# Lexer Implementation from abc import abstractmethod, ABC import re from typing import ( TypeVar, Type, Dict, Iterator, Collection, Callable, Optional, FrozenSet, Any, ClassVar, TYPE_CHECKING, overload ) from types import ModuleType import warnings try: import interegular except ImportError: pass if TYPE_CHECKING: from .common import LexerConf from .parsers.lalr_parser_state import ParserState from .utils import classify, get_regexp_width, Serialize, logger, TextSlice, TextOrSlice from .exceptions import UnexpectedCharacters, LexError, UnexpectedToken from .grammar import TOKEN_DEFAULT_PRIORITY ###{standalone from contextlib import suppress from copy import copy try: # For the standalone parser, we need to make sure that has_interegular is False to avoid NameErrors later on has_interegular = bool(interegular) except NameError: has_interegular = False class Pattern(Serialize, ABC): "An abstraction over regular expressions." value: str flags: Collection[str] raw: Optional[str] type: ClassVar[str] def __init__(self, value: str, flags: Collection[str] = (), raw: Optional[str] = None) -> None: self.value = value self.flags = frozenset(flags) self.raw = raw def __repr__(self): return repr(self.to_regexp()) # Pattern Hashing assumes all subclasses have a different priority! def __hash__(self): return hash((type(self), self.value, self.flags)) def __eq__(self, other): return type(self) == type(other) and self.value == other.value and self.flags == other.flags @abstractmethod def to_regexp(self) -> str: raise NotImplementedError() @property @abstractmethod def min_width(self) -> int: raise NotImplementedError() @property @abstractmethod def max_width(self) -> int: raise NotImplementedError() def _get_flags(self, value): for f in self.flags: value = ('(?%s:%s)' % (f, value)) return value class PatternStr(Pattern): __serialize_fields__ = 'value', 'flags', 'raw' type: ClassVar[str] = "str" def to_regexp(self) -> str: return self._get_flags(re.escape(self.value)) @property def min_width(self) -> int: return len(self.value) @property def max_width(self) -> int: return len(self.value) class PatternRE(Pattern): __serialize_fields__ = 'value', 'flags', 'raw', '_width' type: ClassVar[str] = "re" def to_regexp(self) -> str: return self._get_flags(self.value) _width = None def _get_width(self): if self._width is None: self._width = get_regexp_width(self.to_regexp()) return self._width @property def min_width(self) -> int: return self._get_width()[0] @property def max_width(self) -> int: return self._get_width()[1] class TerminalDef(Serialize): "A definition of a terminal" __serialize_fields__ = 'name', 'pattern', 'priority' __serialize_namespace__ = PatternStr, PatternRE name: str pattern: Pattern priority: int def __init__(self, name: str, pattern: Pattern, priority: int = TOKEN_DEFAULT_PRIORITY) -> None: assert isinstance(pattern, Pattern), pattern self.name = name self.pattern = pattern self.priority = priority def __repr__(self): return '%s(%r, %r)' % (type(self).__name__, self.name, self.pattern) def user_repr(self) -> str: if self.name.startswith('__'): # We represent a generated terminal return self.pattern.raw or self.name else: return self.name _T = TypeVar('_T', bound="Token") class Token(str): """A string with meta-information, that is produced by the lexer. When parsing text, the resulting chunks of the input that haven't been discarded, will end up in the tree as Token instances. The Token class inherits from Python's ``str``, so normal string comparisons and operations will work as expected. Attributes: type: Name of the token (as specified in grammar) value: Value of the token (redundant, as ``token.value == token`` will always be true) start_pos: The index of the token in the text line: The line of the token in the text (starting with 1) column: The column of the token in the text (starting with 1) end_line: The line where the token ends end_column: The next column after the end of the token. For example, if the token is a single character with a column value of 4, end_column will be 