCJvB#XGz5=0uRHx2PKTTFLM{vm2o__A?{80)gIJ2} z;tG_>e(8lVpaPIt(pi8#B_}0NQBpzy5dx=fx)i{Bz)gd3Pl2<@8D?EbU0h) zE|58Nfi!ibyDEiK6)R@awjdiM4u32A9mV|0JFMb7Z_R+jVv+)63s=T%f5 zv3Q|ds7|v1^!a%8v&CO_&P2WUnW#h@^Q;Ck@2qTkNPwC23QWZ(_6F9Vxb-eL@nsnt z0fQPbbg~@Cl*B+2{n~}<^;5O~+I*%(%s_w*&UC4t$^s{qhVbJsW>>%sL zXg3{@=`U+14FG%JHc4#{loUCDrLA_HPQ6R(6(j?4(vSx|C+rduR6(Gm`xfYuAt3dE zQ()(ajhJkwI3h=G>=gqhmyY%@R|NCQd z9&{!u)lu-8J#Ifin-YDDj@;V^B`<0sftu%bg=M=CI9{mb>ew);UQerGXj>mu{{($w z6s1rO@ImOFfU|*aH>5oI-QaE~>@=hLFKv+Ll*?VP4hcM}B5^LvlYoODA|unam*4p( zDe#w8@l$Ou_Wzr+c&MjE5Z;78&YP7%?m)Qc3@p4$&>^Bg!U3@rYBbOTHQe`8PHg`T z6#cJ8t~MsAC=6%IoH4V_DK1TaBwFEY!(IY>8EA#Dafp;y3kS|wF+J~KN@`!(TR^V#ZDA(XNij(wlGa(_Mh4>o!D-ekQ-el&`1lxb9HQUw57@46^`8)RntEF*B?7aozSKoEt%`rm!S0TMc-jhTs;GUFu#Xl<2JF0|R zCe&^Y4JB&gWywJ8GITbC91)sTy$GXPH0wNAQ0lPh)=Jn2R5jHHKD znQAml^IL=zOzz@;rvFjAtT+LeA>44(_)R1iDaA%?gVyw>Yq%;|3)_5V)~7u|m_l=S(WJJ;bSw{-#_nK@2tgQIGmZY_t|$`_jOJH+&;hDCNr_jR^S$>#5zG2Lj^{OB&#M|LF-+05goMd1mduyOx@ zz*$atR!b9!^X8_E_+Ihtzb#(p4JG?C=eIPO@z790dMM(RWBt1iUkZkJS#D1X5&e6u z1;vv5d!vE>fA>(r4`Kf+zE?w^!h%sSI(mCCl9Q9wNzpO`@9Ia529lr3?2MN!Eib<% zeyo^f(){M5fFtGa-@h}i8%9U9Zw@*MY({d>jEs%VEG$se)YLq-N3pWAvt^Sq3cdUH z-`JO)5AEzIf2So*71c66KhpB$Fl~vcoqvNfR`MdEtn8_SgTvz9UMvy{`r^S-r|idh zTudm*@lVlxOo-Z?#Pu%kRx10`r?S^)d$P4obD`DM)ew4vZ#E3?-@pIrKlg#{1+2{A zJ1S&peVqvz85y=e-z`N3#lC#X%x>Hs)FDO~T+xh2;6P0Ka#_^0bXw0i0$m`-0Az&xIw$4R)bkU)zU5Ca_s^4t3isx3DdyH zL}s<9yW4A}r@AG&WyFxs=H_O2T%3Sd!1bBq(#i@W1U`~0FL~OKm-k2`R}K$JN;yMJ zKkv(zS3Y-3oe@wbrk=^e$f*3A^4gv^3pXu4N4FU?T+QruOakl`<{Dn3LAV_zE7@ll z9zJ}yyb>=-4na&;K~p#MFfQYn?YG! z;C(>y29s)<4T~;J``c0DJmro*4qN;#n6l9i6L9BcmY0`t<@=rH8cs)de*gIsR#sL9 zp~t5cvl+cve>)+RT3@79Agw_f^N<(a)zy`P_Z4ojb`f%!ZuIYbC5ygy4Dk5)6q;)F z$IQ$tpPgHtRlgcq+}*{cqN38SFrlIIJ3#t7Tc22P-r%`MdA7em0NI?W-PanfwHZM+ zF)>ki{=9wqyFFffL4Lm3&op63P?be5`Qi-WkAfPJ_Y0@vdi(aJVlcbx8cIzHWivxq z$=Lc8@9gaCQBqNz`HJOwPHryJCI(BPP6@egxe*o}9bMBw2Tq;)20l5vUQo77grcgx zce!aRzNx7xVhYwj)1DLI3i|+ZTYCrw(SrvOU#$jm6hE*Ey*Xj|qMZ5`tenNo#UVT}g9+zf2yvT?qr473&Q2?Ci{D>g!|3B3QbgJVD^>&eb1@32A9Ds_7!_0|RWs z3)Mo1nSfi43AtEHG39cc=1UXx!UxvWk^IzFk45&_M*INs@j_S&54aslQ&TaI$r;&uSuN? z5=6bl@6wthQQv_l1uckCJ`MsA6Bp+WxbYq>c|iayxu?nJ_~3NHl#!ku5=$l6vo?@& ze5?~0l{CGr5HMkA(Ogk=L|7CyZKv?;!23H)EUX{Bf=@HptuW|U>b>?e%+RjxuJ^fJ7Tef|y>`a&z|f=>6|sTgnVFd- ztoYX0j6hBG#l*ypP8*u^S_8yA_olpb9|LxMs>Q9CVCBbF@8%`2T3Bx0zAiJe<-1;AJ1o`YkH z`}^@B7z7>t{j8=7seO~9dh-AAj@SGT0qSHL{SbH>cb1s3__CyW1+WPIRM2 z&!Gb&5LWi+4*Wq)JhL9!(AcjM)P$4cZF2G9sE)G)nPZ!%!AbnqZnT}sWxWJJD z6Rj3MpNs2ji|#10$#1qKRLng3cBTKDAE4WnGN73$&Op!i7v#Zc5Ux~M$Z~OYMVWzv zi75qc<>Japh-u(0+3nS-%x3{dw?n*W!T$`FA9%vd2Cux0&-n3Fs$`&q=ik}X4R$be z`B+N+qnn1NK5B<-*=X`YqxvKFlrrN+0m#eCqqQlMtW^C{R^3ueNF9jdybEl{^@CPO zS(^EZQ+JooQ{xwaZ`bQbT54L*{P>rR_;qQa{OT5XPcXrajf{!u+MB7>sCQdqSJC}h?mOcChmvJ-5U}MSdysUZ+Phsj?DdY$2T*(}(h zgz)I-0ncxr2Ah>qHy)FuLixuN{-p&|i!}yK6#nsdZ@Kav69$nAGrS(n{P=+daXJ4x zXJqyCuTXJDs-m(o!s*Sdts_41+rMg54u~4dk&UK5Az|Lw8gF>L({W)iJXWN|3~2+V ziaS9;mQ+wsuyn59tHfo~(z*x240nI-&nPp{jfqz=Cvicgw~c+l+18Se9Y923CmMgk~<3CXb@&VX`r zj~o~&Dn?NVyX8UXOG`_;>fJZo(({EZRxH1?