You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			648 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			648 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Python
		
	
"""
 | 
						|
Contains all classes and functions to deal with lists, dicts, generators and
 | 
						|
iterators in general.
 | 
						|
"""
 | 
						|
from jedi.inference import compiled
 | 
						|
from jedi.inference import analysis
 | 
						|
from jedi.inference.lazy_value import LazyKnownValue, LazyKnownValues, \
 | 
						|
    LazyTreeValue
 | 
						|
from jedi.inference.helpers import get_int_or_none, is_string, \
 | 
						|
    reraise_getitem_errors, SimpleGetItemNotFound
 | 
						|
from jedi.inference.utils import safe_property, to_list
 | 
						|
from jedi.inference.cache import inference_state_method_cache
 | 
						|
from jedi.inference.filters import LazyAttributeOverwrite, publish_method
 | 
						|
from jedi.inference.base_value import ValueSet, Value, NO_VALUES, \
 | 
						|
    ContextualizedNode, iterate_values, sentinel, \
 | 
						|
    LazyValueWrapper
 | 
						|
from jedi.parser_utils import get_sync_comp_fors
 | 
						|
from jedi.inference.context import CompForContext
 | 
						|
from jedi.inference.value.dynamic_arrays import check_array_additions
 | 
						|
 | 
						|
 | 
						|
class IterableMixin:
 | 
						|
    def py__next__(self, contextualized_node=None):
 | 
						|
        return self.py__iter__(contextualized_node)
 | 
						|
 | 
						|
    def py__stop_iteration_returns(self):
 | 
						|
        return ValueSet([compiled.builtin_from_name(self.inference_state, 'None')])
 | 
						|
 | 
						|
    # At the moment, safe values are simple values like "foo", 1 and not
 | 
						|
    # lists/dicts. Therefore as a small speed optimization we can just do the
 | 
						|
    # default instead of resolving the lazy wrapped values, that are just
 | 
						|
    # doing this in the end as well.
 | 
						|
    # This mostly speeds up patterns like `sys.version_info >= (3, 0)` in
 | 
						|
    # typeshed.
 | 
						|
    get_safe_value = Value.get_safe_value
 | 
						|
 | 
						|
 | 
						|
class GeneratorBase(LazyAttributeOverwrite, IterableMixin):
 | 
						|
    array_type = None
 | 
						|
 | 
						|
    def _get_wrapped_value(self):
 | 
						|
        instance, = self._get_cls().execute_annotation()
 | 
						|
        return instance
 | 
						|
 | 
						|
    def _get_cls(self):
 | 
						|
        generator, = self.inference_state.typing_module.py__getattribute__('Generator')
 | 
						|
        return generator
 | 
						|
 | 
						|
    def py__bool__(self):
 | 
						|
        return True
 | 
						|
 | 
						|
    @publish_method('__iter__')
 | 
						|
    def _iter(self, arguments):
 | 
						|
        return ValueSet([self])
 | 
						|
 | 
						|
    @publish_method('send')
 | 
						|
    @publish_method('__next__')
 | 
						|
    def _next(self, arguments):
 | 
						|
        return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__())
 | 
						|
 | 
						|
    def py__stop_iteration_returns(self):
 | 
						|
        return ValueSet([compiled.builtin_from_name(self.inference_state, 'None')])
 | 
						|
 | 
						|
    @property
 | 
						|
    def name(self):
 | 
						|
        return compiled.CompiledValueName(self, 'Generator')
 | 
						|
 | 
						|
    def get_annotated_class_object(self):
 | 
						|
        from jedi.inference.gradual.generics import TupleGenericManager
 | 
						|
        gen_values = self.merge_types_of_iterate().py__class__()
 | 
						|
        gm = TupleGenericManager((gen_values, NO_VALUES, NO_VALUES))
 | 
						|
        return self._get_cls().with_generics(gm)
 | 
						|
 | 
						|
 | 
						|
class Generator(GeneratorBase):
 | 
						|
    """Handling of `yield` functions."""