5. end_pos: the index where the token ends (basically ``start_pos + len(token)``) """ __slots__ = ('type', 'start_pos', 'value', 'line', 'column', 'end_line', 'end_column', 'end_pos') __match_args__ = ('type', 'value') type: str start_pos: Optional[int] value: Any line: Optional[int] column: Optional[int] end_line: Optional[int] end_column: Optional[int] end_pos: Optional[int] @overload def __new__( cls, type: str, value: Any, start_pos: Optional[int] = None, line: Optional[int] = None, column: Optional[int] = None, end_line: Optional[int] = None, end_column: Optional[int] = None, end_pos: Optional[int] = None ) -> 'Token': ... @overload def __new__( cls, type_: str, value: Any, start_pos: Optional[int] = None, line: Optional[int] = None, column: Optional[int] = None, end_line: Optional[int] = None, end_column: Optional[int] = None, end_pos: Optional[int] = None ) -> 'Token': ... def __new__(cls, *args, **kwargs): if "type_" in kwargs: warnings.warn("`type_` is deprecated use `type` instead", DeprecationWarning) if "type" in kwargs: raise TypeError("Error: using both 'type' and the deprecated 'type_' as arguments.") kwargs["type"] = kwargs.pop("type_") return cls._future_new(*args, **kwargs) @classmethod def _future_new(cls, type, value, start_pos=None, line=None, column=None, end_line=None, end_column=None, end_pos=None): inst = super(Token, cls).__new__(cls, value) inst.type = type inst.start_pos = start_pos inst.value = value inst.line = line inst.column = column inst.end_line = end_line inst.end_column = end_column inst.end_pos = end_pos return inst @overload def update(self, type: Optional[str] = None, value: Optional[Any] = None) -> 'Token': ... @overload def update(self, type_: Optional[str] = None, value: Optional[Any] = None) -> 'Token': ... def update(self, *args, **kwargs): if "type_" in kwargs: warnings.warn("`type_` is deprecated use `type` instead", DeprecationWarning) if "type" in kwargs: raise TypeError("Error: using both 'type' and the deprecated 'type_' as arguments.") kwargs["type"] = kwargs.pop("type_") return self._future_update(*args, **kwargs) def _future_update(self, type: Optional[str] = None, value: Optional[Any] = None) -> 'Token': return Token.new_borrow_pos( type if type is not None else self.type, value if value is not None else self.value, self ) @classmethod def new_borrow_pos(cls: Type[_T], type_: str, value: Any, borrow_t: 'Token') -> _T: return cls(type_, value, borrow_t.start_pos, borrow_t.line, borrow_t.column, borrow_t.end_line, borrow_t.end_column, borrow_t.end_pos) def __reduce__(self): return (self.__class__, (self.type, self.value, self.start_pos, self.line, self.column)) def __repr__(self): return 'Token(%r, %r)' % (self.type, self.value) def __deepcopy__(self, memo): return Token(self.type, self.value, self.start_pos, self.line, self.column) def __eq__(self, other): if isinstance(other, Token) and self.type != other.type: return False return str.__eq__(self, other) __hash__ = str.__hash__ class LineCounter: "A utility class for keeping track of line & column information" __slots__ = 'char_pos', 'line', 'column', 'line_start_pos', 'newline_char' def __init__(self, newline_char): self.newline_char = newline_char self.char_pos = 0 self.line = 1 self.column = 1 self.line_start_pos = 0 def __eq__(self, other): if not isinstance(other, LineCounter): return NotImplemented return self.char_pos == other.char_pos and self.newline_char == other.newline_char def feed(self, token: TextOrSlice, test_newline=True): """Consume a token and calculate the new line & column. As an optional optimization, set test_newline=False if token doesn't contain a newline. """ if test_newline: newlines = token.count(self.newline_char) if newlines: self.line += newlines self.line_start_pos = self.char_pos + token.rindex(self.newline_char) + 1 self.char_pos += len(token) self.column = self.char_pos - self.line_start_pos + 1 class UnlessCallback: def __init__(self, scanner: 'Scanner'): self.scanner = scanner def __call__(self, t: Token): res = self.scanner.fullmatch(t.value) if