You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			781 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			781 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Python
		
	
from matplotlib.axes._base import _AxesBase
 | 
						|
from matplotlib.axes._secondary_axes import SecondaryAxis
 | 
						|
 | 
						|
from matplotlib.artist import Artist
 | 
						|
from matplotlib.backend_bases import RendererBase
 | 
						|
from matplotlib.collections import (
 | 
						|
    Collection,
 | 
						|
    FillBetweenPolyCollection,
 | 
						|
    LineCollection,
 | 
						|
    PathCollection,
 | 
						|
    PolyCollection,
 | 
						|
    EventCollection,
 | 
						|
    QuadMesh,
 | 
						|
)
 | 
						|
from matplotlib.colorizer import Colorizer
 | 
						|
from matplotlib.colors import Colormap, Normalize
 | 
						|
from matplotlib.container import BarContainer, ErrorbarContainer, StemContainer
 | 
						|
from matplotlib.contour import ContourSet, QuadContourSet
 | 
						|
from matplotlib.image import AxesImage, PcolorImage
 | 
						|
from matplotlib.inset import InsetIndicator
 | 
						|
from matplotlib.legend import Legend
 | 
						|
from matplotlib.legend_handler import HandlerBase
 | 
						|
from matplotlib.lines import Line2D, AxLine
 | 
						|
from matplotlib.mlab import GaussianKDE
 | 
						|
from matplotlib.patches import Rectangle, FancyArrow, Polygon, StepPatch, Wedge
 | 
						|
from matplotlib.quiver import Quiver, QuiverKey, Barbs
 | 
						|
from matplotlib.text import Annotation, Text
 | 
						|
from matplotlib.transforms import Transform
 | 
						|
from matplotlib.typing import CoordsType
 | 
						|
import matplotlib.tri as mtri
 | 
						|
import matplotlib.table as mtable
 | 
						|
import matplotlib.stackplot as mstack
 | 
						|
import matplotlib.streamplot as mstream
 | 
						|
 | 
						|
import datetime
 | 
						|
import PIL.Image
 | 
						|
from collections.abc import Callable, Iterable, Sequence
 | 
						|
from typing import Any, Literal, overload
 | 
						|
import numpy as np
 | 
						|
from numpy.typing import ArrayLike
 | 
						|
from matplotlib.typing import ColorType, MarkerType, LineStyleType
 | 
						|
 | 
						|
class Axes(_AxesBase):
 | 
						|
    def get_title(self, loc: Literal["left", "center", "right"] = ...) -> str: ...
 | 
						|
    def set_title(
 | 
						|
        self,
 | 
						|
        label: str,
 | 
						|
        fontdict: dict[str, Any] | None = ...,
 | 
						|
        loc: Literal["left", "center", "right"] | None = ...,
 | 
						|
        pad: float | None = ...,
 | 
						|
        *,
 | 
						|
        y: float | None = ...,
 | 
						|
        **kwargs
 | 
						|
    ) -> Text: ...
 | 
						|
    def get_legend_handles_labels(
 | 
						|
        self, legend_handler_map: dict[type, HandlerBase] | None = ...
 | 
						|
    ) -> tuple[list[Artist], list[Any]]: ...
 | 
						|
    legend_: Legend | None
 | 
						|
 | 
						|
    @overload
 | 
						|
    def legend(self) -> Legend: ...
 | 
						|
    @overload
 | 
						|
    def legend(self, handles: Iterable[Artist | tuple[Artist, ...]], labels: Iterable[str], **kwargs) -> Legend: ...
 | 
						|
    @overload
 | 
						|
    def legend(self, *, handles: Iterable[Artist | tuple[Artist, ...]], **kwargs) -> Legend: ...
 | 
						|
    @overload
 | 
						|
    def legend(self, labels: Iterable[str], **kwargs) -> Legend: ...
 | 
						|
    @overload
 | 
						|
    def legend(self, **kwargs) -> Legend: ...
 | 
						|
 | 
						|
    def inset_axes(
 | 
						|
        self,
 | 
						|
        bounds: tuple[float, float, float, float],
 | 
						|
        *,
 | 
						|
        transform: Transform | None = ...,
 | 
						|
        zorder: float = ...,
 | 
						|
        **kwargs
 | 
						|
    ) -> Axes: ...
 | 
						|
    def indicate_inset(
 | 
						|
        self,
 | 
						|
        bounds: tuple[float, float, float, float] | None = ...,
 | 
						|
        inset_ax: Axes | None = ...,
 | 
						|
        *,
 | 
						|
        transform: Transform | None = ...,
 | 
						|
        facecolor: ColorType = ...,
 | 
						|
        edgecolor: ColorType = ...,
 | 
						|
        alpha: float = ...,
 | 
						|
        zorder: float | None = ...,
 | 
						|
        **kwargs
 | 
						|
    ) -> InsetIndicator: ...
