You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			37 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			37 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Python
		
	
# This is a private module implemented in C++
 | 
						|
from typing import final
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import numpy.typing as npt
 | 
						|
 | 
						|
@final
 | 
						|
class TrapezoidMapTriFinder:
 | 
						|
    def __init__(self, triangulation: Triangulation): ...
 | 
						|
    def find_many(self, x: npt.NDArray[np.float64], y: npt.NDArray[np.float64]) -> npt.NDArray[np.int_]: ...
 | 
						|
    def get_tree_stats(self) -> list[int | float]: ...
 | 
						|
    def initialize(self) -> None: ...
 | 
						|
    def print_tree(self) -> None: ...
 | 
						|
 | 
						|
@final
 | 
						|
class TriContourGenerator:
 | 
						|
    def __init__(self, triangulation: Triangulation, z: npt.NDArray[np.float64]): ...
 | 
						|
    def create_contour(self, level: float) -> tuple[list[float], list[int]]: ...
 | 
						|
    def create_filled_contour(self, lower_level: float, upper_level: float) -> tuple[list[float], list[int]]: ...
 | 
						|
 | 
						|
@final
 | 
						|
class Triangulation:
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        x: npt.NDArray[np.float64],
 | 
						|
        y: npt.NDArray[np.float64],
 | 
						|
        triangles: npt.NDArray[np.int_],
 | 
						|
        mask: npt.NDArray[np.bool_] | tuple[()],
 | 
						|
        edges: npt.NDArray[np.int_] | tuple[()],
 | 
						|
        neighbors: npt.NDArray[np.int_] | tuple[()],
 | 
						|
        correct_triangle_orientation: bool,
 | 
						|
    ): ...
 | 
						|
    def calculate_plane_coefficients(self, z: npt.ArrayLike) -> npt.NDArray[np.float64]: ...
 | 
						|
    def get_edges(self) -> npt.NDArray[np.int_]: ...
 | 
						|
    def get_neighbors(self) -> npt.NDArray[np.int_]: ...
 | 
						|
    def set_mask(self, mask: npt.NDArray[np.bool_] | tuple[()]) -> None: ...
 |