+@2XCNj2S`%}hyT)+3{%qmw&U8iABg z-qO+%{u#U=^dP8Kiv<9SE->-ko95SO4e&>jN@CHF=5wAmI@$Uo@3AwkGFoA3s;8%i z34sa=3#+Bh2V6VKxNc2W<$@sE=;G-~4(Y<-Y@+`Urm@cSXM$iVDJhLK`M8gi847At znad(cO-@fo!QpVfTRE8Qv!T~8_)SG^DwP5XIxfrT`OxqVwkAQOrItG$cZy?zsI4<=WZvL-}-PLJdOLdVl9zGaPua z6oDLcu^i1AC8Yne#%Ycfvg+OFvLszo5qPqh@KMyO+~&`hSQh=Sc_0vx<|}?61|NR_ zatrCsM8)un@?XEyM~ZdWmNqw892^~G(?wo)y)gBEtf{F9&>}cB8W;`Mix)4rJSRZHEKm6vi)=JXCzv&o&>1cxK6gVcxMBqmPY#Igp6RS*@ zt+cF6HVm7rtE8fZ_3ZE5=L+iX4^S9GdeHOY-!1;Wh=@uh;2;H}qh&7xl+2ulA?NK& zJcjRPE85ES4Gqfx7uNZna~K&J{eS>rgoMTmH~d zc&rw8Qf9VfBs`-Fgl4pMN@=?;ty8cf;N{lFsQM4C!-QY1{O3&)iqaHP)LQ@oz{CO2 zgve@utFexU5-KPw!=}DkWsekEEa2H=CTxLdgrp}ASAHI_qflj&hQKhKoSakK@J%d) zp90t2rKsn5O=#J`x6>e#hjT1uuYaAIKsFT%u8kO(3Lt|>wY+YXklZn?ycU@(2LH>kKY#S78L2WDpj zrAD^j;;q55>ti7qwcvJjLGEu*cBgVBIXCWZ(@Yzk(yRUuJ$F4V4rp!fjA(1|kB=W; z&0iAs|5T#jWM#Q|J^*esYtP*k4uv3oU4U_`<9kDLa=GZPp2$L>Mt{QvddE5J-C3+O zk^BX+j1**9%jFEQe)s*1fQYp~wHLl7EACf(l>y=}qH`?GvRmiDT?^is2&NT3DYz;4 zvVMCiARx6f-u62`C`2Z^*O!=zIcJ%kn@Gq{FHm*3#<8u+Ldu9b>krxA4L)1Vx_$W* zx+&v<+%aU8&&V&zH$SIsj|KO{o=&Wm>Y14oRFPp&;vF0hi%r8UljY*k$=M;xE5~;R zI5=76vM+y9XBjt2$0t*P)f{}Ti0yJCRB4+SV1L+0bUSWkCZIrx_tKfb+Xw0O_U7mO zp4ebYe%k$V=KkD!TC#qpAQbn;WceYxQ3x{1sc6L9+-dw=3!a|g&i^u)piH{YOwh5J z2A#mCzq_Na+?|j6ryf%9VP2fgbg1gmgUgPx93uzCQk_0ffyqB`3dtMUB=GVD7u-Q^ zX}L1|ZWkZ10DTjFdwnXSJ2SbtFX-sZ-P+I0;582)@~5OD+`I>14qojhed?3sl74pnCir z#A9_oTcws5rbIOxqP#^HS({IcRW*tKWyz5^lgt02VtZnORfm>yqBJ#tv@r(vHkC{A zelWW&l7))bdi&gMZNtDO7M(>)?*3}Rgjcl%+SU`HBh+_Lg4(&E_2{ zB-`elxmCO`{+er$&Sd zQWX`CZ+8Yd7MaP8gXwi(k?%MgM;frdZgh_G;7xyL8(CjfZhG5U+0AHkcdzeb`yLg7 zg!a6$+sc~(J3uc&bu#RM3yRh8g_Eqs1c!jC>{e@_*ZuYRh>=>R{S0~Kw?Uu60|uF( zvpu@Zp5(bLI~dIFV08+~XG+yJfRS|Xo)#sdYv;%JH4IM;JUxbDijZc9814iKe<y)AJ>Zr-#dkKjbSX=$^M=-cIa5(eEH{GYdvnN)~ zROt)3apU$qhuF@W%n*#zh5hFiJ&^sT#M++qA96PHVlOAT{ExdXgW!eqASwM!8zG>s zbvC`D%-owfJsza$B#r6({1M~9tYF#*^6Fo{Mh_boA~J4jNpm)lhs;@)J(H0GJ&`fX z`UTBD9Q@omvAnoZkGXJKzLAAJGW=$S;ANQsA3%yWMntmxiY`Y0=i6Ltpz~xJ?uQT`xYG?AP)k{ zRXV3u0r{QS;pGVK{o)H;8LPAiGTPzDq|fNjG3aUI^n#EsAd(ckU!HUSTks^dDHYYr zRoS4nmELM9$DyR8uBRToZm5i?c!VezVxdR(Jc%ic@<9RdLwMec@-bbt6tTEAvG0Xj zGt%;ST05yFogY4UkY)K?RWH@H9r^Z@&+e@03yV9fuH&M2b1-$cLa9G3hg~u-v)shr z?;F;yd#?+ZTe$1Z^>fRNj9G~%`osrk0cSRjU%urE`2NrfHnE8xs+4idz_9m5wTI<0 zAXia)Y5ar>%McVBc>BkQr7IsJZ&9)0(XtTEFK=#@xQ%nH2 znhPs4m(OWqd-R??cj{UDYwtxFzqraRtu}{ZZpvyNmk9aR!;QIq&{BF_6yP{mMw==wwvzMkYeyE}|xD z;*m~SabWyCK7PW2TnrqW<5+~j*LSfa%vww9$hY66v*0r(e|6Q&zK{E9UOa(AmPDqh zfoA=Sa^@HM=Mh3~mJq7SXV|20F@lctDSF_7=QRB*3Ll(=j+fPEy(+?IT%)qvx0W%Q zioTL%PYe)jfA*_i#RjNl)gPXqzByxWIv;T88T7AU*3j@a(Xzz1u2|Js51o4b zlS6(n`F!z)YbQ-Xm|p=q>pr4mjEq8@vOg3n+=?A3359D~Xr$;}r7NqnaBR)#M&|k$ zsTH>0p~SRLdgw;JaUp3VRlYM_*l{OSrJ@oKZofKxP0iKQytBPi<}m@M(tFp)DE0Ls z>r{EsptKEWv7UzH;9ertg<&l+phQltXJ#J!nBc>2Xpqpy~BtHiG_ zDrXZLmTp}tr7(hT-zG6iVzgOyAggPov}NQrW7z!w*;TtQg)!Ss3X#2MjwiMKE|ss? zc6lt7$`h25a_5l%$DDeC)0_C@MHDY zNQ=lhTVrUKmsWTnAq7=%E?$%hS42jcm{IR7z7~OLtKU0DIn8=E8NYv@b6@K_Kz=L| zR<263cyZXfu%(YeEw-awE9&fzc^&5dGL`iH}<<-#4#lZhrX5bqtv}g%<@JDU4KE zTy2ob295^oPFgn|#?iEugq#{%_N>GeuJV!