 | 
						|
    def indicate_inset_zoom(self, inset_ax: Axes, **kwargs) -> InsetIndicator: ...
 | 
						|
    def secondary_xaxis(
 | 
						|
        self,
 | 
						|
        location: Literal["top", "bottom"] | float,
 | 
						|
        functions: tuple[
 | 
						|
            Callable[[ArrayLike], ArrayLike], Callable[[ArrayLike], ArrayLike]
 | 
						|
        ]
 | 
						|
        | Transform
 | 
						|
        | None = ...,
 | 
						|
        *,
 | 
						|
        transform: Transform | None = ...,
 | 
						|
        **kwargs
 | 
						|
    ) -> SecondaryAxis: ...
 | 
						|
    def secondary_yaxis(
 | 
						|
        self,
 | 
						|
        location: Literal["left", "right"] | float,
 | 
						|
        functions: tuple[
 | 
						|
            Callable[[ArrayLike], ArrayLike], Callable[[ArrayLike], ArrayLike]
 | 
						|
        ]
 | 
						|
        | Transform
 | 
						|
        | None = ...,
 | 
						|
        *,
 | 
						|
        transform: Transform | None = ...,
 | 
						|
        **kwargs
 | 
						|
    ) -> SecondaryAxis: ...
 | 
						|
    def text(
 | 
						|
        self,
 | 
						|
        x: float,
 | 
						|
        y: float,
 | 
						|
        s: str,
 | 
						|
        fontdict: dict[str, Any] | None = ...,
 | 
						|
        **kwargs
 | 
						|
    ) -> Text: ...
 | 
						|
    def annotate(
 | 
						|
        self,
 | 
						|
        text: str,
 | 
						|
        xy: tuple[float, float],
 | 
						|
        xytext: tuple[float, float] | None = ...,
 | 
						|
        xycoords: CoordsType = ...,
 | 
						|
        textcoords: CoordsType | None = ...,
 | 
						|
        arrowprops: dict[str, Any] | None = ...,
 | 
						|
        annotation_clip: bool | None = ...,
 | 
						|
        **kwargs
 | 
						|
    ) -> Annotation: ...
 | 
						|
    def axhline(
 | 
						|
        self, y: float = ..., xmin: float = ..., xmax: float = ..., **kwargs
 | 
						|
    ) -> Line2D: ...
 | 
						|
    def axvline(
 | 
						|
        self, x: float = ..., ymin: float = ..., ymax: float = ..., **kwargs
 | 
						|
    ) -> Line2D: ...
 | 
						|
 | 
						|
    # TODO: Could separate the xy2 and slope signatures
 | 
						|
    def axline(
 | 
						|
        self,
 | 
						|
        xy1: tuple[float, float],
 | 
						|
        xy2: tuple[float, float] | None = ...,
 | 
						|
        *,
 | 
						|
        slope: float | None = ...,
 | 
						|
        **kwargs
 | 
						|
    ) -> AxLine: ...
 | 
						|
    def axhspan(
 | 
						|
        self, ymin: float, ymax: float, xmin: float = ..., xmax: float = ..., **kwargs
 | 
						|
    ) -> Rectangle: ...
 | 
						|
    def axvspan(
 | 
						|
        self, xmin: float, xmax: float, ymin: float = ..., ymax: float = ..., **kwargs
 | 
						|
    ) -> Rectangle: ...
 | 
						|
    def hlines(
 | 
						|
        self,
 | 
						|
        y: float | ArrayLike,
 | 
						|
        xmin: float | ArrayLike,
 | 
						|
        xmax: float | ArrayLike,
 | 
						|
        colors: ColorType | Sequence[ColorType] | None = ...,
 | 
						|
        linestyles: LineStyleType = ...,
 | 
						|
        *,
 | 
						|
        label: str = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> LineCollection: ...
 | 
						|
    def vlines(
 | 
						|
        self,
 | 
						|
        x: float | ArrayLike,
 | 
						|
        ymin: float | ArrayLike,
 | 
						|
        ymax: float | ArrayLike,
 | 
						|
        colors: ColorType | Sequence[ColorType] | None = ...,
 | 
						|
        linestyles: LineStyleType = ...,
 | 
						|
        *,
 | 
						|
        label: str = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> LineCollection: ...
 | 
						|
    def eventplot(
 | 
						|
        self,
 | 
						|
        positions: ArrayLike | Sequence[ArrayLike],
 | 
						|
        *,
 | 
						|
        orientation: Literal["horizontal", "vertical"] = ...,
 | 
						|
        lineoffsets: float | Sequence[float] = ...,
 | 
						|
        linelengths: float | Sequence[float] = ...,
 | 
						|
        linewidths: float | Sequence[float] | None = ...,
 | 
						|
        colors: ColorType | Sequence[ColorType] | None = ...,
 | 
						|
        alpha: float | Sequence[float] | None = ...,
 | 
						|
        linestyles: LineStyleType | Sequence[LineStyleType] = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> EventCollection: ...
