You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			174 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			174 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
import collections.abc
 | 
						|
from collections.abc import Callable, Collection, Generator, Iterable, Iterator
 | 
						|
import contextlib
 | 
						|
import os
 | 
						|
from pathlib import Path
 | 
						|
 | 
						|
from matplotlib.artist import Artist
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from numpy.typing import ArrayLike
 | 
						|
 | 
						|
from typing import (
 | 
						|
    Any,
 | 
						|
    Generic,
 | 
						|
    IO,
 | 
						|
    Literal,
 | 
						|
    TypeVar,
 | 
						|
    overload,
 | 
						|
)
 | 
						|
 | 
						|
_T = TypeVar("_T")
 | 
						|
 | 
						|
def _get_running_interactive_framework() -> str | None: ...
 | 
						|
 | 
						|
class CallbackRegistry:
 | 
						|
    exception_handler: Callable[[Exception], Any]
 | 
						|
    callbacks: dict[Any, dict[int, Any]]
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        exception_handler: Callable[[Exception], Any] | None = ...,
 | 
						|
        *,
 | 
						|
        signals: Iterable[Any] | None = ...,
 | 
						|
    ) -> None: ...
 | 
						|
    def connect(self, signal: Any, func: Callable) -> int: ...
 | 
						|
    def disconnect(self, cid: int) -> None: ...
 | 
						|
    def process(self, s: Any, *args, **kwargs) -> None: ...
 | 
						|
    def blocked(
 | 
						|
        self, *, signal: Any | None = ...
 | 
						|
    ) -> contextlib.AbstractContextManager[None]: ...
 | 
						|
 | 
						|
class silent_list(list[_T]):
 | 
						|
    type: str | None
 | 
						|
    def __init__(self, type: str | None, seq: Iterable[_T] | None = ...) -> None: ...
 | 
						|
 | 
						|
def strip_math(s: str) -> str: ...
 | 
						|
def is_writable_file_like(obj: Any) -> bool: ...
 | 
						|
def file_requires_unicode(x: Any) -> bool: ...
 | 
						|
@overload
 | 
						|
def to_filehandle(
 | 
						|
    fname: str | os.PathLike | IO,
 | 
						|
    flag: str = ...,
 | 
						|
    return_opened: Literal[False] = ...,
 | 
						|
    encoding: str | None = ...,
 | 
						|
) -> IO: ...
 | 
						|
@overload
 | 
						|
def to_filehandle(
 | 
						|
    fname: str | os.PathLike | IO,
 | 
						|
    flag: str,
 | 
						|
    return_opened: Literal[True],
 | 
						|
    encoding: str | None = ...,
 | 
						|
) -> tuple[IO, bool]: ...
 | 
						|
@overload
 | 
						|
def to_filehandle(
 | 
						|
    fname: str | os.PathLike | IO,
 | 
						|
    *,  # if flag given, will match previous sig
 | 
						|
    return_opened: Literal[True],
 | 
						|
    encoding: str | None = ...,
 | 
						|
) -> tuple[IO, bool]: ...
 | 
						|
def open_file_cm(
 | 
						|
    path_or_file: str | os.PathLike | IO,
 | 
						|
    mode: str = ...,
 | 
						|
    encoding: str | None = ...,
 | 
						|
) -> contextlib.AbstractContextManager[IO]: ...
 | 
						|
def is_scalar_or_string(val: Any) -> bool: ...
 | 
						|
@overload
 | 
						|
def get_sample_data(
 | 
						|
    fname: str | os.PathLike, asfileobj: Literal[True] = ...
 | 
						|
) -> np.ndarray | IO: ...
 | 
						|
@overload
 | 
						|
def get_sample_data(fname: str | os.PathLike, asfileobj: Literal[False]) -> str: ...
 | 
						|
def _get_data_path(*args: Path | str) -> Path: ...
 | 
						|
def flatten(
 | 
						|
    seq: Iterable[Any], scalarp: Callable[[Any], bool] = ...
 | 
						|
) -> Generator[Any, None, None]: ...
 | 
						|
 | 
						|
class _Stack(Generic[_T]):
 | 
						|
    def __init__(self) -> None: ...
 | 
						|
    def clear(self) -> None: ...
 | 
						|
    def __call__(self) -> _T: ...
 | 
						|
    def __len__(self) -> int: ...
 | 
						|
    def __getitem__(self, ind: int) -> _T: ...
 | 
						|
    def forward(self) -> _T: ...
 | 
						|
    def back(self) -> _T: ...
 | 
						|
    def push(self, o: _T) -> _T: ...
 | 
						|
    def home(self) -> _T: ...
 | 
						|
 | 
						|
def safe_masked_invalid(x: ArrayLike, copy: bool = ...) -> np.ndarray: ...
 | 
						|
def print_cycles(
 | 
						|
    objects: Iterable[Any], outstream: IO = ..., show_progress: bool = ...
 | 
						|
) -> None: ...
 | 
						|
 | 
						|
class Grouper(Generic[_T]):
 | 
						|
    def __init__(self, init: Iterable[_T] = ...) -> None: ...