(yM3a`S}?nwwr@LM*g1F8sOsq1x+iDv z6KO~k_IAV1+?CVv*?xQUjqkRSm01nh_Z*p-V7uga=(CijX7YKtIt7xW<0%OTpFMih z4Ud!d8>Eb(0U2i6%*PIgye_WDZH{uRs^01N8i%h>Sr0BZu4tIlij55eVcpbXB~SVX zxW-;oAd|6*HP11ja+x6$&aN?tNp9jeOlD<{2&C{VaG>eJ<@`^iSey*KSC(bR&COR( zrCN`Qs%-n46b@TeM%?9%o-6*|w-R=h4h&f0j0mo}-}cgf%uK~xSXOrD*9|~>#P?5v z6V7-B`d0e8qqfPHinNNpC5*V-e@6H@=tNa+Bhm&c}H7%Z)qh#r@`G;tiB;QTv87+RNfx)zm ztp0ZK>kNPX^{wxVjF3MiCO&!`jm*wBzD{q?dfMQLpQ^1$-)#~C3Y-M$o=OjQ_F!Fo z$SV}L|5j$CqWL5=U}?_!v@t6u_w-&o(B$6RVA|cp2$P-t-KHM7;r>`BM^livP27Wp zqxMQyj;5LrIGlyfa=*)ee9K*P9j>H=GVe!%iG@Tf*5{dUFQBA$=ONOKOwM17g!5n< z<9$DhQ}nOnO4qjmRv!iME*4Q%0#ql;uV^0Evr383xa@tpQyBS?c(uOSg?0OF#?@7y z!-ntEVCTel`yH9q1LVaOl%yvp7_!egOM+JPUurX$gtXg>f}&Wc*x>t1_jd8&#Qp2l zhfjU#zx3JYmLbpkzXh)m6se}N|IT!lJlooApVl4WOIb^Ga2VoygHBPt*1T}gc zn@C}I%o$65g8lgtPxZ*z`L;aSnrob&;@?e)`aD>_=;l83I+pS(crK_wzN6V)KCo;w zaX*_y%BFA?eG9Cl!-VhI>i$Z-0OF|lR9{x{6@+0Hmx@r#Yn zDsA?glRs)7CHzIqEi5!DOvDF2@#6r}?*mOV9J6hOkw!z~3cb+s`E9-s2L2{SxbNRZ zwfoxFY+Qi>E|% zE98ZrVLfc#dhcpv;*P50N|{lI&TNeQYn(+RbNHuf;B4!&kX}5^z3HHkkWenzQCN8R z^6mLTFQ9yvc6OroTdwhGL_FHI{uF2wzuUl48d3=R9`-uBg_($qAS2@ng;xz5v+s5% z+QTITkQNiB6Z@_|haaQj<4fJ&T?r?!*FRVM5+A7K&gjk+?!G~rsq3{0zf=5aKk;?Y zb@brA7HVOYpNZcT;D76NGwd+d?w%)!gjeo+84huAv}5;|J$SkJE9q>McE0Aw!_8QJORkye3fchVEBqZ{Gpw$Cr@HeLvM?Nh&D z-wBSr6+G%AAtI|s#&hEG;^6Z68W7Oil<}&7MQZDJ8*?VaxhbJ`g187mRiJ#nzw?<; zOZ`hs%afy1|5x46NiUrSyO{WrjgOM<|x}{p~s4ISDcG z;@aAWm5oXLDF!hi>Y;VP&NHPMZo55}LA;MRVWNWYLin2ZR(mS%6;5M3?a%@rlc(nu zPC5D0{!_nLm|gGFLuFavx5i8_UfiNqseIZbFuT6kjOaH*g1%QQ8I%4zjHG2(Khg32 zuhK7{=hlOwLIe`|{s+2$YO#eGh%`9z^O2mJ(b)BoA29*81=wDC?eWHr{M=*K9*~j4 zh##NeX{_`B+ut4?F^xFsa`^o2E(yNWj7stI5j;%cy zpC#HFcjjePYCn0`{~idt69)8BXc*FdQ!ZV-Ae}q3ed?k2wc~A}x0t5t32E#ur2h1e znq;rdVovg5Q^OWbqJTl>HBW2OsTUm{ryi-nf8A9Z2^ zA}T;%c0>(-rZW4Ev{B?Wtr|s%h6<;mc4^c7-8BW*O9-W)Qw(TAEI01AbaqA%;N|X; z3CL=2RUC_@HG1LS>D+3JXP0V7M8Km|6Nb^4QMs(Jx$MbZ_D$w7?0?xnI5`(*oP(X_ zViFSyDKr4#nPL`tJTxVI-8+yxmT8jWgQuA;a)o6nY{s5YeDZgWs@8d-hdI;l?c}5$ z;OFUp%E8yJ4c=jCVH*;NeuKh>!) zu>ofq?#tu;48a%|AhM{bNELa_nwFM^TRV%(hzr4xpa~Y7$$$B7Ms=`nvi(aW9D6AD zMBb*p^6^#0cKibVEt4od(b}_hBNxY+8h){}rus$5t?F!OXefIv_0%*n1U1M5^26z8 z8-b))3qDx%d^8OFN?YjrwpFTvn~wm}EU&EK)q)1~>h|lqu^aB{PGv}2oytn((W;_F z&!ZgkuAblMNMpzlNGCMh?EJ&rdlDiIC$cqFqfHNr%CC~8OenOuuZ2b;7~P0du@jxs zj(B4#bxXo>b1jk$onq}ouo*wcga%2qezK! z>|U!C0Uu><6?G+(ZRbo6d^T|OG~wNQ$bI)+-RVJc!XIJ{r;mOs+M}JAY*BCbMFJw? zbVQ)S;t$hPJl1>gh{&*GbK3WxwdR^^y{WrAU_zEbKIA&h-qnL8h2+dfmV6&I*V)%8 zTsA;^ux|=`sX+h!&wHE`8o+%kx40sobYk8g4RBuU)h@Uktv+u$?4gpQk(<=Ci2OyH zU8q%zZ%)@`zC0c&cS#Lp4N%lekZ)}l$ zEeS4FuI(8mzFbhZP=qVEsgcEM0nH1yMGvmu(GTWA(^d(PqAX9$LTSFo!7=07D#JUu zW&&$Q5Pp-1{gbS+_?%VGwzP8PH$LqclV&iO1P)|OQMa>rzC`_JHnkj|`3mgO=N|;} zCKRJWH{1#Jn!qMY2TRn-rRd+G2<7RQ0>NZuTv`1$+0pH9DB z4M@7f6i61hj08=NzWuAhC@dG1U_#_fr)yFtPbZ2gkGx$Wm?ipKJ5;Os%yOlO{BWz( zKJDhyaYOH&vf8K{_e_UR_`S4p=5|nnBxj9PVR)3NPFk@w_V`UBdSb0g&&qlMUCgn8QldUI+!&pa8)mrkiI9|#39sp|pYOxrM;-kg*k=A6iw-L>g(VskM8e43 zi$_|}envw!!_ZSK8MFdyA@_6KhNol0IPx&rkXS8RJwrVU*$T2k-LI4!y{2*q+xh+8 zvKI>FRWGyT4?V*SlN)(Ck}dnO-ula~0?hKQ;!KJhYynfqj;8ANwK-VTRdfy24yz%|lT*8Eh z8l-5|x7I5s>3?iAYq0u7Kcvt^!j(s8!)RIyE88aTfsbBiEw5sTy$>!;I#P>z+=vIGT8kWXlC{^ z%=f`BhiAMVS0yB>z3Is`5%9sbL=`PNIo4!aQ&w&~qSS_OF?