 | 
						|
    def plot(
 | 
						|
        self,
 | 
						|
        *args: float | ArrayLike | str,
 | 
						|
        scalex: bool = ...,
 | 
						|
        scaley: bool = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> list[Line2D]: ...
 | 
						|
    def plot_date(
 | 
						|
        self,
 | 
						|
        x: ArrayLike,
 | 
						|
        y: ArrayLike,
 | 
						|
        fmt: str = ...,
 | 
						|
        tz: str | datetime.tzinfo | None = ...,
 | 
						|
        xdate: bool = ...,
 | 
						|
        ydate: bool = ...,
 | 
						|
        *,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> list[Line2D]: ...
 | 
						|
    def loglog(self, *args, **kwargs) -> list[Line2D]: ...
 | 
						|
    def semilogx(self, *args, **kwargs) -> list[Line2D]: ...
 | 
						|
    def semilogy(self, *args, **kwargs) -> list[Line2D]: ...
 | 
						|
    def acorr(
 | 
						|
        self, x: ArrayLike, *, data=..., **kwargs
 | 
						|
    ) -> tuple[np.ndarray, np.ndarray, LineCollection | Line2D, Line2D | None]: ...
 | 
						|
    def xcorr(
 | 
						|
        self,
 | 
						|
        x: ArrayLike,
 | 
						|
        y: ArrayLike,
 | 
						|
        *,
 | 
						|
        normed: bool = ...,
 | 
						|
        detrend: Callable[[ArrayLike], ArrayLike] = ...,
 | 
						|
        usevlines: bool = ...,
 | 
						|
        maxlags: int = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> tuple[np.ndarray, np.ndarray, LineCollection | Line2D, Line2D | None]: ...
 | 
						|
    def step(
 | 
						|
        self,
 | 
						|
        x: ArrayLike,
 | 
						|
        y: ArrayLike,
 | 
						|
        *args,
 | 
						|
        where: Literal["pre", "post", "mid"] = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> list[Line2D]: ...
 | 
						|
    def bar(
 | 
						|
        self,
 | 
						|
        x: float | ArrayLike,
 | 
						|
        height: float | ArrayLike,
 | 
						|
        width: float | ArrayLike = ...,
 | 
						|
        bottom: float | ArrayLike | None = ...,
 | 
						|
        *,
 | 
						|
        align: Literal["center", "edge"] = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> BarContainer: ...
 | 
						|
    def barh(
 | 
						|
        self,
 | 
						|
        y: float | ArrayLike,
 | 
						|
        width: float | ArrayLike,
 | 
						|
        height: float | ArrayLike = ...,
 | 
						|
        left: float | ArrayLike | None = ...,
 | 
						|
        *,
 | 
						|
        align: Literal["center", "edge"] = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> BarContainer: ...
 | 
						|
    def bar_label(
 | 
						|
        self,
 | 
						|
        container: BarContainer,
 | 
						|
        labels: ArrayLike | None = ...,
 | 
						|
        *,
 | 
						|
        fmt: str | Callable[[float], str] = ...,
 | 
						|
        label_type: Literal["center", "edge"] = ...,
 | 
						|
        padding: float = ...,
 | 
						|
        **kwargs
 | 
						|
    ) -> list[Annotation]: ...
 | 
						|
    def broken_barh(
 | 
						|
        self,
 | 
						|
        xranges: Sequence[tuple[float, float]],
 | 
						|
        yrange: tuple[float, float],
 | 
						|
        *,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> PolyCollection: ...
 | 
						|
    def stem(
 | 
						|
        self,
 | 
						|
        *args: ArrayLike | str,
 | 
						|
        linefmt: str | None = ...,
 | 
						|
        markerfmt: str | None = ...,
 | 
						|
        basefmt: str | None = ...,
 | 
						|
        bottom: float = ...,
 | 
						|
        label: str | None = ...,
 | 
						|
        orientation: Literal["vertical", "horizontal"] = ...,
 | 
						|
        data=...,
 | 
						|
    ) -> StemContainer: ...