 | 
						|
    def __contains__(self, item: _T) -> bool: ...
 | 
						|
    def join(self, a: _T, *args: _T) -> None: ...
 | 
						|
    def joined(self, a: _T, b: _T) -> bool: ...
 | 
						|
    def remove(self, a: _T) -> None: ...
 | 
						|
    def __iter__(self) -> Iterator[list[_T]]: ...
 | 
						|
    def get_siblings(self, a: _T) -> list[_T]: ...
 | 
						|
 | 
						|
class GrouperView(Generic[_T]):
 | 
						|
    def __init__(self, grouper: Grouper[_T]) -> None: ...
 | 
						|
    def __contains__(self, item: _T) -> bool: ...
 | 
						|
    def __iter__(self) -> Iterator[list[_T]]: ...
 | 
						|
    def joined(self, a: _T, b: _T) -> bool: ...
 | 
						|
    def get_siblings(self, a: _T) -> list[_T]: ...
 | 
						|
 | 
						|
def simple_linear_interpolation(a: ArrayLike, steps: int) -> np.ndarray: ...
 | 
						|
def delete_masked_points(*args): ...
 | 
						|
def _broadcast_with_masks(*args: ArrayLike, compress: bool = ...) -> list[ArrayLike]: ...
 | 
						|
def boxplot_stats(
 | 
						|
    X: ArrayLike,
 | 
						|
    whis: float | tuple[float, float] = ...,
 | 
						|
    bootstrap: int | None = ...,
 | 
						|
    labels: ArrayLike | None = ...,
 | 
						|
    autorange: bool = ...,
 | 
						|
) -> list[dict[str, Any]]: ...
 | 
						|
 | 
						|
ls_mapper: dict[str, str]
 | 
						|
ls_mapper_r: dict[str, str]
 | 
						|
 | 
						|
def contiguous_regions(mask: ArrayLike) -> list[np.ndarray]: ...
 | 
						|
def is_math_text(s: str) -> bool: ...
 | 
						|
def violin_stats(
 | 
						|
    X: ArrayLike, method: Callable, points: int = ..., quantiles: ArrayLike | None = ...
 | 
						|
) -> list[dict[str, Any]]: ...
 | 
						|
def pts_to_prestep(x: ArrayLike, *args: ArrayLike) -> np.ndarray: ...
 | 
						|
def pts_to_poststep(x: ArrayLike, *args: ArrayLike) -> np.ndarray: ...
 | 
						|
def pts_to_midstep(x: np.ndarray, *args: np.ndarray) -> np.ndarray: ...
 | 
						|
 | 
						|
STEP_LOOKUP_MAP: dict[str, Callable]
 | 
						|
 | 
						|
def index_of(y: float | ArrayLike) -> tuple[np.ndarray, np.ndarray]: ...
 | 
						|
def safe_first_element(obj: Collection[_T]) -> _T: ...
 | 
						|
def sanitize_sequence(data): ...
 | 
						|
def normalize_kwargs(
 | 
						|
    kw: dict[str, Any],
 | 
						|
    alias_mapping: dict[str, list[str]] | type[Artist] | Artist | None = ...,
 | 
						|
) -> dict[str, Any]: ...
 | 
						|
def _lock_path(path: str | os.PathLike) -> contextlib.AbstractContextManager[None]: ...
 | 
						|
def _str_equal(obj: Any, s: str) -> bool: ...
 | 
						|
def _str_lower_equal(obj: Any, s: str) -> bool: ...
 | 
						|
def _array_perimeter(arr: np.ndarray) -> np.ndarray: ...
 | 
						|
def _unfold(arr: np.ndarray, axis: int, size: int, step: int) -> np.ndarray: ...
 | 
						|
def _array_patch_perimeters(x: np.ndarray, rstride: int, cstride: int) -> np.ndarray: ...
 | 
						|
def _setattr_cm(obj: Any, **kwargs) -> contextlib.AbstractContextManager[None]: ...
 | 
						|
 | 
						|
class _OrderedSet(collections.abc.MutableSet):
 | 
						|
    def __init__(self) -> None: ...
 | 
						|
    def __contains__(self, key) -> bool: ...
 | 
						|
    def __iter__(self): ...
 | 
						|
    def __len__(self) -> int: ...
 | 
						|
    def add(self, key) -> None: ...
 | 
						|
    def discard(self, key) -> None: ...
 | 
						|
 | 
						|
def _setup_new_guiapp() -> None: ...
 | 
						|
def _format_approx(number: float, precision: int) -> str: ...
 | 
						|
def _g_sig_digits(value: float, delta: float) -> int: ...
 | 
						|
def _unikey_or_keysym_to_mplkey(unikey: str, keysym: str) -> str: ...
 | 
						|
def _is_torch_array(x: Any) -> bool: ...
 | 
						|
def _is_jax_array(x: Any) -> bool: ...
 | 
						|
def _unpack_to_numpy(x: Any) -> Any: ...
 | 
						|
def _auto_format_str(fmt: str, value: Any) -> str: ...
 |