>x#m*}7Fr>W2B=2B=P z`q-;nSy5@vXb&pS+nVLi7h5OkT%WuC$2unRb2~F>e);-1-w@wMBg{7E@1uqGPk|GQ zU3(;(-%B6-=J{xl4eHaB!gpXSkMj4F7@>NS6&-N{qCyqO zL}Z`h4FW>vzxy&8r^NkLYFt^qjs9n)cIsb{l08h3(Xa#J?oyB2iO6^aRKp5Ai>CF) z-5;`(;@r5d68KfE;7ldJ`*2yJ-kPEW$^s82Od*ZnP->v(eyrii4&`}fT%VJ|M!oeR0}5x7r9snTm!l?}XY(MG%q0vZ-Ifyj!~a&u^EuHY3NH zU#xV?a+>dSmtCCyY%N^Ul|hV$J1XbpI9oMg3Ux&ADSF4)xQ^!|Xmwl94~1}k%H*{G z13Ai4_R>fB3{U{cx1t}D|_NXt2?w#quSK21Eg0>DH-oH zns!-0%xM_k{giLJ{KOZQl<4j?yp-O$@GP7|#*-8}24q>5hw;mYYd<+%SJ#P7jK&j> zSqU|=r{9>dZ4Z~l??g^m$umGnKD^I(E71DAo!~m4?IWHAn2hFA0adwm%au_6cKd(p zC6fMYsrht&X|pUB5mbKI{`j|CzYXm0829{Z&qW94B@Nx6(AVZG+NhMtw(#yba;kNm z3#VZ(#EB1ou~3$7en&2^DWCLmq}zyR%(33qZ)9%q+fstG6}HNo%}u=qnX-t0ssKu? z$4JOKJq&@w%yUsL6?8sEERp)ucb?>PBYdUU$B30{nLquG2p>5;wG{Eerx?=A9thKo zn-^mhB~BuG>n&V%CEG_x2HCkcT_%-%4Jry+gL!-Eda9G&772=EcW!Hy2>+%f5}#l;lzi6dgLh~@SOH>CDxZKVu`MZ{+;uEE z#IJF~a8R7<1z1v^2SB5zH;rN})9Ch-9NPb3iKw&cv_luP@|DS{n18&P*oqyV@xzCB z+wU1px;TZb0)a0+sq8b};a89#ukq%Pp$)-*0m4pk=Lu#xNsNcFNW;^;o^~sEMsRE* z)AzeIMb&&H7U2xCIdoQDUOh;HshCoWQxe@M*WRzxoJ&M}6|o-@`Hs=>AGJ z5CF6TSBgrciSApibmc(;E@sju_Kkgk80!hvf$47iX9B1GI9V8L0Sor}>kNzqx0br| zP1*+bt+yBQhhHr~PW)Q+?HRx(-lD!MH_gYG*jUnvZ=wJSVhW2*jQnL_R|Q~&wrkm2 zFkmO(EZ>!0O;rE` zR>t0NlJ`gKm=A;Bb99jCFrIiNHGVvfEPlg|r3ROuX97N|-Y?~p^7n3gv9mkw} z@w$0oAP%OzIw@2Xs%A^azE@AWVnPu?6f55c{QQ-P;m&A!C6GvTv5A_Zx! znGVq{yuQHapS8ll7*2A9q}bb^>I9_>`-f zfJ$KIB~{8_)At|43pXoWHH*}0{i93?ZlgdJt$azO5juLxH|!Tr}Hne=GZHCz`Vb$Y+Lt1`xyAdcz^5 z-tUs<=Jpn$2?XLtv)#!m1-0P@jvF8zwwbJC_-61FA=U*7%7>CoiXb`|{QVArSO~9gjU&;25;%L1Q~R);DLnk%IHyj6kT#!-G)O zf(-yb*-F)VdqxHHqoHaNmtB>EVK@&E{}XVWUi_6U<9$Bo#ckO~SZX>PzNkNc=#Nn` z5lADFEwjJY>?-p2+rP|2nc^7J+Hi}8hW(1}W32x5D`0V!eBjD);L1~gS2~#Y-EZ&h zWuDm(beIexVOCunmb`}n(cK6TIr^PVSzl}wWWM`UoXPSAsD}^E&UyqF{6c^>a=EN_ zUOJvuoXdTEFz1G~IEMxM)%CDk^wCqoOyc;TN+K&JN8$+h0()IHMP^!iO9?rczd9#8 zbPffvxu+fU`Yg%WA5cBGNa_zjN$jJRm6Zhp!2mRrfY^Ap4925Jk3jchCERMd#_{vo zYrqalX={)2E(ik2ITjX{zEgMXxMnmW&oycJq}BVPHz%JjZ?yrmV(}@y{a3gQfKLw1 zl{&!Ia$l}kGWGD$g{(N!%2VwNfIvc)IypJXu0jIoyajJII1=Bz3tC-Wby)D)9xZZl zbK{u>GP;;|^CurzHL#cbJ2X0qQEN;lql{C${yD9p2IfCT{r1gfmY*JdExQ?%>BB4MJJkeGLAbX$uW72_E@ zE{p(+6xM2bOU0?{r}59HfPZc3G(I4eMS|q*{7y(qzQt#S^79z1bd6N5P6gPC-jH8p z54`8_{&=PCNu9$EC<`>mWNV%tk?_P8=$Klj{wNGx>!N{t4Lw?`R?l)hWtc zmu>WpyhYw1im?&FoRL7Cz|BxqfGbc01qC5e-|fcK0n6p!JU%`SE-NW1NiF_{6znSD z5vy@skpm*{9NjX5a4P}l`LwmyRDw>SnVF^x{<+I*3!?WqV>!BY-uF2mN7Q%h5ecg< z2*)};s5Lt+8lz~nZ35XROon2rBMc`jG4YR9e1&nNt_>e05fzoaw*%Pj&;dkxd3kx5 z451f`Aq23!>F?D|PXgZ(6OkC>RS8A27*)E)q7JQ0vGKZwAmAqG?y$=|hLkel8Sv*Hl?uO=8g-N5-s{K`MEBk_ebbLU0nV;w$%wv-29{LM{=1XN;aWu%mtJTkw-cGr|XVDnTTzSTA^dRzG{i72FoJ_4k4|kKa}E6F=H~C- zzkln#@zV?pU-nvd5MGeW3?L0!Ss1xlLFd7baW%I90FG8R(|Y);#$YEUGXxKzDB{Vd zZHI=vAPe@_it(!g5qsb|i{2L=O7b?Ms*IB#(V1BlYNo(n4p;8z0D1+va#Gg!a*?g{Hjzr?ZKX?HWh++Y{0~dJM zfU9T2{^&6%O}I|iiiBLRQU8iJU;sb@tnFhFaJg({vbMd19F5=Qk7{ryp`z#-!4zd{ ztstWTE-Q2(g_Dty5d|1_2k3$vAT}mQf$d-#CAv>f_7~_P2IfVs+=|1biACh~ z_9GCd!hjB(Lj27)1tq0{BMBfcCqt;BL5#@(;mv%hBh2TgCUpeFKY4R!q~l0SDfkCr zVy!CRC!!em%j4|^*$2*|XTnqq5@|vP^-Lz@wWeszXnb}%nsKDBQ*}WUaE=H_1ZQX8 zl*dOAt_Mys0HLp{sw&uy#hKK3Wp}Q0!bw5SjSD%jo{&7Wn|tvX2s~l2JGqp+0|z7P z@du!