 | 
						|
 | 
						|
    # TODO: data kwarg preprocessor?
 | 
						|
    def pie(
 | 
						|
        self,
 | 
						|
        x: ArrayLike,
 | 
						|
        *,
 | 
						|
        explode: ArrayLike | None = ...,
 | 
						|
        labels: Sequence[str] | None = ...,
 | 
						|
        colors: ColorType | Sequence[ColorType] | None = ...,
 | 
						|
        autopct: str | Callable[[float], str] | None = ...,
 | 
						|
        pctdistance: float = ...,
 | 
						|
        shadow: bool = ...,
 | 
						|
        labeldistance: float | None = ...,
 | 
						|
        startangle: float = ...,
 | 
						|
        radius: float = ...,
 | 
						|
        counterclock: bool = ...,
 | 
						|
        wedgeprops: dict[str, Any] | None = ...,
 | 
						|
        textprops: dict[str, Any] | None = ...,
 | 
						|
        center: tuple[float, float] = ...,
 | 
						|
        frame: bool = ...,
 | 
						|
        rotatelabels: bool = ...,
 | 
						|
        normalize: bool = ...,
 | 
						|
        hatch: str | Sequence[str] | None = ...,
 | 
						|
        data=...,
 | 
						|
    ) -> tuple[list[Wedge], list[Text]] | tuple[
 | 
						|
        list[Wedge], list[Text], list[Text]
 | 
						|
    ]: ...
 | 
						|
    def errorbar(
 | 
						|
        self,
 | 
						|
        x: float | ArrayLike,
 | 
						|
        y: float | ArrayLike,
 | 
						|
        yerr: float | ArrayLike | None = ...,
 | 
						|
        xerr: float | ArrayLike | None = ...,
 | 
						|
        fmt: str = ...,
 | 
						|
        *,
 | 
						|
        ecolor: ColorType | None = ...,
 | 
						|
        elinewidth: float | None = ...,
 | 
						|
        capsize: float | None = ...,
 | 
						|
        barsabove: bool = ...,
 | 
						|
        lolims: bool | ArrayLike = ...,
 | 
						|
        uplims: bool | ArrayLike = ...,
 | 
						|
        xlolims: bool | ArrayLike = ...,
 | 
						|
        xuplims: bool | ArrayLike = ...,
 | 
						|
        errorevery: int | tuple[int, int] = ...,
 | 
						|
        capthick: float | None = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> ErrorbarContainer: ...
 | 
						|
    def boxplot(
 | 
						|
        self,
 | 
						|
        x: ArrayLike | Sequence[ArrayLike],
 | 
						|
        *,
 | 
						|
        notch: bool | None = ...,
 | 
						|
        sym: str | None = ...,
 | 
						|
        vert: bool | None = ...,
 | 
						|
        orientation: Literal["vertical", "horizontal"] = ...,
 | 
						|
        whis: float | tuple[float, float] | None = ...,
 | 
						|
        positions: ArrayLike | None = ...,
 | 
						|
        widths: float | ArrayLike | None = ...,
 | 
						|
        patch_artist: bool | None = ...,
 | 
						|
        bootstrap: int | None = ...,
 | 
						|
        usermedians: ArrayLike | None = ...,
 | 
						|
        conf_intervals: ArrayLike | None = ...,
 | 
						|
        meanline: bool | None = ...,
 | 
						|
        showmeans: bool | None = ...,
 | 
						|
        showcaps: bool | None = ...,
 | 
						|
        showbox: bool | None = ...,
 | 
						|
        showfliers: bool | None = ...,
 | 
						|
        boxprops: dict[str, Any] | None = ...,
 | 
						|
        tick_labels: Sequence[str] | None = ...,
 | 
						|
        flierprops: dict[str, Any] | None = ...,
 | 
						|
        medianprops: dict[str, Any] | None = ...,
 | 
						|
        meanprops: dict[str, Any] | None = ...,
 | 
						|
        capprops: dict[str, Any] | None = ...,
 | 
						|
        whiskerprops: dict[str, Any] | None = ...,
 | 
						|
        manage_ticks: bool = ...,
 | 
						|
        autorange: bool = ...,
 | 
						|
        zorder: float | None = ...,
 | 
						|
        capwidths: float | ArrayLike | None = ...,
 | 
						|
        label: Sequence[str] | None = ...,
 | 
						|
        data=...,
 | 
						|
    ) -> dict[str, Any]: ...
 | 
						|
    def bxp(
 | 
						|
        self,
 | 
						|
        bxpstats: Sequence[dict[str, Any]],
 | 
						|
        positions: ArrayLike | None = ...,
 | 
						|
        *,
 | 
						|
        widths: float | ArrayLike | None = ...,
 | 
						|
        vert: bool | None = ...,
 | 
						|
        orientation: Literal["vertical", "horizontal"] = ...,
 | 
						|
        patch_artist: bool = ...,
 | 
						|
        shownotches: bool = ...,
 | 
						|
        showmeans: bool = ...,
 | 
						|
        showcaps: bool = ...,
 | 
						|
        showbox: bool = ...,
 | 
						|
        showfliers: bool = ...,
 | 
						|
        boxprops: dict[str, Any] | None = ...,
 | 
						|
        whiskerprops: dict[str, Any] | None = ...,
 | 
						|
        flierprops: dict[str, Any] | None = ...,
 | 
						|
        medianprops: dict[str, Any] | None = ...,
 | 
						|
        capprops: dict[str, Any] | None = ...,
 | 
						|
        meanprops: dict[str, Any] | None = ...,
 | 
						|
        meanline: bool = ...,
 | 
						|
        manage_ticks: bool = ...,
 | 
						|
        zorder: float | None = ...,
 | 
						|
        capwidths: float | ArrayLike | None = ...,
 | 
						|
        label: Sequence[str] | None = ...,
 | 
						|
    ) -> dict[str, Any]: ...
