You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			155 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			155 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
"""Convert SVG Path's elliptical arcs to Bezier curves.
 | 
						|
 | 
						|
The code is mostly adapted from Blink's SVGPathNormalizer::DecomposeArcToCubic
 | 
						|
https://github.com/chromium/chromium/blob/93831f2/third_party/
 | 
						|
blink/renderer/core/svg/svg_path_parser.cc#L169-L278
 | 
						|
"""
 | 
						|
 | 
						|
from fontTools.misc.transform import Identity, Scale
 | 
						|
from math import atan2, ceil, cos, fabs, isfinite, pi, radians, sin, sqrt, tan
 | 
						|
 | 
						|
 | 
						|
TWO_PI = 2 * pi
 | 
						|
PI_OVER_TWO = 0.5 * pi
 | 
						|
 | 
						|
 | 
						|
def _map_point(matrix, pt):
 | 
						|
    # apply Transform matrix to a point represented as a complex number
 | 
						|
    r = matrix.transformPoint((pt.real, pt.imag))
 | 
						|
    return r[0] + r[1] * 1j
 | 
						|
 | 
						|
 | 
						|
class EllipticalArc(object):
 | 
						|
    def __init__(self, current_point, rx, ry, rotation, large, sweep, target_point):
 | 
						|
        self.current_point = current_point
 | 
						|
        self.rx = rx
 | 
						|
        self.ry = ry
 | 
						|
        self.rotation = rotation
 | 
						|
        self.large = large
 | 
						|
        self.sweep = sweep
 | 
						|
        self.target_point = target_point
 | 
						|
 | 
						|
        # SVG arc's rotation angle is expressed in degrees, whereas Transform.rotate
 | 
						|
        # uses radians
 | 
						|
        self.angle = radians(rotation)
 | 
						|
 | 
						|
        # these derived attributes are computed by the _parametrize method
 | 
						|
        self.center_point = self.theta1 = self.theta2 = self.theta_arc = None
 | 
						|
 | 
						|
    def _parametrize(self):
 | 
						|
        # convert from endopoint to center parametrization:
 | 
						|
        # https://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter
 | 
						|
 | 
						|
        # If rx = 0 or ry = 0 then this arc is treated as a straight line segment (a
 | 
						|
        # "lineto") joining the endpoints.
 | 
						|
        # http://www.w3.org/TR/SVG/implnote.html#ArcOutOfRangeParameters
 | 
						|
        rx = fabs(self.rx)
 | 
						|
        ry = fabs(self.ry)
 | 
						|
        if not (rx and ry):
 | 
						|
            return False
 | 
						|
 | 
						|
        # If the current point and target point for the arc are identical, it should
 | 
						|
        # be treated as a zero length path. This ensures continuity in animations.
 | 
						|
        if self.target_point == self.current_point:
 | 
						|
            return False
 | 
						|
 | 
						|
        mid_point_distance = (self.current_point - self.target_point) * 0.5
 | 
						|
 | 
						|
        point_transform = Identity.rotate(-self.angle)
 | 
						|
 | 
						|
        transformed_mid_point = _map_point(point_transform, mid_point_distance)
