You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Dumble-2D-Trakcer/assignment1_update_answer.py

97 lines
3.0 KiB
Python

import numpy as np
from kfsims.tracker2d import run_sim
from kfsims.kfmodels import KalmanFilterBase
# Simulation Options
sim_options = {'time_step': 0.1,
'end_time': 120,
'measurement_rate': 1,
'measurement_noise_std': 10,
'motion_type': 'straight',
'start_at_origin': True,
'start_at_random_speed': True,
'start_at_random_heading': True,
'draw_plots': True,
'draw_animation': True}
# Kalman Filter Model
class KalmanFilterModel(KalmanFilterBase):
def initialise(self, time_step):
# Set Initial State and Covariance
init_pos_std = 0
init_vel_std = 0
self.state = np.array([0,0,0,0])
self.covariance = np.diag(np.array([init_pos_std*init_pos_std,
init_pos_std*init_pos_std,
init_vel_std*init_vel_std,
init_vel_std*init_vel_std]))
# Setup the Model F Matrix
dt = time_step
self.F = np.array([[1,0,dt,0],
[0,1,0,dt],
[0,0,1,0],
[0,0,0,1]])
# Set the Q Matrix
accel_std = 0.1
self.Q = np.diag(np.array([(0.5*dt*dt),(0.5*dt*dt),dt,dt]) * (accel_std*accel_std))
# Setup the Model H Matrix
self.H = np.array([[1,0,0,0],[0,1,0,0]])
# Set the R Matrix
meas_std = 10.0
self.R = np.diag([meas_std*meas_std, meas_std*meas_std])
return
def prediction_step(self):
# Make Sure Filter is Initialised
if self.state is not None:
x = self.state
P = self.covariance
# Calculate Kalman Filter Prediction
x_predict = np.matmul(self.F, x)
P_predict = np.matmul(self.F, np.matmul(P, np.transpose(self.F))) + self.Q
# Save Predicted State
self.state = x_predict
self.covariance = P_predict
return
def update_step(self, measurement):
# Make Sure Filter is Initialised
if self.state is not None and self.covariance is not None:
x = self.state
P = self.covariance
H = self.H
R = self.R
# Calculate Kalman Filter Update
z = np.array([measurement[0],measurement[1]])
z_hat = np.matmul(H, x)
y = z - z_hat
S = np.matmul(H,np.matmul(P,np.transpose(H))) + R
K = np.matmul(P,np.matmul(np.transpose(H),np.linalg.inv(S)))
x_update = x + np.matmul(K, y)
P_update = np.matmul( (np.eye(4) - np.matmul(K,H)), P)
# Save Updated State
self.innovation = y
self.innovation_covariance = S
self.state = x_update
self.covariance = P_update
return
# Run the Simulation
run_sim(KalmanFilterModel, sim_options, {})