 | 
						|
    def scatter(
 | 
						|
        self,
 | 
						|
        x: float | ArrayLike,
 | 
						|
        y: float | ArrayLike,
 | 
						|
        s: float | ArrayLike | None = ...,
 | 
						|
        c: ArrayLike | Sequence[ColorType] | ColorType | None = ...,
 | 
						|
        *,
 | 
						|
        marker: MarkerType | None = ...,
 | 
						|
        cmap: str | Colormap | None = ...,
 | 
						|
        norm: str | Normalize | None = ...,
 | 
						|
        vmin: float | None = ...,
 | 
						|
        vmax: float | None = ...,
 | 
						|
        alpha: float | None = ...,
 | 
						|
        linewidths: float | Sequence[float] | None = ...,
 | 
						|
        edgecolors: Literal["face", "none"] | ColorType | Sequence[ColorType] | None = ...,
 | 
						|
        colorizer: Colorizer | None = ...,
 | 
						|
        plotnonfinite: bool = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> PathCollection: ...
 | 
						|
    def hexbin(
 | 
						|
        self,
 | 
						|
        x: ArrayLike,
 | 
						|
        y: ArrayLike,
 | 
						|
        C: ArrayLike | None = ...,
 | 
						|
        *,
 | 
						|
        gridsize: int | tuple[int, int] = ...,
 | 
						|
        bins: Literal["log"] | int | Sequence[float] | None = ...,
 | 
						|
        xscale: Literal["linear", "log"] = ...,
 | 
						|
        yscale: Literal["linear", "log"] = ...,
 | 
						|
        extent: tuple[float, float, float, float] | None = ...,
 | 
						|
        cmap: str | Colormap | None = ...,
 | 
						|
        norm: str | Normalize | None = ...,
 | 
						|
        vmin: float | None = ...,
 | 
						|
        vmax: float | None = ...,
 | 
						|
        alpha: float | None = ...,
 | 
						|
        linewidths: float | None = ...,
 | 
						|
        edgecolors: Literal["face", "none"] | ColorType = ...,
 | 
						|
        reduce_C_function: Callable[[np.ndarray | list[float]], float] = ...,
 | 
						|
        mincnt: int | None = ...,
 | 
						|
        marginals: bool = ...,
 | 
						|
        colorizer: Colorizer | None = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> PolyCollection: ...
 | 
						|
    def arrow(
 | 
						|
        self, x: float, y: float, dx: float, dy: float, **kwargs
 | 
						|
    ) -> FancyArrow: ...
 | 
						|
    def quiverkey(
 | 
						|
        self, Q: Quiver, X: float, Y: float, U: float, label: str, **kwargs
 | 
						|
    ) -> QuiverKey: ...
 | 
						|
    def quiver(self, *args, data=..., **kwargs) -> Quiver: ...
 | 
						|
    def barbs(self, *args, data=..., **kwargs) -> Barbs: ...
 | 
						|
    def fill(self, *args, data=..., **kwargs) -> list[Polygon]: ...
 | 
						|
    def fill_between(
 | 
						|
        self,
 | 
						|
        x: ArrayLike,
 | 
						|
        y1: ArrayLike | float,
 | 
						|
        y2: ArrayLike | float = ...,
 | 
						|
        where: Sequence[bool] | None = ...,
 | 
						|
        interpolate: bool = ...,
 | 
						|
        step: Literal["pre", "post", "mid"] | None = ...,
 | 
						|
        *,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> FillBetweenPolyCollection: ...
 | 
						|
    def fill_betweenx(
 | 
						|
        self,
 | 
						|
        y: ArrayLike,
 | 
						|
        x1: ArrayLike | float,
 | 
						|
        x2: ArrayLike | float = ...,
 | 
						|
        where: Sequence[bool] | None = ...,
 | 
						|
        step: Literal["pre", "post", "mid"] | None = ...,
 | 
						|
        interpolate: bool = ...,
 | 
						|
        *,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> FillBetweenPolyCollection: ...