 | 
						|
        square_rx = rx * rx
 | 
						|
        square_ry = ry * ry
 | 
						|
        square_x = transformed_mid_point.real * transformed_mid_point.real
 | 
						|
        square_y = transformed_mid_point.imag * transformed_mid_point.imag
 | 
						|
 | 
						|
        # Check if the radii are big enough to draw the arc, scale radii if not.
 | 
						|
        # http://www.w3.org/TR/SVG/implnote.html#ArcCorrectionOutOfRangeRadii
 | 
						|
        radii_scale = square_x / square_rx + square_y / square_ry
 | 
						|
        if radii_scale > 1:
 | 
						|
            rx *= sqrt(radii_scale)
 | 
						|
            ry *= sqrt(radii_scale)
 | 
						|
            self.rx, self.ry = rx, ry
 | 
						|
 | 
						|
        point_transform = Scale(1 / rx, 1 / ry).rotate(-self.angle)
 | 
						|
 | 
						|
        point1 = _map_point(point_transform, self.current_point)
 | 
						|
        point2 = _map_point(point_transform, self.target_point)
 | 
						|
        delta = point2 - point1
 | 
						|
 | 
						|
        d = delta.real * delta.real + delta.imag * delta.imag
 | 
						|
        scale_factor_squared = max(1 / d - 0.25, 0.0)
 | 
						|
 | 
						|
        scale_factor = sqrt(scale_factor_squared)
 | 
						|
        if self.sweep == self.large:
 | 
						|
            scale_factor = -scale_factor
 | 
						|
 | 
						|
        delta *= scale_factor
 | 
						|
        center_point = (point1 + point2) * 0.5
 | 
						|
        center_point += complex(-delta.imag, delta.real)
 | 
						|
        point1 -= center_point
 | 
						|
        point2 -= center_point
 | 
						|
 | 
						|
        theta1 = atan2(point1.imag, point1.real)
 | 
						|
        theta2 = atan2(point2.imag, point2.real)
 | 
						|
 | 
						|
        theta_arc = theta2 - theta1
 | 
						|
        if theta_arc < 0 and self.sweep:
 | 
						|
            theta_arc += TWO_PI
 | 
						|
        elif theta_arc > 0 and not self.sweep:
 | 
						|
            theta_arc -= TWO_PI
 | 
						|
 | 
						|
        self.theta1 = theta1
 | 
						|
        self.theta2 = theta1 + theta_arc
 | 
						|
        self.theta_arc = theta_arc
 | 
						|
        self.center_point = center_point
 | 
						|
 | 
						|
        return True
 | 
						|
 | 
						|
    def _decompose_to_cubic_curves(self):
 | 
						|
        if self.center_point is None and not self._parametrize():
 | 
						|
            return
 | 
						|
 | 
						|
        point_transform = Identity.rotate(self.angle).scale(self.rx, self.ry)
 | 
						|
 | 
						|
        # Some results of atan2 on some platform implementations are not exact
 | 
						|
        # enough. So that we get more cubic curves than expected here. Adding 0.001f
 | 
						|
        # reduces the count of sgements to the correct count.
 | 
						|
        num_segments = int(ceil(fabs(self.theta_arc / (PI_OVER_TWO + 0.001))))
 | 
						|
        for i in range(num_segments):
 | 
						|
            start_theta = self.theta1 + i * self.theta_arc / num_segments
 | 
						|
            end_theta = self.theta1 + (i + 1) * self.theta_arc / num_segments
 | 
						|
 | 
						|
            t = (4 / 3) * tan(0.25 * (end_theta - start_theta))
 | 
						|
            if not isfinite(t):
 | 
						|
                return
 | 
						|
 | 
						|
            sin_start_theta = sin(start_theta)
 | 
						|
            cos_start_theta = cos(start_theta)
 | 
						|
            sin_end_theta = sin(end_theta)
 | 
						|
            cos_end_theta = cos(end_theta)
 | 
						|
 | 
						|
            point1 = complex(
 | 
						|
                cos_start_theta - t * sin_start_theta,
 | 
						|
                sin_start_theta + t * cos_start_theta,
 | 
						|
            )
 | 
						|
            point1 += self.center_point
 | 
						|
            target_point = complex(cos_end_theta, sin_end_theta)
 | 
						|
            target_point += self.center_point
 | 
						|
            point2 = target_point
 | 
						|
            point2 += complex(t * sin_end_theta, -t * cos_end_theta)
 | 
						|
 | 
						|
            point1 = _map_point(point_transform, point1)
 | 
						|
            point2 = _map_point(point_transform, point2)
 | 
						|
            target_point = _map_point(point_transform, target_point)
 | 
						|
 | 
						|
            yield point1, point2, target_point
 | 
						|
 | 
						|
    def draw(self, pen):
 | 
						|
        for point1, point2, target_point in self._decompose_to_cubic_curves():
 | 
						|
            pen.curveTo(
 | 
						|
                (point1.real, point1.imag),
 | 
						|
                (point2.real, point2.imag),
 | 
						|
                (target_point.real, target_point.imag),
 | 
						|
            )
 |