 | 
						|
    def __init__(self, inference_state, func_execution_context):
 | 
						|
        super().__init__(inference_state)
 | 
						|
        self._func_execution_context = func_execution_context
 | 
						|
 | 
						|
    def py__iter__(self, contextualized_node=None):
 | 
						|
        iterators = self._func_execution_context.infer_annotations()
 | 
						|
        if iterators:
 | 
						|
            return iterators.iterate(contextualized_node)
 | 
						|
        return self._func_execution_context.get_yield_lazy_values()
 | 
						|
 | 
						|
    def py__stop_iteration_returns(self):
 | 
						|
        return self._func_execution_context.get_return_values()
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        return "<%s of %s>" % (type(self).__name__, self._func_execution_context)
 | 
						|
 | 
						|
 | 
						|
def comprehension_from_atom(inference_state, value, atom):
 | 
						|
    bracket = atom.children[0]
 | 
						|
    test_list_comp = atom.children[1]
 | 
						|
 | 
						|
    if bracket == '{':
 | 
						|
        if atom.children[1].children[1] == ':':
 | 
						|
            sync_comp_for = test_list_comp.children[3]
 | 
						|
            if sync_comp_for.type == 'comp_for':
 | 
						|
                sync_comp_for = sync_comp_for.children[1]
 | 
						|
 | 
						|
            return DictComprehension(
 | 
						|
                inference_state,
 | 
						|
                value,
 | 
						|
                sync_comp_for_node=sync_comp_for,
 | 
						|
                key_node=test_list_comp.children[0],
 | 
						|
                value_node=test_list_comp.children[2],
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            cls = SetComprehension
 | 
						|
    elif bracket == '(':
 | 
						|
        cls = GeneratorComprehension
 | 
						|
    elif bracket == '[':
 | 
						|
        cls = ListComprehension
 | 
						|
 | 
						|
    sync_comp_for = test_list_comp.children[1]
 | 
						|
    if sync_comp_for.type == 'comp_for':
 | 
						|
        sync_comp_for = sync_comp_for.children[1]
 | 
						|
 | 
						|
    return cls(
 | 
						|
        inference_state,
 | 
						|
        defining_context=value,
 | 
						|
        sync_comp_for_node=sync_comp_for,
 | 
						|
        entry_node=test_list_comp.children[0],
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
class ComprehensionMixin:
 | 
						|
    @inference_state_method_cache()
 | 
						|
    def _get_comp_for_context(self, parent_context, comp_for):
 | 
						|
        return CompForContext(parent_context, comp_for)
 | 
						|
 | 
						|
    def _nested(self, comp_fors, parent_context=None):
 | 
						|
        comp_for = comp_fors[0]
 | 
						|
 | 
						|
        is_async = comp_for.parent.type == 'comp_for'
 | 
						|
 | 
						|
        input_node = comp_for.children[3]
 | 
						|
        parent_context = parent_context or self._defining_context
 | 
						|
        input_types = parent_context.infer_node(input_node)
 | 
						|
 | 
						|
        cn = ContextualizedNode(parent_context, input_node)
 | 
						|
        iterated = input_types.iterate(cn, is_async=is_async)
 | 
						|
        exprlist = comp_for.children[1]
 | 
						|
        for i, lazy_value in enumerate(iterated):
 | 
						|
            types = lazy_value.infer()
 | 
						|
            dct = unpack_tuple_to_dict(parent_context, types, exprlist)
 | 
						|
            context = self._get_comp_for_context(
 | 
						|
                parent_context,
 | 
						|
                comp_for,
 | 
						|
            )
 | 
						|
            with context.predefine_names(comp_for, dct):
 | 
						|
                try:
 | 
						|
                    yield from self._nested(comp_fors[1:], context)
 | 
						|
                except IndexError:
 | 
						|
                    iterated = context.infer_node(self._entry_node)
 | 
						|