&JscY_H8YBK{krllRdeU6aD2AsXlb2*`}Kx4f(+dHu41E;{b5%@J7(3(e|5~K z``0fy8Sa`(JxJTmQia9DnlbS01YtxG2H`S0MlBU?mUE+o@>pfIo(R7g-45n6rfdlJ z>`oQ62E|=J5mkZtc1evXL!lg@Ca)$DDP<@qxDhFd_54+$Aa~9PCMM>I@zjG}Cz?bA z8Jw#o&cQEJhK*FRSMdx*m7`%X|If{p6r(P@gXn`#CEf;*>r2?o$G*DESC4pjdhk zJgc{hP;p9W9HJTnL_erN6xKk!SlP7UrtMY~igV7HwedA$_K6H^c-3q_7(u*NdIo{Y z1rS|ef^V1vRJ)DzBfbiqt#f;nP3Zs*frkW?FVH46A?i|^gW>ML%D=lJh*B(c?1>J> zb@*Qyn|Sp}11rgFu7oE*BwjfxmVt5Uc4KwpxhWWF3-6;I<;FTa z0OLyKZVD=e5emIIE(GCCt$NUhh?T=hqAv1FD_?h6MD1eMYpL2#bBLOn45yHsUKE+A zNLld>HhLIdM}Hz))$2Ch3!h5_q5>jyOZ8&d6GR09SQ_24&fpyk#OHWjpDs~~+)WW# z?`M3V34<$t%ED0o9~3z>5>oQX^;rBc-Nr-}t}(Om(8p!Gayv2or+n zs3Ph^aQ`j)5tI#Jouq=_npy;O1M2uIqXu`c#_4A2r)2x6)7$Y}v()g)+8V$v!Uv@? zMf_cM$GH(a93X5-0nsi4ihV@=8o3RaPXri!dTvm-W}@Ut&AL7*1S-_xU#tVSGX&0^ z&7qBXe1IU3a6Enzw;&N$?KPa^5&0WYa7I#%c*Byfr7>Bepil6~ti^QV-DEL?i$uTV z^p~=xCB?z9VYxO3@)MGk*Qav_o`(oJ6x3N|7B*FtXyr^sV40&Bz|`5c8ay0?T9E(| zfT>3uG>K7#AfciVCC#&)mvw=QS4buoDzM?lp=}57rAdD)L1c1_#b?_nQwfD1%~oLb z=2m85|D|#2r~@AYb5T%KdjHQNYBd&ewm4M|yW==55#-qy7VNw2vj>VFSi(953EW3b zS=}7cSSE}djftiNiT_J@p_kG^(trIxun`-DuS0{{y2?nZK*#7Gf1?9x(*ubsjX=h` z*tSi)Tr2q;^Uzq5wdV-pdd!!sluuVLz+6~j{-_EVY@VA8C4T#i$^ts%#B_`x3sw@4m)k#!CIcN?!FuO;E_hs^ z@3DTD(KH}#2=!{hMgO<63Cls{r1_N}dr)!r#*EedBv>YSa*jg*U*L1cE&h zSR3a=1GV=w!SF$NbQun!CiQCJ^fZ}|Tw_jN8EdFOFg8pGgin3I3u&9~FmR(}#rH0z zC5r+<5?4lJb)*KE$DwFwu|CNz20o%W6%>rS+h_I0@E}gC6?H7do;9gE6`=Y$l z%Vku=ymyTTB%l})ePWI5x)eVG@#M3%t-3$|Ve8fFL(E1O;spX9iQ=aMlhbCgODT@E z5>IKDu4>zl2<%M}ZAn7#MQx%x^X*ZIY=|EFtWpazB7#&VlNp#lOF@GKRe1V`0f+kl zHWuJfF|+dRvDNmfRcvl(UU={HVv3Wq0(P=!?!@!Y(%NPiuh($a`O&<>L_VMwKv5mo zeD`tE4hnhc-Q|L)w%njR%noUV>Uhp#)cbDU@YDf@7y8^8F69o6l1L70tC3SvUNMZ%<@Ym+#Pg=Yd=& z13h6Almf$<8euxxsv4wuTfYx3fgXRgY9yQ5|KW&x4LN2#K|AIZ>sRBK3Nn-o?q>VJGK>}O+#}_Ebf~8NW z`dZoXJ3~ohpqad!*`&9EyS4ux!qJ(jI8YpWalmp*^j7+<3*%upg5~J=FYFMb5qD+% zOFD0IUbCx^2h^^G3c@o&j8GwD-sz#X-ZF`Qp&DTnpfQm9#ZU#2lCpl$izxyRA_p!3 zvLg`@buef`uI$v94#df@c7U0s)kX`-3DV)oYCwWyl1Mayg{FiMY8Vay4n!Xz{uPNv z+_ukXXYxc%R;i5slm=oB3EGG(&%%c(Nq3wFt(e1qB3R^87IKFK3>*<)<8i9|Q~cK|jz_ z{Hk;l#Zbx6fvOHqrJp~6CQ_L+9$Z(33SaiV;WmMR=a+>(0if!n|MeVzdI(XK^g7d| z{Ii0A4<>R2tm*I4GGaIwj9rB9zV0em<{$VAwrQK{&r}fLvU_%S7J)E)?R{_D59yk!|I#3^Vb=#Q*7*OD zZmq+2v0f9+0||jozz%Lpp5jKG-u`(uL^uW?A9*BglT zEK|AbRL@1pjH!B7Tl+L%I(fK(ljVIYpQN;wOJ9Nuz_eLJUhKzkn%)sZxIm|I@{L&u z!nU_TJ1mOPnYw+nMyncEUlnXOQ;r+gw7)n8sIc<*NHx+{AvyX1r#Yy&Kye-pp4Gwn zqCDn#A`=5YKmUN6d>r*N@N^KwV?V%dMdi-|dqw94H4YE$MhlU^Ga&$(@e;5cvZwrg zs4>1~)F!7sWB?#{fINi=E5V=(O>uVvT;%7RI5Rh1D)!G67!%vJBB{yUt<|K#l==R< zW+1BoT_INK0@ZZHMoPf>#jxrWFHTljP>6W2&`S8hAM(C}K!9}S7ufgt&2fet)au=! zBtE>_spy=VdI)w~qd*W8WqW)3M<9Oz&B;pdLvvI#v?cHig+i@@pU2R5seRPVyntsn zQ8ht8t0+)JFt9wrOj+hM17l#>QP=f+^j?9ed$G6{JZV5kSeQXVf;KKL?(2#=$K(9R z*{3<lMeIWQofWYA7qP)PO)`)c!Uf*=os7tX?aE=_zuzfz z0MfAP&8c0Q$ZKrKuSPFtux10v(4NCz z=HGfECz#dEKwnP^_`-h+A}**oY6SYzFF!NHqxGv_nOz(#h4&)#p8rp4Umj2O+J3#0 zB1L9pJccrsD5XrrMo9xnBtn!>#$?uj%%#kUGDUR?MaC4F70QqXV^UG(5b>^ipPuua z=l4GEKkw&Pf1K*rdw=&mUe~(TT33Lhuy78lP^#sUdMI z2U!l6gj72#Vm*A+AsJ>B5C{i(^VrzO+PEzaNfz-9gB(j&3WmkSt-_iRmXKhqju6;r z=qfJr9eU=p$A{c!8u*paEJ#xYeW z&@C~7h4b&Hr`;EAe_mb9^M^|9kG@W!C2KWYjbCY!Ott!!