 | 
						|
    def imshow(
 | 
						|
        self,
 | 
						|
        X: ArrayLike | PIL.Image.Image,
 | 
						|
        cmap: str | Colormap | None = ...,
 | 
						|
        norm: str | Normalize | None = ...,
 | 
						|
        *,
 | 
						|
        aspect: Literal["equal", "auto"] | float | None = ...,
 | 
						|
        interpolation: str | None = ...,
 | 
						|
        alpha: float | ArrayLike | None = ...,
 | 
						|
        vmin: float | None = ...,
 | 
						|
        vmax: float | None = ...,
 | 
						|
        colorizer: Colorizer | None = ...,
 | 
						|
        origin: Literal["upper", "lower"] | None = ...,
 | 
						|
        extent: tuple[float, float, float, float] | None = ...,
 | 
						|
        interpolation_stage: Literal["data", "rgba", "auto"] | None = ...,
 | 
						|
        filternorm: bool = ...,
 | 
						|
        filterrad: float = ...,
 | 
						|
        resample: bool | None = ...,
 | 
						|
        url: str | None = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> AxesImage: ...
 | 
						|
    def pcolor(
 | 
						|
        self,
 | 
						|
        *args: ArrayLike,
 | 
						|
        shading: Literal["flat", "nearest", "auto"] | None = ...,
 | 
						|
        alpha: float | None = ...,
 | 
						|
        norm: str | Normalize | None = ...,
 | 
						|
        cmap: str | Colormap | None = ...,
 | 
						|
        vmin: float | None = ...,
 | 
						|
        vmax: float | None = ...,
 | 
						|
        colorizer: Colorizer | None = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> Collection: ...
 | 
						|
    def pcolormesh(
 | 
						|
        self,
 | 
						|
        *args: ArrayLike,
 | 
						|
        alpha: float | None = ...,
 | 
						|
        norm: str | Normalize | None = ...,
 | 
						|
        cmap: str | Colormap | None = ...,
 | 
						|
        vmin: float | None = ...,
 | 
						|
        vmax: float | None = ...,
 | 
						|
        colorizer: Colorizer | None = ...,
 | 
						|
        shading: Literal["flat", "nearest", "gouraud", "auto"] | None = ...,
 | 
						|
        antialiased: bool = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> QuadMesh: ...
 | 
						|
    def pcolorfast(
 | 
						|
        self,
 | 
						|
        *args: ArrayLike | tuple[float, float],
 | 
						|
        alpha: float | None = ...,
 | 
						|
        norm: str | Normalize | None = ...,
 | 
						|
        cmap: str | Colormap | None = ...,
 | 
						|
        vmin: float | None = ...,
 | 
						|
        vmax: float | None = ...,
 | 
						|
        colorizer: Colorizer | None = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> AxesImage | PcolorImage | QuadMesh: ...
 | 
						|
    def contour(self, *args, data=..., **kwargs) -> QuadContourSet: ...
 | 
						|
    def contourf(self, *args, data=..., **kwargs) -> QuadContourSet: ...
 | 
						|
    def clabel(
 | 
						|
        self, CS: ContourSet, levels: ArrayLike | None = ..., **kwargs
 | 
						|
    ) -> list[Text]: ...
 | 
						|
    def hist(
 | 
						|
        self,
 | 
						|
        x: ArrayLike | Sequence[ArrayLike],
 | 
						|
        bins: int | Sequence[float] | str | None = ...,
 | 
						|
        *,
 | 
						|
        range: tuple[float, float] | None = ...,
 | 
						|
        density: bool = ...,
 | 
						|
        weights: ArrayLike | None = ...,
 | 
						|
        cumulative: bool | float = ...,
 | 
						|
        bottom: ArrayLike | float | None = ...,
 | 
						|
        histtype: Literal["bar", "barstacked", "step", "stepfilled"] = ...,
 | 
						|
        align: Literal["left", "mid", "right"] = ...,
 | 
						|
        orientation: Literal["vertical", "horizontal"] = ...,
 | 
						|
        rwidth: float | None = ...,
 | 
						|
        log: bool = ...,
 | 
						|
        color: ColorType | Sequence[ColorType] | None = ...,
 | 
						|
        label: str | Sequence[str] | None = ...,
 | 
						|
        stacked: bool = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> tuple[
 | 
						|
        np.ndarray | list[np.ndarray],
 | 
						|
        np.ndarray,
 | 
						|
        BarContainer | Polygon | list[BarContainer | Polygon],
 | 
						|
    ]: ...
 | 
						|
    def stairs(
 | 
						|
        self,
 | 
						|
        values: ArrayLike,
 | 
						|
        edges: ArrayLike | None = ...,
 | 
						|
        *,
 | 
						|
        orientation: Literal["vertical", "horizontal"] = ...,
 | 
						|
        baseline: float | ArrayLike | None = ...,
 | 
						|
        fill: bool = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> StepPatch: ...