                    if self.array_type == 'dict':
 | 
						|
                        yield iterated, context.infer_node(self._value_node)
 | 
						|
                    else:
 | 
						|
                        yield iterated
 | 
						|
 | 
						|
    @inference_state_method_cache(default=[])
 | 
						|
    @to_list
 | 
						|
    def _iterate(self):
 | 
						|
        comp_fors = tuple(get_sync_comp_fors(self._sync_comp_for_node))
 | 
						|
        yield from self._nested(comp_fors)
 | 
						|
 | 
						|
    def py__iter__(self, contextualized_node=None):
 | 
						|
        for set_ in self._iterate():
 | 
						|
            yield LazyKnownValues(set_)
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        return "<%s of %s>" % (type(self).__name__, self._sync_comp_for_node)
 | 
						|
 | 
						|
 | 
						|
class _DictMixin:
 | 
						|
    def _get_generics(self):
 | 
						|
        return tuple(c_set.py__class__() for c_set in self.get_mapping_item_values())
 | 
						|
 | 
						|
 | 
						|
class Sequence(LazyAttributeOverwrite, IterableMixin):
 | 
						|
    api_type = 'instance'
 | 
						|
 | 
						|
    @property
 | 
						|
    def name(self):
 | 
						|
        return compiled.CompiledValueName(self, self.array_type)
 | 
						|
 | 
						|
    def _get_generics(self):
 | 
						|
        return (self.merge_types_of_iterate().py__class__(),)
 | 
						|
 | 
						|
    @inference_state_method_cache(default=())
 | 
						|
    def _cached_generics(self):
 | 
						|
        return self._get_generics()
 | 
						|
 | 
						|
    def _get_wrapped_value(self):
 | 
						|
        from jedi.inference.gradual.base import GenericClass
 | 
						|
        from jedi.inference.gradual.generics import TupleGenericManager
 | 
						|
        klass = compiled.builtin_from_name(self.inference_state, self.array_type)
 | 
						|
        c, = GenericClass(
 | 
						|
            klass,
 | 
						|
            TupleGenericManager(self._cached_generics())
 | 
						|
        ).execute_annotation()
 | 
						|
        return c
 | 
						|
 | 
						|
    def py__bool__(self):
 | 
						|
        return None  # We don't know the length, because of appends.
 | 
						|
 | 
						|
    @safe_property
 | 
						|
    def parent(self):
 | 
						|
        return self.inference_state.builtins_module
 | 
						|
 | 
						|
    def py__getitem__(self, index_value_set, contextualized_node):
 | 
						|
        if self.array_type == 'dict':
 | 
						|
            return self._dict_values()
 | 
						|
        return iterate_values(ValueSet([self]))
 | 
						|
 | 
						|
 | 
						|
class _BaseComprehension(ComprehensionMixin):
 | 
						|
    def __init__(self, inference_state, defining_context, sync_comp_for_node, entry_node):
 | 
						|
        assert sync_comp_for_node.type == 'sync_comp_for'
 | 
						|
        super().__init__(inference_state)
 | 
						|
        self._defining_context = defining_context
 | 
						|
        self._sync_comp_for_node = sync_comp_for_node
 | 
						|
        self._entry_node = entry_node
 | 
						|
 | 
						|
 | 
						|
class ListComprehension(_BaseComprehension, Sequence):
 | 
						|
    array_type = 'list'
 | 
						|
 | 
						|
    def py__simple_getitem__(self, index):
 | 
						|
        if isinstance(index, slice):
 | 
						|
            return ValueSet([self])
 | 
						|
 | 
						|
        all_types = list(self.py__iter__())
 | 
						|
        with reraise_getitem_errors(IndexError, TypeError):
 | 
						|
            lazy_value = all_types[index]
 | 
						|
        return lazy_value.infer()
 | 
						|
 | 
						|
 | 
						|
class SetComprehension(_BaseComprehension, Sequence):
 | 
						|
    array_type = 'set'
 | 
						|
 | 
						|
 | 
						|
class GeneratorComprehension(_BaseComprehension, GeneratorBase):
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
class _DictKeyMixin:
 | 
						|
    # TODO merge with _DictMixin?
 | 
						|
    def get_mapping_item_values(self):
 | 
						|
        return self._dict_keys(), self._dict_values()
 | 
						|
 | 
						|
    def get_key_values(self):
 | 
						|
        # TODO merge with _dict_keys?
 | 
						|
        return self._dict_keys()
 | 
						|
 | 
						|
 | 
						|
class DictComprehension(ComprehensionMixin, Sequence, _DictKeyMixin):
 | 
						|
    array_type = 'dict'
 | 
						|
 | 
						|
    def __init__(self, inference_state, defining_context, sync_comp_for_node, key_node, value_node):
 | 
						|
        assert sync_comp_for_node.type == 'sync_comp_for'
 | 
						|
        super().__init__(inference_state)
 | 
						|
        self._defining_context = defining_context
 | 
						|
        self._sync_comp_for_node = sync_comp_for_node
 | 
						|
        self._entry_node = key_node
 | 
						|
        self._value_node = value_node
 | 
						|
 | 
						|
    def py__iter__(self, contextualized_node=None):
 | 
						|
        for keys, values in self._iterate():
 | 
						|
            yield LazyKnownValues(keys)
 | 
						|
 | 
						|
    def py__simple_getitem__(self, index):
 | 
						|
        for keys, values in self._iterate():
 | 
						|
            for k in keys:
 | 
						|
                # Be careful in the future if refactoring, index could be a
 | 
						|
                # slice object.
 | 
						|
                if k.get_safe_value(default=object()) == index:
 | 
						|
                    return values
 | 
						|
        raise SimpleGetItemNotFound()
 | 
						|
 | 
						|
    def _dict_keys(self):
 | 
						|
        return ValueSet.from_sets(keys for keys, values in self._iterate())
 | 
						|
 | 
						|
    def _dict_values(self):
 | 
						|
        return ValueSet.from_sets(values for keys, values in self._iterate())
 | 
						|
 | 
						|
    @publish_method('values')
 | 
						|
    def _imitate_values(self, arguments):
 | 
						|
        lazy_value = LazyKnownValues(self._dict_values())
 | 
						|
        return ValueSet([FakeList(self.inference_state, [lazy_value])])
 | 
						|
 | 
						|
    @publish_method('items')
 | 
						|
    def _imitate_items(self, arguments):
 | 
						|
        lazy_values = [
 | 
						|
            LazyKnownValue(
 | 
						|
                FakeTuple(
 | 
						|
                    self.inference_state,
 | 
						|
                    [LazyKnownValues(key),
 | 
						|
                     LazyKnownValues(value)]
 | 
						|
                )
 | 
						|
            )
 | 
						|
            for key, value in self._iterate()
 | 
						|
        ]
 | 
						|
 | 
						|
        return ValueSet([FakeList(self.inference_state, lazy_values)])
 | 
						|
 | 
						|
    def exact_key_items(self):
 | 
						|
        # NOTE: A smarter thing can probably done here to achieve better
 | 
						|
        # completions, but at least like this jedi doesn't crash
 | 
						|
        return []
 | 
						|
 | 
						|
 | 
						|
class SequenceLiteralValue(Sequence):
 | 
						|
    _TUPLE_LIKE = 'testlist_star_expr', 'testlist', 'subscriptlist'
 | 
						|
    mapping = {'(': 'tuple',
 | 
						|
               '[': 'list',
 | 
						|
               '{': 'set'}
 | 
						|
 | 
						|
    def __init__(self, inference_state, defining_context, atom):
 | 
						|
        super().__init__(inference_state)
 | 
						|
        self.atom = atom
 | 
						|
        self._defining_context = defining_context
 | 
						|
 | 
						|
        if self.atom.type in self._TUPLE_LIKE:
 | 
						|
            self.array_type = 'tuple'
 | 
						|
        else:
 | 
						|
            self.array_type = SequenceLiteralValue.mapping[atom.children[0]]
 | 
						|
            """The builtin name of the array (list, set, tuple or dict)."""
