diff --git a/1-ml-landscape/main.ipynb b/1-ml-landscape/main.ipynb index 5dc472a..e3de416 100644 --- a/1-ml-landscape/main.ipynb +++ b/1-ml-landscape/main.ipynb @@ -17,11 +17,10 @@ "\n", "Objetivos Específicos:\n", "\n", - "- Aprender el arranque y manejo básico de la plataforma Jupyter y los comandos de inserción, copia, borrado y evaluación de celdas\n", - "- Identificar el procedimiento de instalación de módulos nuevos en Python usando el comando **pip3** \n", + "- Aprender el manejo básico de la plataforma Jupyter y los comandos de inserción, copia, borrado y evaluación de celdas\n", "- Conocer el procedimiento de lectura de archivos CSV\n", "- Relacionarse con el procedimiento de acceso a datos por nombres de columnas, manipulación, edición y filtrado de datos con la estructura de Pandas\n", - "- Crear una función en Python para leer las bases de datos de la OECD y GDP, y posteriormente crear una nueva base de datos que exclusivamente incluyan \"Life Satisfaction\" y \"GDP per capita\"\n", + "- Crear una función en Python para leer las bases de datos de la OECD y GDP, y posteriormente crear un conjunto de datos que exclusivamente incluyan \"Life Satisfaction\" y \"GDP per capita\"\n", "- Entrenar un modelo basado en la regresión lineal \n", "- Comparar el modelo con los datos reales y determinar nuevos valores de instancias" ] @@ -112,7 +111,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 6, "id": "86e530da", "metadata": {}, "outputs": [ @@ -158,7 +157,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 7, "id": "7a58ef40", "metadata": {}, "outputs": [ @@ -497,7 +496,7 @@ "[3292 rows x 17 columns]" ] }, - "execution_count": 4, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -508,7 +507,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 8, "id": "d1c803f7", "metadata": {}, "outputs": [ @@ -550,7 +549,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 9, "id": "426e54c9", "metadata": {}, "outputs": [ @@ -592,7 +591,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 10, "id": "20e499fb", "metadata": {}, "outputs": [ @@ -1962,7 +1961,7 @@ "[37 rows x 24 columns]" ] }, - "execution_count": 15, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -1978,6 +1977,15 @@ "metadata": {}, "source": [ "## GDP per capita\n", + "\n", + "*Gross domestic product* (GDP) per capita is an economic metric that breaks down a country's economic output per person. Economists use GDP per capita to determine how prosperous countries are based on their economic growth.\n", + "\n", + "GDP per capita is calculated by dividing the GDP of a nation by its population. Countries with the higher GDP per capita tend to be those that are industrial, developed countries.\n", + "\n", + "Thus, **GDP per capita measures the economic output of a nation per person.**\n", + "\n", + "---\n", + "\n", "The Dataset obtained from the IMF's website at: http://goo.gl/j1MSKe\n", "\n", "### Data description\n", @@ -2008,7 +2016,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 13, "id": "fc31575a", "metadata": {}, "outputs": [ @@ -2214,7 +2222,7 @@ "[190 rows x 7 columns]" ] }, - "execution_count": 17, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -2227,7 +2235,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 14, "id": "b355820d", "metadata": {}, "outputs": [ @@ -2433,7 +2441,7 @@ "[190 rows x 7 columns]" ] }, - "execution_count": 18, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -2445,7 +2453,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 15, "id": "44bce56b", "metadata": {}, "outputs": [ @@ -2666,7 +2674,7 @@ "[190 rows x 6 columns]" ] }, - "execution_count": 19, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -2698,7 +2706,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 16, "id": "37cd9901", "metadata": {}, "outputs": [], @@ -2711,7 +2719,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 17, "id": "df9ca7f1", "metadata": {}, "outputs": [ @@ -2929,7 +2937,7 @@ "United States 55805.204 7.2" ] }, - "execution_count": 23, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -3014,6 +3022,55 @@ { "cell_type": "code", "execution_count": 20, + "id": "ba85eda2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[6. ],\n", + " [5.6],\n", + " [4.9],\n", + " [5.8],\n", + " [6.1],\n", + " [5.6],\n", + " [4.8],\n", + " [5.1],\n", + " [5.7],\n", + " [6.5],\n", + " [5.8],\n", + " [6. ],\n", + " [5.9],\n", + " [7.4],\n", + " [7.3],\n", + " [6.5],\n", + " [6.9],\n", + " [7. ],\n", + " [7.4],\n", + " [7.3],\n", + " [7.3],\n", + " [6.9],\n", + " [6.8],\n", + " [7.2],\n", + " [7.5],\n", + " [7.3],\n", + " [7. ],\n", + " [7.5],\n", + " [7.2]])" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y" + ] + }, + { + "cell_type": "code", + "execution_count": 21, "id": "75460ea4", "metadata": {}, "outputs": [ @@ -3047,29 +3104,37 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 24, + "id": "13fabb3b", + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LinearRegression\n", + "# Select a linear model\n", + "model = LinearRegression()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, "id": "86ee41bd", "metadata": {}, "outputs": [ { "data": { "text/html": [ - "
LinearRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LinearRegression()
LinearRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LinearRegression()