 | 
						|
    def hist2d(
 | 
						|
        self,
 | 
						|
        x: ArrayLike,
 | 
						|
        y: ArrayLike,
 | 
						|
        bins: None
 | 
						|
        | int
 | 
						|
        | tuple[int, int]
 | 
						|
        | ArrayLike
 | 
						|
        | tuple[ArrayLike, ArrayLike] = ...,
 | 
						|
        *,
 | 
						|
        range: ArrayLike | None = ...,
 | 
						|
        density: bool = ...,
 | 
						|
        weights: ArrayLike | None = ...,
 | 
						|
        cmin: float | None = ...,
 | 
						|
        cmax: float | None = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> tuple[np.ndarray, np.ndarray, np.ndarray, QuadMesh]: ...
 | 
						|
    def ecdf(
 | 
						|
        self,
 | 
						|
        x: ArrayLike,
 | 
						|
        weights: ArrayLike | None = ...,
 | 
						|
        *,
 | 
						|
        complementary: bool=...,
 | 
						|
        orientation: Literal["vertical", "horizontal"]=...,
 | 
						|
        compress: bool=...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> Line2D: ...
 | 
						|
    def psd(
 | 
						|
        self,
 | 
						|
        x: ArrayLike,
 | 
						|
        *,
 | 
						|
        NFFT: int | None = ...,
 | 
						|
        Fs: float | None = ...,
 | 
						|
        Fc: int | None = ...,
 | 
						|
        detrend: Literal["none", "mean", "linear"]
 | 
						|
        | Callable[[ArrayLike], ArrayLike]
 | 
						|
        | None = ...,
 | 
						|
        window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
 | 
						|
        noverlap: int | None = ...,
 | 
						|
        pad_to: int | None = ...,
 | 
						|
        sides: Literal["default", "onesided", "twosided"] | None = ...,
 | 
						|
        scale_by_freq: bool | None = ...,
 | 
						|
        return_line: bool | None = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> tuple[np.ndarray, np.ndarray] | tuple[np.ndarray, np.ndarray, Line2D]: ...
 | 
						|
    def csd(
 | 
						|
        self,
 | 
						|
        x: ArrayLike,
 | 
						|
        y: ArrayLike,
 | 
						|
        *,
 | 
						|
        NFFT: int | None = ...,
 | 
						|
        Fs: float | None = ...,
 | 
						|
        Fc: int | None = ...,
 | 
						|
        detrend: Literal["none", "mean", "linear"]
 | 
						|
        | Callable[[ArrayLike], ArrayLike]
 | 
						|
        | None = ...,
 | 
						|
        window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
 | 
						|
        noverlap: int | None = ...,
 | 
						|
        pad_to: int | None = ...,
 | 
						|
        sides: Literal["default", "onesided", "twosided"] | None = ...,
 | 
						|
        scale_by_freq: bool | None = ...,
 | 
						|
        return_line: bool | None = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> tuple[np.ndarray, np.ndarray] | tuple[np.ndarray, np.ndarray, Line2D]: ...
 | 
						|
    def magnitude_spectrum(
 | 
						|
        self,
 | 
						|
        x: ArrayLike,
 | 
						|
        *,
 | 
						|
        Fs: float | None = ...,
 | 
						|
        Fc: int | None = ...,
 | 
						|
        window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
 | 
						|
        pad_to: int | None = ...,
 | 
						|
        sides: Literal["default", "onesided", "twosided"] | None = ...,
 | 
						|
        scale: Literal["default", "linear", "dB"] | None = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> tuple[np.ndarray, np.ndarray, Line2D]: ...
 | 
						|
    def angle_spectrum(
 | 
						|
        self,
 | 
						|
        x: ArrayLike,
 | 
						|
        *,
 | 
						|
        Fs: float | None = ...,
 | 
						|
        Fc: int | None = ...,
 | 
						|
        window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
 | 
						|
        pad_to: int | None = ...,
 | 
						|
        sides: Literal["default", "onesided", "twosided"] | None = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> tuple[np.ndarray, np.ndarray, Line2D]: ...
 | 
						|
    def phase_spectrum(
 | 
						|
        self,
 | 
						|
        x: ArrayLike,
 | 
						|
        *,
 | 
						|
        Fs: float | None = ...,
 | 
						|
        Fc: int | None = ...,
 | 
						|
        window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
 | 
						|
        pad_to: int | None = ...,
 | 
						|
        sides: Literal["default", "onesided", "twosided"] | None = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> tuple[np.ndarray, np.ndarray, Line2D]: ...