 | 
						|
 | 
						|
    def _get_generics(self):
 | 
						|
        if self.array_type == 'tuple':
 | 
						|
            return tuple(x.infer().py__class__() for x in self.py__iter__())
 | 
						|
        return super()._get_generics()
 | 
						|
 | 
						|
    def py__simple_getitem__(self, index):
 | 
						|
        """Here the index is an int/str. Raises IndexError/KeyError."""
 | 
						|
        if isinstance(index, slice):
 | 
						|
            return ValueSet([self])
 | 
						|
        else:
 | 
						|
            with reraise_getitem_errors(TypeError, KeyError, IndexError):
 | 
						|
                node = self.get_tree_entries()[index]
 | 
						|
            if node == ':' or node.type == 'subscript':
 | 
						|
                return NO_VALUES
 | 
						|
            return self._defining_context.infer_node(node)
 | 
						|
 | 
						|
    def py__iter__(self, contextualized_node=None):
 | 
						|
        """
 | 
						|
        While values returns the possible values for any array field, this
 | 
						|
        function returns the value for a certain index.
 | 
						|
        """
 | 
						|
        for node in self.get_tree_entries():
 | 
						|
            if node == ':' or node.type == 'subscript':
 | 
						|
                # TODO this should probably use at least part of the code
 | 
						|
                #      of infer_subscript_list.
 | 
						|
                yield LazyKnownValue(Slice(self._defining_context, None, None, None))
 | 
						|
            else:
 | 
						|
                yield LazyTreeValue(self._defining_context, node)
 | 
						|
        yield from check_array_additions(self._defining_context, self)
 | 
						|
 | 
						|
    def py__len__(self):
 | 
						|
        # This function is not really used often. It's more of a try.
 | 
						|
        return len(self.get_tree_entries())
 | 
						|
 | 
						|
    def get_tree_entries(self):
 | 
						|
        c = self.atom.children
 | 
						|
 | 
						|
        if self.atom.type in self._TUPLE_LIKE:
 | 
						|
            return c[::2]
 | 
						|
 | 
						|
        array_node = c[1]
 | 
						|
        if array_node in (']', '}', ')'):
 | 
						|
            return []  # Direct closing bracket, doesn't contain items.
 | 
						|
 | 
						|
        if array_node.type == 'testlist_comp':
 | 
						|
            # filter out (for now) pep 448 single-star unpacking
 | 
						|
            return [value for value in array_node.children[::2]
 | 
						|
                    if value.type != "star_expr"]
 | 
						|
        elif array_node.type == 'dictorsetmaker':
 | 
						|
            kv = []
 | 
						|
            iterator = iter(array_node.children)
 | 
						|
            for key in iterator:
 | 
						|
                if key == "**":
 | 
						|
                    # dict with pep 448 double-star unpacking
 | 
						|
                    # for now ignoring the values imported by **
 | 
						|
                    next(iterator)
 | 
						|
                    next(iterator, None)  # Possible comma.
 | 
						|
                else:
 | 
						|
                    op = next(iterator, None)
 | 
						|
                    if op is None or op == ',':
 | 
						|
                        if key.type == "star_expr":
 | 
						|
                            # pep 448 single-star unpacking
 | 
						|
                            # for now ignoring values imported by *
 | 
						|
                            pass
 | 
						|
                        else:
 | 
						|
                            kv.append(key)  # A set.
 | 
						|
                    else:
 | 
						|
                        assert op == ':'  # A dict.
 | 
						|
                        kv.append((key, next(iterator)))
 | 
						|
                        next(iterator, None)  # Possible comma.