res is not None: t.type = res return t class CallChain: def __init__(self, callback1, callback2, cond): self.callback1 = callback1 self.callback2 = callback2 self.cond = cond def __call__(self, t): t2 = self.callback1(t) return self.callback2(t) if self.cond(t2) else t2 def _get_match(re_, regexp, s, flags): m = re_.match(regexp, s, flags) if m: return m.group(0) def _create_unless(terminals, g_regex_flags, re_, use_bytes): tokens_by_type = classify(terminals, lambda t: type(t.pattern)) assert len(tokens_by_type) <= 2, tokens_by_type.keys() embedded_strs = set() callback = {} for retok in tokens_by_type.get(PatternRE, []): unless = [] for strtok in tokens_by_type.get(PatternStr, []): if strtok.priority != retok.priority: continue s = strtok.pattern.value if s == _get_match(re_, retok.pattern.to_regexp(), s, g_regex_flags): unless.append(strtok) if strtok.pattern.flags <= retok.pattern.flags: embedded_strs.add(strtok) if unless: callback[retok.name] = UnlessCallback(Scanner(unless, g_regex_flags, re_, use_bytes=use_bytes)) new_terminals = [t for t in terminals if t not in embedded_strs] return new_terminals, callback class Scanner: def __init__(self, terminals, g_regex_flags, re_, use_bytes): self.terminals = terminals self.g_regex_flags = g_regex_flags self.re_ = re_ self.use_bytes = use_bytes self.allowed_types = {t.name for t in self.terminals} self._mres = self._build_mres(terminals, len(terminals)) def _build_mres(self, terminals, max_size): # Python sets an unreasonable group limit (currently 100) in its re module # Worse, the only way to know we reached it is by catching an AssertionError! # This function recursively tries less and less groups until it's successful. mres = [] while terminals: pattern = u'|'.join(u'(?P<%s>%s)' % (t.name, t.pattern.to_regexp()) for t in terminals[:max_size]) if self.use_bytes: pattern = pattern.encode('latin-1') try: mre = self.re_.compile(pattern, self.g_regex_flags) except AssertionError: # Yes, this is what Python provides us.. :/ return self._build_mres(terminals, max_size // 2) mres.append(mre) terminals = terminals[max_size:] return mres def match(self, text: TextSlice, pos): for mre in self._mres: m = mre.match(text.text, pos, text.end) if m: return m.group(0), m.lastgroup def fullmatch(self, text: str) -> Optional[str]: for mre in self._mres: m = mre.fullmatch(text) if m: return m.lastgroup return None def _regexp_has_newline(r: str): r"""Expressions that may indicate newlines in a regexp: - newlines (\n) - escaped newline (\\n) - anything but ([^...]) - any-char (.) when the flag (?s) exists - spaces (\s) """ return '\n' in r or '\\n' in r or '\\s' in r or '[^' in r or ('(?s' in r and '.' in r) class LexerState: """Represents the current state of the lexer as it scans the text (Lexer objects are only instantiated per grammar, not per text) """ __slots__ = 'text', 'line_ctr', 'last_token' text: TextSlice line_ctr: LineCounter last_token: Optional[Token] def __init__(self, text: TextSlice, line_ctr: Optional[LineCounter] = None, last_token: Optional[Token]=None): if line_ctr is None: line_ctr = LineCounter(b'\n' if isinstance(text.text, bytes) else '\n') if text.start > 0: # Advance the line-count until line_ctr.char_pos == text.start line_ctr.feed(TextSlice(text.text, 0, text.start)) if not (text.start <= line_ctr.char_pos <= text.end): raise ValueError("LineCounter.char_pos is out of bounds") self.text = text self.line_ctr = line_ctr self.last_token = last_token def __eq__(self, other): if not isinstance(other, LexerState): return NotImplemented return self.text == other.text and self.line_ctr == other.line_ctr and self.last_token == other.last_token def __copy__(self): return type(self)(self.text, copy(self.line_ctr), self.last_token) class LexerThread: """A thread that ties a lexer instance and a lexer state, to be used by the parser """ def __init__(self, lexer: 'Lexer', lexer_state: Optional[LexerState]): self.lexer = lexer self.state = lexer_state @classmethod def from_text(cls, lexer: 'Lexer', text_or_slice: TextOrSlice) -> 