 | 
						|
    def cohere(
 | 
						|
        self,
 | 
						|
        x: ArrayLike,
 | 
						|
        y: ArrayLike,
 | 
						|
        *,
 | 
						|
        NFFT: int = ...,
 | 
						|
        Fs: float = ...,
 | 
						|
        Fc: int = ...,
 | 
						|
        detrend: Literal["none", "mean", "linear"]
 | 
						|
        | Callable[[ArrayLike], ArrayLike] = ...,
 | 
						|
        window: Callable[[ArrayLike], ArrayLike] | ArrayLike = ...,
 | 
						|
        noverlap: int = ...,
 | 
						|
        pad_to: int | None = ...,
 | 
						|
        sides: Literal["default", "onesided", "twosided"] = ...,
 | 
						|
        scale_by_freq: bool | None = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> tuple[np.ndarray, np.ndarray]: ...
 | 
						|
    def specgram(
 | 
						|
        self,
 | 
						|
        x: ArrayLike,
 | 
						|
        *,
 | 
						|
        NFFT: int | None = ...,
 | 
						|
        Fs: float | None = ...,
 | 
						|
        Fc: int | None = ...,
 | 
						|
        detrend: Literal["none", "mean", "linear"]
 | 
						|
        | Callable[[ArrayLike], ArrayLike]
 | 
						|
        | None = ...,
 | 
						|
        window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
 | 
						|
        noverlap: int | None = ...,
 | 
						|
        cmap: str | Colormap | None = ...,
 | 
						|
        xextent: tuple[float, float] | None = ...,
 | 
						|
        pad_to: int | None = ...,
 | 
						|
        sides: Literal["default", "onesided", "twosided"] | None = ...,
 | 
						|
        scale_by_freq: bool | None = ...,
 | 
						|
        mode: Literal["default", "psd", "magnitude", "angle", "phase"] | None = ...,
 | 
						|
        scale: Literal["default", "linear", "dB"] | None = ...,
 | 
						|
        vmin: float | None = ...,
 | 
						|
        vmax: float | None = ...,
 | 
						|
        data=...,
 | 
						|
        **kwargs
 | 
						|
    ) -> tuple[np.ndarray, np.ndarray, np.ndarray, AxesImage]: ...
 | 
						|
    def spy(
 | 
						|
        self,
 | 
						|
        Z: ArrayLike,
 | 
						|
        *,
 | 
						|
        precision: float | Literal["present"] = ...,
 | 
						|
        marker: str | None = ...,
 | 
						|
        markersize: float | None = ...,
 | 
						|
        aspect: Literal["equal", "auto"] | float | None = ...,
 | 
						|
        origin: Literal["upper", "lower"] = ...,
 | 
						|
        **kwargs
 | 
						|
    ) -> AxesImage: ...
 | 
						|
    def matshow(self, Z: ArrayLike, **kwargs) -> AxesImage: ...
 | 
						|
    def violinplot(
 | 
						|
        self,
 | 
						|
        dataset: ArrayLike | Sequence[ArrayLike],
 | 
						|
        positions: ArrayLike | None = ...,
 | 
						|
        *,
 | 
						|
        vert: bool | None = ...,
 | 
						|
        orientation: Literal["vertical", "horizontal"] = ...,
 | 
						|
        widths: float | ArrayLike = ...,
 | 
						|
        showmeans: bool = ...,
 | 
						|
        showextrema: bool = ...,
 | 
						|
        showmedians: bool = ...,
 | 
						|
        quantiles: Sequence[float | Sequence[float]] | None = ...,
 | 
						|
        points: int = ...,
 | 
						|
        bw_method: Literal["scott", "silverman"]
 | 
						|
        | float
 | 
						|
        | Callable[[GaussianKDE], float]
 | 
						|
        | None = ...,
 | 
						|
        side: Literal["both", "low", "high"] = ...,
 | 
						|
        data=...,
 | 
						|
    ) -> dict[str, Collection]: ...
 | 
						|
    def violin(
 | 
						|
        self,
 | 
						|
        vpstats: Sequence[dict[str, Any]],
 | 
						|
        positions: ArrayLike | None = ...,
 | 
						|
        *,
 | 
						|
        vert: bool | None = ...,
 | 
						|
        orientation: Literal["vertical", "horizontal"] = ...,
 | 
						|
        widths: float | ArrayLike = ...,
 | 
						|
        showmeans: bool = ...,
 | 
						|
        showextrema: bool = ...,
 | 
						|
        showmedians: bool = ...,
 | 
						|
        side: Literal["both", "low", "high"] = ...,
 | 
						|
    ) -> dict[str, Collection]: ...
 | 
						|
 | 
						|
    table = mtable.table
 | 
						|
    stackplot = mstack.stackplot
 | 
						|
    streamplot = mstream.streamplot
 | 
						|
    tricontour = mtri.tricontour
 | 
						|
    tricontourf = mtri.tricontourf
 | 
						|
    tripcolor = mtri.tripcolor
 | 
						|
    triplot = mtri.triplot
 |