 | 
						|
            return kv
 | 
						|
        else:
 | 
						|
            if array_node.type == "star_expr":
 | 
						|
                # pep 448 single-star unpacking
 | 
						|
                # for now ignoring values imported by *
 | 
						|
                return []
 | 
						|
            else:
 | 
						|
                return [array_node]
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        return "<%s of %s>" % (self.__class__.__name__, self.atom)
 | 
						|
 | 
						|
 | 
						|
class DictLiteralValue(_DictMixin, SequenceLiteralValue, _DictKeyMixin):
 | 
						|
    array_type = 'dict'
 | 
						|
 | 
						|
    def __init__(self, inference_state, defining_context, atom):
 | 
						|
        # Intentionally don't call the super class. This is definitely a sign
 | 
						|
        # that the architecture is bad and we should refactor.
 | 
						|
        Sequence.__init__(self, inference_state)
 | 
						|
        self._defining_context = defining_context
 | 
						|
        self.atom = atom
 | 
						|
 | 
						|
    def py__simple_getitem__(self, index):
 | 
						|
        """Here the index is an int/str. Raises IndexError/KeyError."""
 | 
						|
        compiled_value_index = compiled.create_simple_object(self.inference_state, index)
 | 
						|
        for key, value in self.get_tree_entries():
 | 
						|
            for k in self._defining_context.infer_node(key):
 | 
						|
                for key_v in k.execute_operation(compiled_value_index, '=='):
 | 
						|
                    if key_v.get_safe_value():
 | 
						|
                        return self._defining_context.infer_node(value)
 | 
						|
        raise SimpleGetItemNotFound('No key found in dictionary %s.' % self)
 | 
						|
 | 
						|
    def py__iter__(self, contextualized_node=None):
 | 
						|
        """
 | 
						|
        While values returns the possible values for any array field, this
 | 
						|
        function returns the value for a certain index.
 | 
						|
        """
 | 
						|
        # Get keys.
 | 
						|
        types = NO_VALUES
 | 
						|
        for k, _ in self.get_tree_entries():
 | 
						|
            types |= self._defining_context.infer_node(k)
 | 
						|
        # We don't know which dict index comes first, therefore always
 | 
						|
        # yield all the types.
 | 
						|
        for _ in types:
 | 
						|
            yield LazyKnownValues(types)
 | 
						|
 | 
						|
    @publish_method('values')
 | 
						|
    def _imitate_values(self, arguments):
 | 
						|
        lazy_value = LazyKnownValues(self._dict_values())
 | 
						|
        return ValueSet([FakeList(self.inference_state, [lazy_value])])
 | 
						|
 | 
						|
    @publish_method('items')
 | 
						|
    def _imitate_items(self, arguments):
 | 
						|
        lazy_values = [
 | 
						|
            LazyKnownValue(FakeTuple(
 | 
						|
                self.inference_state,
 | 
						|
                (LazyTreeValue(self._defining_context, key_node),
 | 
						|
                 LazyTreeValue(self._defining_context, value_node))
 | 
						|
            )) for key_node, value_node in self.get_tree_entries()
 | 
						|
        ]
 | 
						|
 | 
						|
        return ValueSet([FakeList(self.inference_state, lazy_values)])
 | 
						|
 | 
						|
    def exact_key_items(self):
 | 
						|
        """
 | 
						|
        Returns a generator of tuples like dict.items(), where the key is
 | 
						|
        resolved (as a string) and the values are still lazy values.