_qMa&6Dfbdk42USxqhon za3nJIJlliKWqy8D2O6`VJ?F z0yxJU zetbF{D6s`_lO~(odB3Ug@d|Jm;SzA%-5%qRX;!)o%Iy{P_MIhL>j!}sG6Kjw=DSDU z36rH(G`}cWUp2^wHT3C~?PBR`aJOrodnaPR%3-qS`7}?}vFe)wj!n)N-uGtIk&=3=0Ar^kT6J(I^QUEbr&5V!|G(cTBNlhB#0yw}MK?vQe$+m?tRr@lbG+M@0ETbfBafql4 zi4Qqjw`tc|xr~`rn5UIVXK#pM1~csyA1}Hw|JDEF zBdZR*OvaBMbnkJV9s~Z_Xqo{$D^TrdnXka9w~uxZi-#jN%P4|^f(77>##GA>d%3$S zpN(%Ac$nI1d#lyfWo~_%8Q3&NXWax&D;JzcJ?q$>5ndx(#pH)u;hkX~k++nBg%v8G z7}Hs1?of)`sBytlaKD4nH69;u$Q_dCMGfvH*9D{ z&LwN@Tl~ty+jgA}-LHpST^pDSfh0VYIj=3m%P6t0j&FWziD{^60|qeH`b}11|AyJ8 z_6={h>_!NnU$|>Qw|vU0Ogr|`!f4qBljYUXRhWJ;(vPt65{lw|7cON8qJ^;EOV%vIW8P=FyvD+!O)vM!g z%ka~+ls6>Xga{>!>=OIxl5Y zM51FSBeAj!svP)bH>@uIdO$koTkmE}FvExBGi-lFxZ|ZF_Vtsh70^w=| zB5g1=A~O0DL^3^Dkvm6Ymz=A(5^0=`FgwId+KSY5n{#xubse?{q;3hTn&s=%-ZPb8 zbF{D&(VA5`s33$U_QvGhxI|ujFPpgh?uE`79)k65yM>Z(kipl|`z<2-wFPQJBC7T?w}7ECx<3zYh`13gaQsp7A_}>;J_#ktlKeEf zP5*lO$)W_uXzk=63GI-Sn;QKrlyjH!z5UaxV|DgY1I~wY#HT+|^^u#YtOaLGr0eOY z@$1P8bRsGI_QeIv0NASEFdrjaBrf;VT0ZyoDN|A%H>&_C^yAVLx?_FR$9$64??bo6lMve z;|(z>5=KqdixRvPw7qqdN#^sT;vK=Qbk00zRjH30x)FP}jv4W1BP~QI-+k5&eM*1OB_%Jn4S=#t7hfq)ZB z^HkdCAM60CO3)LQE@kY)eh%$c(T4+Ov0)e)j%1jcB1ee+(JK4M{{XAg?n5^O5f7>JkPZvG?nX33(yU_IoRT z=mqX)ZFPnu--^eo>#MrR_qjM%mZeisLW!jx{tQxXPi$woKtvJ7C9vbx4#l%mi8MS5 zl%y!Xj6Z&QK0+BX4GCl8cChp!qhkC?DciREU`M0`4^q>dRJ~2p4+oP;Y}k9XmoO2g zt`5`k+|54iuDYF@2~bxM>8?RTnF(?3TMlR52fIGc-ZS(vEKe`CFytO1MuU1e2IWQc z1uyXs(ayO}>h8&o1#b$>hx1BTnQB0kf!k`u_ns$=ux;TzzjI9X3J#ViGrK<_|737l zfMWhW!zpNPi~i|9MDzp9^1LjpA4DhWzI%>j(X%|y-_9m4lZ)ku+8;_xY*{TeYenVm z^=vRQHWF4{V@A$|Wk|t4pY8T79k=5zKBMa_@>6#6Uh2NMf-@ony#s5cTW5}otl|Ki zjQ0*5x9Ga!^Lg;~A@bt*)x{^w=RS=RRu%zc` zq*RNvG5}DXUSn!f&-}MbkGDFDv-Q_?2VT@`&6D~EqgXp-0jI(Q{lDRI7G@n_exI~f z@V>C~$BigWzR9_}e@ctYYJqXdg{53^u66NE!t7*((?OE{vqCzo0Sin*&Bn-8r51#@ zk!E>_{eCwVU4!ZdK9`jZ(d0n6XBBniKWN)@31|5U-EBMY!o#sQc*g5CaZJF z(UOTJ6muZ*q-^pLo*4&ijBl;sb~UC@;)-0PxT|EM5`)MnXf(c68SUSFGzB9;JN60k z)MpZ={g1=WZ@7d!8{MzL$?E5Z92QwQ{*>FhBloaXn!if;A9vrC5Jq7@3oDeQl{)kq z0(slD6^^fceJwF2jEAQ*=vVtxYK+%9Ds#kz)EK|yF`YjLQxCgb^Hyi%FFnI~W_NqE zK&3q?m$8Yb4D9Dzv->sYjDy&vrE5~WbMkU4zpCDaU`1x{d)4za@DuCsT#5t^AfU5I zF?Z=2cw<4;r2~O$2I5H{NH4N=9jW^0-vYvugF}-n*AucnM2C^p06cZ%#&GEUTc(j$ zlSGvE<^ax;hy_J{5swKEnb0M#(vENtAOp8JL0;>uf>z*jEC%{-tjayk81js33;1yy zdg~9aGv>PM`QSoy6;u6QnTqG@I0#=WnnS(&QmLBxaBC@fHB*c8gMfaO*b0EO$=dVJ zPrUQ^SR_Fn_@W`#VGG~b848$|zQLN8xNC6>-1*@$(dd5SgAyYXb9t-(U2;k?J-Yjz z#bs`QLRtH3thl#r?Ky%v>&v3F$+Cz*+<=C|6;?-T6OBok2{Tbf9oMckb46L zqFuNvPHo~mHdjTVkYX0?2$d4VLg=rE+I*m?*v$c;U-r!0ak7`vagh_A8<0?HS5Q^= z$g`5;=i%-7ZzxdCti|OB^-3H!b4p*$>CHY7@1p zJJ;@#(;lasDV^HPg8x;wHP+gapxCo7*gc$@%dTaSig^U znc#eeFoYf|2c7lN8-4_!mJ=@^2y-ENaCyxQZyQr4Zg=<#E(eGn)Ka5=EI$3D&dy!i z!3TVfN(VQJjorm8U5hAHr+6<#iyx|EwhAPVe057g$@!^-QU(f97Np##?%E4;5;ssy zH(l>qAqvZtM|>c=>ODyvF}(Kpk3UF&K2(-})J^OmkjYHeJqXxt+&!bEqs0V@qf<}k z5;D5!FFRF2U!UE3%(uat7FT2C2geJXNI4L_cjw-HS|qgQ_cO+upf;1qYK$s9qWzYs z%**d~Js$m9cc}1oT+mqhvFM1nHaA{MH#pZ8eTCuVR6&YCD=(_1dqbeXy(o0CVxgNb zs#OLxze|Z`Bc6-OT;~G_$@@v^@RaJ(HX+6vO}E;|%m^8sHoA&70)#(|WFiH0jW>ti z)5_zP3LQv**9N|Y63Ka#;^6DK*C8diYfm|Ni7DS0pde}fvTsz4> zwN1~B^Wig?glUagy?