'LexerThread': text = TextSlice.cast_from(text_or_slice) return cls(lexer, LexerState(text)) def lex(self, parser_state): if self.state is None: raise TypeError("Cannot lex: No text assigned to lexer state") return self.lexer.lex(self.state, parser_state) def __copy__(self): return type(self)(self.lexer, copy(self.state)) _Token = Token _Callback = Callable[[Token], Token] class Lexer(ABC): """Lexer interface Method Signatures: lex(self, lexer_state, parser_state) -> Iterator[Token] """ @abstractmethod def lex(self, lexer_state: LexerState, parser_state: Any) -> Iterator[Token]: return NotImplemented def make_lexer_state(self, text: str): "Deprecated" return LexerState(TextSlice.cast_from(text)) def _check_regex_collisions(terminal_to_regexp: Dict[TerminalDef, str], comparator, strict_mode, max_collisions_to_show=8): if not comparator: comparator = interegular.Comparator.from_regexes(terminal_to_regexp) # When in strict mode, we only ever try to provide one example, so taking # a long time for that should be fine max_time = 2 if strict_mode else 0.2 # We don't want to show too many collisions. if comparator.count_marked_pairs() >= max_collisions_to_show: return for group in classify(terminal_to_regexp, lambda t: t.priority).values(): for a, b in comparator.check(group, skip_marked=True): assert a.priority == b.priority # Mark this pair to not repeat warnings when multiple different BasicLexers see the same collision comparator.mark(a, b) # Notify the user message = f"Collision between Terminals {a.name} and {b.name}. " try: example = comparator.get_example_overlap(a, b, max_time).format_multiline() except ValueError: # Couldn't find an example within max_time steps. example = "No example could be found fast enough. However, the collision does still exists" if strict_mode: raise LexError(f"{message}\n{example}") logger.warning("%s The lexer will choose between them arbitrarily.\n%s", message, example) if comparator.count_marked_pairs() >= max_collisions_to_show: logger.warning("Found 8 regex collisions, will not check for more.") return class AbstractBasicLexer(Lexer): terminals_by_name: Dict[str, TerminalDef] @abstractmethod def __init__(self, conf: 'LexerConf', comparator=None) -> None: ... @abstractmethod def next_token(self, lex_state: LexerState, parser_state: Any = None) -> Token: ... def lex(self, state: LexerState, parser_state: Any) -> Iterator[Token]: with suppress(EOFError): while True: yield self.next_token(state, parser_state) class BasicLexer(AbstractBasicLexer): terminals: Collection[TerminalDef] ignore_types: FrozenSet[str] newline_types: FrozenSet[str] user_callbacks: Dict[str, _Callback] callback: Dict[str, _Callback] re: ModuleType def __init__(self, conf: 'LexerConf', comparator=None) -> None: terminals = list(conf.terminals) assert all(isinstance(t, TerminalDef) for t in terminals), terminals self.re = conf.re_module if not conf.skip_validation: # Sanitization terminal_to_regexp = {} for t in terminals: regexp = t.pattern.to_regexp() try: self.re.compile(regexp, conf.g_regex_flags) except self.re.error: raise LexError("Cannot compile token %s: %s" % (t.name, t.pattern)) if t.pattern.min_width == 0: raise LexError("Lexer does not allow zero-width terminals. (%s: %s)" % (t.name, t.pattern)) if t.pattern.type == "re": terminal_to_regexp[t] = regexp if not (set(conf.ignore) <= {t.name for t in terminals}): raise LexError("Ignore terminals are not defined: %s" % (set(conf.ignore) - {t.name for t in terminals})) if has_interegular: _check_regex_collisions(terminal_to_regexp, comparator, conf.strict) elif conf.strict: raise LexError("interegular must be installed for strict mode. Use `pip install 'lark[interegular]'`.") # Init self.newline_types = frozenset(t.name for t in terminals if _regexp_has_newline(t.pattern.to_regexp())) self.ignore_types = frozenset(conf.ignore) terminals.sort(key=lambda x: (-x.priority, -x.pattern.max_width, -len(x.pattern.value), x.name)) self.terminals = terminals self.user_callbacks = conf.callbacks self.g_regex_flags = conf.g_regex_flags