 | 
						|
        """
 | 
						|
        for key_node, value in self.get_tree_entries():
 | 
						|
            for key in self._defining_context.infer_node(key_node):
 | 
						|
                if is_string(key):
 | 
						|
                    yield key.get_safe_value(), LazyTreeValue(self._defining_context, value)
 | 
						|
 | 
						|
    def _dict_values(self):
 | 
						|
        return ValueSet.from_sets(
 | 
						|
            self._defining_context.infer_node(v)
 | 
						|
            for k, v in self.get_tree_entries()
 | 
						|
        )
 | 
						|
 | 
						|
    def _dict_keys(self):
 | 
						|
        return ValueSet.from_sets(
 | 
						|
            self._defining_context.infer_node(k)
 | 
						|
            for k, v in self.get_tree_entries()
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
class _FakeSequence(Sequence):
 | 
						|
    def __init__(self, inference_state, lazy_value_list):
 | 
						|
        """
 | 
						|
        type should be one of "tuple", "list"
 | 
						|
        """
 | 
						|
        super().__init__(inference_state)
 | 
						|
        self._lazy_value_list = lazy_value_list
 | 
						|
 | 
						|
    def py__simple_getitem__(self, index):
 | 
						|
        if isinstance(index, slice):
 | 
						|
            return ValueSet([self])
 | 
						|
 | 
						|
        with reraise_getitem_errors(IndexError, TypeError):
 | 
						|
            lazy_value = self._lazy_value_list[index]
 | 
						|
        return lazy_value.infer()
 | 
						|
 | 
						|
    def py__iter__(self, contextualized_node=None):
 | 
						|
        return self._lazy_value_list
 | 
						|
 | 
						|
    def py__bool__(self):
 | 
						|
        return bool(len(self._lazy_value_list))
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        return "<%s of %s>" % (type(self).__name__, self._lazy_value_list)
 | 
						|
 | 
						|
 | 
						|
class FakeTuple(_FakeSequence):
 | 
						|
    array_type = 'tuple'
 | 
						|
 | 
						|
 | 
						|
class FakeList(_FakeSequence):
 | 
						|
    array_type = 'tuple'
 | 
						|
 | 
						|
 | 
						|
class FakeDict(_DictMixin, Sequence, _DictKeyMixin):
 | 
						|
    array_type = 'dict'
 | 
						|
 | 
						|
    def __init__(self, inference_state, dct):
 | 
						|
        super().__init__(inference_state)
 | 
						|
        self._dct = dct
 | 
						|
 | 
						|
    def py__iter__(self, contextualized_node=None):
 | 
						|
        for key in self._dct:
 | 
						|
            yield LazyKnownValue(compiled.create_simple_object(self.inference_state, key))
 | 
						|
 | 
						|
    def py__simple_getitem__(self, index):
 | 
						|
        with reraise_getitem_errors(KeyError, TypeError):
 | 
						|
            lazy_value = self._dct[index]
 | 
						|
        return lazy_value.infer()
 | 
						|
 | 
						|
    @publish_method('values')
 | 
						|
    def _values(self, arguments):
 | 
						|
        return ValueSet([FakeTuple(
 | 
						|
            self.inference_state,
 | 
						|
            [LazyKnownValues(self._dict_values())]
 | 
						|
        )])
 | 
						|
 | 
						|
    def _dict_values(self):
 | 
						|
        return ValueSet.from_sets(lazy_value.infer() for lazy_value in self._dct.values())
 | 
						|
 | 
						|
    def _dict_keys(self):
 | 
						|
        return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__())
 | 
						|
 | 
						|
    def exact_key_items(self):
 | 
						|
        return self._dct.items()
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        return '<%s: %s>' % (self.__class__.__name__, self._dct)
 | 
						|
 | 
						|
 | 
						|
class MergedArray(Sequence):
 | 
						|
    def __init__(self, inference_state, arrays):
 | 
						|
        super().__init__(inference_state)
 | 
						|
        self.array_type = arrays[-1].array_type
 | 
						|
        self._arrays = arrays
 | 
						|
 | 
						|
    def py__iter__(self, contextualized_node=None):
 | 
						|
        for array in self._arrays:
 | 
						|
            yield from array.py__iter__()
 | 
						|
 | 
						|
    def py__simple_getitem__(self, index):
 | 
						|
        return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__())
 | 
						|
 | 
						|
 | 
						|
def unpack_tuple_to_dict(context, types, exprlist):
 | 
						|
    """
 | 
						|
    Unpacking tuple assignments in for statements and expr_stmts.