%s{yrDx)+mcsAU;58J552>(riu22Qm4#)=?xP*RYlYV=TE~-5 z-EYGxvJf66pq+;)Ty0E*gs2&?vND>ng)U&QX;WiWC9K?z8tD$xW6b~EiP5Bw1AJ(#v~UpRE=NyzEl#ZD2RO>?0l zFEd=oPu3%@7l0W{RvrN2lrBZyDClAMM#6(UJrDt!Ye~`AK^oE_f6}zbbq6dV0Z3ky zx30ShPtpQkl|jK=_|x6Au8$$QNQma3F#ORnD`S$sLczA>TzELMx3_mTtVdIRLf_Y1 zc=!ZaVJ0gbocf@ydQsW71Ue1Jhb|fu;WiT{t+Y&Hw*uJ}!VWwRsK#7uQx9b~Tyy3A z?pT4^w7iqAm+p>TUkQ*Y$Fh=%n7gWYPHa$425}E4Mk+uk*aub-WYA;Gs^R*U#_Wdg zABx%d`NLr1DY|y;QaGzJGBK6I4%EtfO^Ui6iN1dN-})U)p*s3BTnL-3?tV16B8Y~l zu~kLc_6ARR5TG6z@B#e|?{Xn2PeG#I3&&mKn62K^*)VAiXtK>KfBpJ^_pizJeWi^s z_0^pG+8ThLCfqR~K^}E%|Kg$1`3R+yJB$4YYWm`udu*rPl}R}n8C?{c^$#2fU{!DU z2RJ4F{|2Wtug2HJk=1ce?ICyEiqYDbeOA?y>>j2Lm2koAct&I@Y1hFht z(5bi6GG%Bc>W5szcpAsH#0aHzTO+>|!>Vuo=b$Y76!{Ge4JqefD*DK_l?eo!!2WHn zpU=VBw-1(nzbTldbX4lG`+R^1m)@NcWMaX>&3+7RgkdP zkq|KItdv7Ra$<~(T)57vtjK!qDQ*ty=%@s-qDyW(5eEb+376}y$5w+402sF7lpxq; z2g9VY!UY&N2Vmy<+&O?ZODImg&zA}Nv*JN5;RI?NGXr8OHA_D|X(k?K#O#!$qMX1h zS-hpbk3g%FT+odasQk?I(_!0V&7h?G-senu$F)|U4*htu=00sSZiD)ATBRfaIF{Ib4V}z94WI$KThH))?CcE?6%`UQ*XRa34jXMW;u;N=? zw6xYQ<&+CQi@vqLY4PJw^%&*o(9`85ADh9k&AV*MizK@^DMKprclxd_b%Gj~Unff9 z{M9wPd&m0g8J92LsLaF1N4%g<7^{x^+S?Dg#MXMND&g}%dA!#1slWfA(NXX)Pp-=& zwfH*)hR-TzdDvF5+x)mx2OHP_LHrEt|M31jLH{1vwX=ZIWK`_7?#EEaV#>(K2u&7U z;`hmC<;u%oz0P>MfxpZzAn*`#86QwZCws`V!*N0Hrzk0k$wi**$!BbSh@mo^ID8&g zpJUJb68Zr89A9OP-=La{tQ=;w-xQiOh$7G72>Eg3!$lxS4W6zt|49zr_kG6a>fYN6 zrm(G~P{31s^TbC9hUY*W-_xvmFNKDNTEs)ReZnId#>wT4jSrg2_#!2dPAw)lk;Z`++?!ge;Ep)aVm)2 zj!sU`P&C-!)JrwEf25;nV&dC7o&y=W&rs@+JN;gf7$|r7EvOuSnRwDY`D~{LgY1)O zktZ{s_+aZRDkeq`o7x)Zo-L7Ex2`_R-rSx_Xz|lgW6$C~p#m-+f{&@_?3|BpbTRRl zaIh_CeF{{jsi%>J5$E@v`v*gR<=6Q2&jej7E}q>u#qQ!Dr#GKBditWrqMzY2Uy5(@ z%zAJQ4Gm>G_v@6*jnxw%mtgO(tF?rWKwvnVxVSj{&lmBmKe8P(-3_p`CX&`wo9*Lz zeEvI{nF_o$_X%&LUg^hQ?8n`jhLsUuG8lPPDT{micIw%k4rT3c+}$a=I$u*2h#V*m zVp}7FCFh)^Ca}~*v5D7U*E|PITKVb4bz&T^*iIfPz~Q+3)hqpmI5~|(WemrGYKaN07+ap4)aq*0l(`qH*8ROS`Q7N6seq^I*|WEc-mO1Xk*!b>GMNv41883d-ZIcg zE1QhmZG?Yo;nLJYQc!%HiZ3JRD9Cp^_k4}IbMZGP#o>})1w_Tx+E?Kh3c0C49*6Je z>BSWD@=wdaE-FOvG|dpyGR>z~DXvG~3JeV2AY3nl6cALRYLwM8pK+#akSFnZs{5Wy}mlv)#Pu#mkSq zfx59}`Qwn?T_pRgQ`l?t>eTMsK2GrDs8affMxc?QP=x7Yl8qu#hg_9OGV;RnYBFj=9rz7|K+Ga~v~pnar*Tnx=lV zWNryqQGK%!5D|gq6cv{c1i9Mu)}JRD-fukM#-B>Qv%aaFTV?yH$?g1>H&2QbjPO|kfz`=GP?ZmPtG7y3vjcD8!YI@@Ag#y;C@vAQj5*!b@ z$v__hN*fdxMx8EO$?=PH@s01vVv;YY%SQPvQgi#sMj2_2xt#s8#kTN#&`t$HX?;|! zPjY!ESVw1mG~$Vv@I=R-BC1Uyu9^kSG;`E&b)NlcN3z zf1a6<+TiwdHF;^u)!l1c@4T&bOy+Ut(DNnSa1!!gI=QkL6x{c|?j~e(f>8t*#n-r* z*HRZ@3E4?dLsMb#KvVa?QX@yl^8~+?C*K8HWvOC=s`TmING{LOz6(%J20pc?iN9Q| zv?VvuUYW~L?+DV27B%8&%yJVNrOqku3;_}|O^ViMJZU&D5+pHfm}qn!7tJw1N!jy5 zo*hn1OE7&KH+>Iq`j?mzVEu0aYIN2YGY+|mWBY-hk*85tv7LN+&U5hk5%= z{xDlc1cM<;0jknJ|DeIQY+2OSs|ShBQ}N`Drc}d~$Oe@3pAhfjrEd*wL%%J4oC@X~ z(b1*<&P#t6;8fq#2*^>Ry#ADWR9<;jHs#Pav)t5=eDEQ*?5!q zJK~oTq?YpZvDcHz6pc_C9O#tqw0UmkaJd4Z=<%!-BI(yg;cE4fw_n>?|HUoGVfGrF zOkGbWc8Yo5O!%Er!