You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			101 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			101 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
from collections.abc import Callable
 | 
						|
import functools
 | 
						|
from typing import Literal
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from numpy.typing import ArrayLike
 | 
						|
 | 
						|
def window_hanning(x: ArrayLike) -> ArrayLike: ...
 | 
						|
def window_none(x: ArrayLike) -> ArrayLike: ...
 | 
						|
def detrend(
 | 
						|
    x: ArrayLike,
 | 
						|
    key: Literal["default", "constant", "mean", "linear", "none"]
 | 
						|
    | Callable[[ArrayLike, int | None], ArrayLike]
 | 
						|
    | None = ...,
 | 
						|
    axis: int | None = ...,
 | 
						|
) -> ArrayLike: ...
 | 
						|
def detrend_mean(x: ArrayLike, axis: int | None = ...) -> ArrayLike: ...
 | 
						|
def detrend_none(x: ArrayLike, axis: int | None = ...) -> ArrayLike: ...
 | 
						|
def detrend_linear(y: ArrayLike) -> ArrayLike: ...
 | 
						|
def psd(
 | 
						|
    x: ArrayLike,
 | 
						|
    NFFT: int | None = ...,
 | 
						|
    Fs: float | None = ...,
 | 
						|
    detrend: Literal["none", "mean", "linear"]
 | 
						|
    | Callable[[ArrayLike, int | None], ArrayLike]
 | 
						|
    | None = ...,
 | 
						|
    window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
 | 
						|
    noverlap: int | None = ...,
 | 
						|
    pad_to: int | None = ...,
 | 
						|
    sides: Literal["default", "onesided", "twosided"] | None = ...,
 | 
						|
    scale_by_freq: bool | None = ...,
 | 
						|
) -> tuple[ArrayLike, ArrayLike]: ...
 | 
						|
def csd(
 | 
						|
    x: ArrayLike,
 | 
						|
    y: ArrayLike | None,
 | 
						|
    NFFT: int | None = ...,
 | 
						|
    Fs: float | None = ...,
 | 
						|
    detrend: Literal["none", "mean", "linear"]
 | 
						|
    | Callable[[ArrayLike, int | None], ArrayLike]
 | 
						|
    | None = ...,
 | 
						|
    window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
 | 
						|
    noverlap: int | None = ...,
 | 
						|
    pad_to: int | None = ...,
 | 
						|
    sides: Literal["default", "onesided", "twosided"] | None = ...,
 | 
						|
    scale_by_freq: bool | None = ...,
 | 
						|
) -> tuple[ArrayLike, ArrayLike]: ...
 | 
						|
 | 
						|
complex_spectrum = functools.partial(tuple[ArrayLike, ArrayLike])
 | 
						|
magnitude_spectrum = functools.partial(tuple[ArrayLike, ArrayLike])
 | 
						|
angle_spectrum = functools.partial(tuple[ArrayLike, ArrayLike])
 | 
						|
phase_spectrum = functools.partial(tuple[ArrayLike, ArrayLike])
 | 
						|
 | 
						|
def specgram(
 | 
						|
    x: ArrayLike,
 | 
						|
    NFFT: int | None = ...,
 | 
						|
    Fs: float | None = ...,
 | 
						|
    detrend: Literal["none", "mean", "linear"] | Callable[[ArrayLike, int | None], ArrayLike] | None = ...,
 | 
						|
    window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ...,
 | 
						|
    noverlap: int | None = ...,
 | 
						|
    pad_to: int | None = ...,
 | 
						|
    sides: Literal["default", "onesided", "twosided"] | None = ...,
 | 
						|
    scale_by_freq: bool | None = ...,
 | 
						|
    mode: Literal["psd", "complex", "magnitude", "angle", "phase"] | None = ...,
 | 
						|
) -> tuple[ArrayLike, ArrayLike, ArrayLike]: ...
 | 
						|
def cohere(
 | 
						|
    x: ArrayLike,
 | 
						|
    y: ArrayLike,
 | 
						|
    NFFT: int = ...,
 | 
						|
    Fs: float = ...,
 | 
						|
    detrend: Literal["none", "mean", "linear"] | Callable[[ArrayLike, int | None], ArrayLike] = ...,
 | 
						|
    window: Callable[[ArrayLike], ArrayLike] | ArrayLike = ...,
 | 
						|
    noverlap: int = ...,
 | 
						|
    pad_to: int | None = ...,
 | 
						|
    sides: Literal["default", "onesided", "twosided"] = ...,
 | 
						|
    scale_by_freq: bool | None = ...,
 | 
						|
) -> tuple[ArrayLike, ArrayLike]: ...
 | 
						|
 | 
						|
class GaussianKDE:
 | 
						|
    dataset: ArrayLike
 | 
						|
    dim: int
 | 
						|
    num_dp: int
 | 
						|
    factor: float
 | 
						|
    data_covariance: ArrayLike
 | 
						|
    data_inv_cov: ArrayLike
 | 
						|
    covariance: ArrayLike
 | 
						|
    inv_cov: ArrayLike
 | 
						|
    norm_factor: float
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        dataset: ArrayLike,
 | 
						|
        bw_method: Literal["scott", "silverman"]
 | 
						|
        | float
 | 
						|
        | Callable[[GaussianKDE], float]
 | 
						|
        | None = ...,
 | 
						|
    ) -> None: ...
 | 
						|
    def scotts_factor(self) -> float: ...
 | 
						|
    def silverman_factor(self) -> float: ...
 | 
						|
    def covariance_factor(self) -> float: ...
 | 
						|
    def evaluate(self, points: ArrayLike) -> np.ndarray: ...
 | 
						|
    def __call__(self, points: ArrayLike) -> np.ndarray: ...
 |