 | 
						|
    """
 | 
						|
    if exprlist.type == 'name':
 | 
						|
        return {exprlist.value: types}
 | 
						|
    elif exprlist.type == 'atom' and exprlist.children[0] in ('(', '['):
 | 
						|
        return unpack_tuple_to_dict(context, types, exprlist.children[1])
 | 
						|
    elif exprlist.type in ('testlist', 'testlist_comp', 'exprlist',
 | 
						|
                           'testlist_star_expr'):
 | 
						|
        dct = {}
 | 
						|
        parts = iter(exprlist.children[::2])
 | 
						|
        n = 0
 | 
						|
        for lazy_value in types.iterate(ContextualizedNode(context, exprlist)):
 | 
						|
            n += 1
 | 
						|
            try:
 | 
						|
                part = next(parts)
 | 
						|
            except StopIteration:
 | 
						|
                analysis.add(context, 'value-error-too-many-values', part,
 | 
						|
                             message="ValueError: too many values to unpack (expected %s)" % n)
 | 
						|
            else:
 | 
						|
                dct.update(unpack_tuple_to_dict(context, lazy_value.infer(), part))
 | 
						|
        has_parts = next(parts, None)
 | 
						|
        if types and has_parts is not None:
 | 
						|
            analysis.add(context, 'value-error-too-few-values', has_parts,
 | 
						|
                         message="ValueError: need more than %s values to unpack" % n)
 | 
						|
        return dct
 | 
						|
    elif exprlist.type == 'power' or exprlist.type == 'atom_expr':
 | 
						|
        # Something like ``arr[x], var = ...``.
 | 
						|
        # This is something that is not yet supported, would also be difficult
 | 
						|
        # to write into a dict.
 | 
						|
        return {}
 | 
						|
    elif exprlist.type == 'star_expr':  # `a, *b, c = x` type unpackings
 | 
						|
        # Currently we're not supporting them.
 | 
						|
        return {}
 | 
						|
    raise NotImplementedError
 | 
						|
 | 
						|
 | 
						|
class Slice(LazyValueWrapper):
 | 
						|
    def __init__(self, python_context, start, stop, step):
 | 
						|
        self.inference_state = python_context.inference_state
 | 
						|
        self._context = python_context
 | 
						|
        # All of them are either a Precedence or None.
 | 
						|
        self._start = start
 | 
						|
        self._stop = stop
 | 
						|
        self._step = step
 | 
						|
 | 
						|
    def _get_wrapped_value(self):
 | 
						|
        value = compiled.builtin_from_name(self._context.inference_state, 'slice')
 | 
						|
        slice_value, = value.execute_with_values()
 | 
						|
        return slice_value
 | 
						|
 | 
						|
    def get_safe_value(self, default=sentinel):
 | 
						|
        """
 | 
						|
        Imitate CompiledValue.obj behavior and return a ``builtin.slice()``
 | 
						|
        object.
 | 
						|
        """
 | 
						|
        def get(element):
 | 
						|
            if element is None:
 | 
						|
                return None
 | 
						|
 | 
						|
            result = self._context.infer_node(element)
 | 
						|
            if len(result) != 1:
 | 
						|
                # For simplicity, we want slices to be clear defined with just
 | 
						|
                # one type.  Otherwise we will return an empty slice object.
 | 
						|
                raise IndexError
 | 
						|
 | 
						|
            value, = result
 | 
						|
            return get_int_or_none(value)
 | 
						|
 | 
						|
        try:
 | 
						|
            return slice(get(self._start), get(self._stop), get(self._step))
 | 
						|
        except IndexError:
 | 
						|
            return slice(None, None, None)
 |