}CEOx4I0hNO?3f4^Iku&_yEW5YN>>`o1Vo4H{qu*?FO`uAp zgAM=*T^XoRcE9D7|MCQ2{&pvXmp~$`qz3nMv-ybbCwi?TZ!VzD)BR;LHA)u1 z7byjpna)TNDg~y4n#G>Z3VLkBVeO%k5)O^F6>>AQd$H2M=kia+FKl!GjxNM4iOcaK zG_y2y@zcpqLpY?fdp|OH7kxWGZ~{%@UPSP%TSncDqJF(JP3OcBl1=BFvt1O|VX>Cd zZShv47B^uy5#uE<_FYQR?by7eK0@{y0gKX1``zOD)EFq_ZAs9*wfUiO9eNZw6Cai* z{oc^x(@^A=n@cY`PPFOa1m;+5xN^I7d!3C@2JuTtW7ptg4gd;J)IRi=AUi2o8&9wm zinC37Ad@G%MGj|k^CP#{O}CsG#BPg=ZVEd;p zUnX|0a}Pz?53myv4Ob30wrSdogw}s|*`ekW9zxg3nyv@wUS_3(jzb&rZ6|Dv4yRn4 zqtvCBUkUXfeEDaE0{0#P7XWnY!GOcN?bF7Wqg1Mg8(uY+Jivn>=Jg1NF&v9BCwh4wmK4;i+3uY2XB>7WTZY?4qgcAW<*i)*m%H;wX`)PQddr+ zApc^a5DIc!sb4<1FgN3Nu1LPzwJn0MiFGxowg(zh1=WkLchWxbv!sgM)bm(bpJf#H z+2O}IkQabgx-%SQqoCu<6K=hGb(&V`!__DPyB+2O8DZ}>u}JT`5AYnm=PDJ`+T4d|9Sf z8}dqrImij(_@;g5-$o`jW4k#LOTD;DV&62kcAwXW6_zH*39tYewabiVzMJ{Od zPG+|g*9n|7nqOn?hpH9-T1KIT20SYJ$fb2n{Pt$(M|e0M>r#u>m)5x8kV-jHIMcnB zm{@_(W7!)MOpw+(0Bvg!w8_gEVRZ?G<4`; zha#I^lK0zB2PW=(SWZOa%fAu+xHJjT_QMII^YAP;4xnd)Yl9{BRc#guMS)%e{tgdQ zR>DJP{nbWmEOn0*l-W587_m#8hMQG@BMiKkK>&TbcP|m`F{%kf(84|(HbJ1rVwe8| z!P~;_upEqm^X!VFdOm7>qcGX@Eh zA73uS{eJ*_AtKw@;wk9FASHpO4pJK|tUxE@0xZc2ju8)q$US=s(T`#|4-Ze|)vK27 z03e)FppFcjE%lsapP!#M?tI0KiLLkX1)@@4=v`9V45Hq}rh9 zAo*|EV5;6_#SbMO98jEA3i-_~Qc^0uopkvx5}^61Q>WbT;r}S26&wJ`6GjemWh^uMS?6O4dLoA7I_bZAudJcv!S39WYQV}rxPHNU(v zzQoc{BE-ix``%g}&Wcds^?dwjRp8;_!S(SjYb5Oc#JI8dis3?Pf*~o&Q*K{d zB#H53aBwi}!!F10YV%^wvBG9F*$X$*OvO&@7tZ)+7SzJ&i&2=WC)6)x3)wp+NFBI(#HGpLnu3-B)jM(< z;Uh-V9a29@kfk{AySIougNGo$dbs?`J5FO;MP}sNH53Gfj$@+h095Eq^ii+FyqE4)j zy>bP{fU-bJ0tSQ@g#4}zjh^*5eAu=riOJ-VgVY;RfUTdbT@k>yXj#JuKAlaAjz#Wp!~M_7dXx(eOW-|ZY#uu?4{ zm5nru#j5rywv;xySUF)6$kZQs;=LLt7?kN6fX6qu4H>1~zRlBr zNOBXb8g_grI>XFSJAT(+=T`RIG!%Zb^6%2mAOXjv2Zkzugr*gesEqUVBJ*>ZJ}Uvi)5l$Vxt)+Er56D57^qM z)H6>J^^wo7(nG;==dP`-4Yc0oHY9=GRpJCAbQ^jj4Cf4y3l}ejPG9Ftf+9Hx78fC4 z{RZQ_3_fJ$p&2E6)C}YBG`j)Epnq&^?3)sghl-Bf=WN>U#oKh26!y$aOt|XZ-Yd|I zj&E!n9HNk%OQW~pbDVEh-syD9SFYqi0j3x5EEjm#+(N$7x3Y6{*~unX=Pc{$^Dxpd zwDw3+@K>NRwp}T)6flnN_h@5lV-wcB8a7d^zu^w?6+82S~|zRL%u?u_yI;|8X{EB|F=3>UTg^LWe@~SBReQonJ6HT}#E5|kB`Yfn^)M}b z5cB1en|KL@AEa~kYqd^bv=Zv=j0)-;-GhU6(<&(`Dd;yDRu#_27jqIT5}Og|x5>x& za6-tZbbtNIL?Lf>`0(MFu5@sSC5}Gvj_IoWZPy|5`rmdPnsHA?tgWp60O-9^NR`+; z4Xx*ZF`*jbllS=gVItQ^hrOEFE2%d^c zN+*nel$GsvD>M1zV(U8bS&!TqCa*oQu>|)kKOqk?w-;3lSZELDRDctVl8#kjz(~TeLVEOn%6ub$RWuU4*GK z72C$*vRc@Z?l3$B^_rWTdtdld>_*}}yAxmK(^=on;hvtJ^U$zcd#I|Y2*9A?;4gpuT{bP5Y#DoRgb)`8 zG$)kJFVl9z{97_xFnh4u?fjk{VO6=UeA}4VfhG#5mNIE(moCi&ZMzec;h$2A*ymI~8%dJe9; zcQ}s;-R90eetb4&fKS1eURwIDOj$jOu}&xq<4+jlhn!=iXw%%xhPzEFLDtd=ez%g6 zl5;9aPs#i<+SQC_2U=Y|BPNag6*&-TsLfy1Jad{WvJBUB0t_1_cMR#jZDHSO0v8at7VqEG#T~F;{59w&9)dcD_wEe_-KC zqs5`*9m7BGd==i_<=)4P07-0qW-^&9Q zm;y`!uiehh>Ms=WfQS7K*5qUon^cwwA2+X zBU4*bLjh8Jy@Ia1J+ zt?TTZ>puQsO8~YIu_8e?ORg=a-`9+(^2nNT!fl2fmrVJK7kk14RSu`6r*n-ymgIj> zHeZyv|JH@<{CsYhne?Jx>Sj(U;gGK3NRBpE{JwI}NMkJGj6Z&hNguc)8p5jn@!Kk{ zzb@6$a=ZU_1OAsw@qgi;(%$9S!2{VbC-duvJ{0qyGbwTm+!E`0{UNq8(njYQ zBMpfyoWhWuUy#_affYLq@g^Mam6pO6rNV^>aL7raboRUX({qcA3LJ$wH6!Ct07hyL7g_W@z6&_h6P-VR*JfRF3x~>+QX^#AO=dhRp(wqQc7IkfGKj~zzkg@J;3#`eFrrZJ`N<9yXH?A( z`AY`ZMCC-V>g~u5+`kuNvWpn_jF4mkovm3S5 zp+h%hxGp>OSyBJ-F&^Y&NV8k0j3O~;ICIEF^}?;NVLbFK`tZUaNJMuhH3Qp=*8XrT zq$2VfCyL?j(<2rU^`)ravZ{0L0M^3yuVp3;q8aU1-6AZwJHMv;E~6*4D*F8{qChM7 z49OA;#isQR*WoR{?mUAa{m|h^Y0H@SbXxKu58cr#dI`