self.use_bytes = conf.use_bytes self.terminals_by_name = conf.terminals_by_name self._scanner: Optional[Scanner] = None def _build_scanner(self) -> Scanner: terminals, self.callback = _create_unless(self.terminals, self.g_regex_flags, self.re, self.use_bytes) assert all(self.callback.values()) for type_, f in self.user_callbacks.items(): if type_ in self.callback: # Already a callback there, probably UnlessCallback self.callback[type_] = CallChain(self.callback[type_], f, lambda t: t.type == type_) else: self.callback[type_] = f return Scanner(terminals, self.g_regex_flags, self.re, self.use_bytes) @property def scanner(self) -> Scanner: if self._scanner is None: self._scanner = self._build_scanner() return self._scanner def match(self, text, pos): return self.scanner.match(text, pos) def next_token(self, lex_state: LexerState, parser_state: Any = None) -> Token: line_ctr = lex_state.line_ctr while line_ctr.char_pos < lex_state.text.end: res = self.match(lex_state.text, line_ctr.char_pos) if not res: allowed = self.scanner.allowed_types - self.ignore_types if not allowed: allowed = {""} raise UnexpectedCharacters(lex_state.text.text, line_ctr.char_pos, line_ctr.line, line_ctr.column, allowed=allowed, token_history=lex_state.last_token and [lex_state.last_token], state=parser_state, terminals_by_name=self.terminals_by_name) value, type_ = res ignored = type_ in self.ignore_types t = None if not ignored or type_ in self.callback: t = Token(type_, value, line_ctr.char_pos, line_ctr.line, line_ctr.column) line_ctr.feed(value, type_ in self.newline_types) if t is not None: t.end_line = line_ctr.line t.end_column = line_ctr.column t.end_pos = line_ctr.char_pos if t.type in self.callback: t = self.callback[t.type](t) if not ignored: if not isinstance(t, Token): raise LexError("Callbacks must return a token (returned %r)" % t) lex_state.last_token = t return t # EOF raise EOFError(self) class ContextualLexer(Lexer): lexers: Dict[int, AbstractBasicLexer] root_lexer: AbstractBasicLexer BasicLexer: Type[AbstractBasicLexer] = BasicLexer def __init__(self, conf: 'LexerConf', states: Dict[int, Collection[str]], always_accept: Collection[str]=()) -> None: terminals = list(conf.terminals) terminals_by_name = conf.terminals_by_name trad_conf = copy(conf) trad_conf.terminals = terminals if has_interegular and not conf.skip_validation: comparator = interegular.Comparator.from_regexes({t: t.pattern.to_regexp() for t in terminals}) else: comparator = None lexer_by_tokens: Dict[FrozenSet[str], AbstractBasicLexer] = {} self.lexers = {} for state, accepts in states.items(): key = frozenset(accepts) try: lexer = lexer_by_tokens[key] except KeyError: accepts = set(accepts) | set(conf.ignore) | set(always_accept) lexer_conf = copy(trad_conf) lexer_conf.terminals = [terminals_by_name[n] for n in accepts if n in terminals_by_name] lexer = self.BasicLexer(lexer_conf, comparator) lexer_by_tokens[key] = lexer self.lexers[state] = lexer assert trad_conf.terminals is terminals trad_conf.skip_validation = True # We don't need to verify all terminals again self.root_lexer = self.BasicLexer(trad_conf, comparator) def lex(self, lexer_state: LexerState, parser_state: 'ParserState') -> Iterator[Token]: try: while True: lexer = self.lexers[parser_state.position] yield lexer.next_token(lexer_state, parser_state) except EOFError: pass except UnexpectedCharacters as e: # In the contextual lexer, UnexpectedCharacters can mean that the terminal is defined, but not in the current context. # This tests the input against the global context, to provide a nicer error. try: last_token = lexer_state.last_token # Save last_token. Calling root_lexer.next_token will change this to the wrong token token = self.root_lexer.next_token(lexer_state, parser_state) raise UnexpectedToken(token, e.allowed, state=parser_state, token_history=[last_token], terminals_by_name=self.root_lexer.terminals_by_name) except UnexpectedCharacters: raise e # Raise the original UnexpectedCharacters. The root lexer raises it with the wrong expected set. ###}