You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

840 lines
30 KiB
Python

import datetime
import platform
import re
from unittest import mock
import contourpy
import numpy as np
from numpy.testing import assert_array_almost_equal, assert_array_almost_equal_nulp
import matplotlib as mpl
from matplotlib import pyplot as plt, rc_context, ticker
from matplotlib.colors import LogNorm, same_color
import matplotlib.patches as mpatches
from matplotlib.testing.decorators import check_figures_equal, image_comparison
import pytest
def test_contour_shape_1d_valid():
x = np.arange(10)
y = np.arange(9)
z = np.random.random((9, 10))
fig, ax = plt.subplots()
ax.contour(x, y, z)
def test_contour_shape_2d_valid():
x = np.arange(10)
y = np.arange(9)
xg, yg = np.meshgrid(x, y)
z = np.random.random((9, 10))
fig, ax = plt.subplots()
ax.contour(xg, yg, z)
@pytest.mark.parametrize("args, message", [
((np.arange(9), np.arange(9), np.empty((9, 10))),
'Length of x (9) must match number of columns in z (10)'),
((np.arange(10), np.arange(10), np.empty((9, 10))),
'Length of y (10) must match number of rows in z (9)'),
((np.empty((10, 10)), np.arange(10), np.empty((9, 10))),
'Number of dimensions of x (2) and y (1) do not match'),
((np.arange(10), np.empty((10, 10)), np.empty((9, 10))),
'Number of dimensions of x (1) and y (2) do not match'),
((np.empty((9, 9)), np.empty((9, 10)), np.empty((9, 10))),
'Shapes of x (9, 9) and z (9, 10) do not match'),
((np.empty((9, 10)), np.empty((9, 9)), np.empty((9, 10))),
'Shapes of y (9, 9) and z (9, 10) do not match'),
((np.empty((3, 3, 3)), np.empty((3, 3, 3)), np.empty((9, 10))),
'Inputs x and y must be 1D or 2D, not 3D'),
((np.empty((3, 3, 3)), np.empty((3, 3, 3)), np.empty((3, 3, 3))),
'Input z must be 2D, not 3D'),
(([[0]],), # github issue 8197
'Input z must be at least a (2, 2) shaped array, but has shape (1, 1)'),
(([0], [0], [[0]]),
'Input z must be at least a (2, 2) shaped array, but has shape (1, 1)'),
])
def test_contour_shape_error(args, message):
fig, ax = plt.subplots()
with pytest.raises(TypeError, match=re.escape(message)):
ax.contour(*args)
def test_contour_no_valid_levels():
fig, ax = plt.subplots()
# no warning for empty levels.
ax.contour(np.random.rand(9, 9), levels=[])
# no warning if levels is given and is not within the range of z.
cs = ax.contour(np.arange(81).reshape((9, 9)), levels=[100])
# ... and if fmt is given.
ax.clabel(cs, fmt={100: '%1.2f'})
# no warning if z is uniform.
ax.contour(np.ones((9, 9)))
def test_contour_Nlevels():
# A scalar levels arg or kwarg should trigger auto level generation.
# https://github.com/matplotlib/matplotlib/issues/11913
z = np.arange(12).reshape((3, 4))
fig, ax = plt.subplots()
cs1 = ax.contour(z, 5)
assert len(cs1.levels) > 1
cs2 = ax.contour(z, levels=5)
assert (cs1.levels == cs2.levels).all()
@check_figures_equal(extensions=['png'])
def test_contour_set_paths(fig_test, fig_ref):
cs_test = fig_test.subplots().contour([[0, 1], [1, 2]])
cs_ref = fig_ref.subplots().contour([[1, 0], [2, 1]])
cs_test.set_paths(cs_ref.get_paths())
@image_comparison(['contour_manual_labels'], remove_text=True, style='mpl20', tol=0.26)
def test_contour_manual_labels():
x, y = np.meshgrid(np.arange(0, 10), np.arange(0, 10))
z = np.max(np.dstack([abs(x), abs(y)]), 2)
plt.figure(figsize=(6, 2), dpi=200)
cs = plt.contour(x, y, z)
pts = np.array([(1.0, 3.0), (1.0, 4.4), (1.0, 6.0)])
plt.clabel(cs, manual=pts)
pts = np.array([(2.0, 3.0), (2.0, 4.4), (2.0, 6.0)])
plt.clabel(cs, manual=pts, fontsize='small', colors=('r', 'g'))
def test_contour_manual_moveto():
x = np.linspace(-10, 10)
y = np.linspace(-10, 10)
X, Y = np.meshgrid(x, y)
Z = X**2 * 1 / Y**2 - 1
contours = plt.contour(X, Y, Z, levels=[0, 100])
# This point lies on the `MOVETO` line for the 100 contour
# but is actually closest to the 0 contour
point = (1.3, 1)
clabels = plt.clabel(contours, manual=[point])
# Ensure that the 0 contour was chosen, not the 100 contour
assert clabels[0].get_text() == "0"
@image_comparison(['contour_disconnected_segments'],
remove_text=True, style='mpl20', extensions=['png'])
def test_contour_label_with_disconnected_segments():
x, y = np.mgrid[-1:1:21j, -1:1:21j]
z = 1 / np.sqrt(0.01 + (x + 0.3) ** 2 + y ** 2)
z += 1 / np.sqrt(0.01 + (x - 0.3) ** 2 + y ** 2)
plt.figure()
cs = plt.contour(x, y, z, levels=[7])
cs.clabel(manual=[(0.2, 0.1)])
@image_comparison(['contour_manual_colors_and_levels.png'], remove_text=True,
tol=0 if platform.machine() == 'x86_64' else 0.018)
def test_given_colors_levels_and_extends():
# Remove this line when this test image is regenerated.
plt.rcParams['pcolormesh.snap'] = False
_, axs = plt.subplots(2, 4)
data = np.arange(12).reshape(3, 4)
colors = ['red', 'yellow', 'pink', 'blue', 'black']
levels = [2, 4, 8, 10]
for i, ax in enumerate(axs.flat):
filled = i % 2 == 0.
extend = ['neither', 'min', 'max', 'both'][i // 2]
if filled:
# If filled, we have 3 colors with no extension,
# 4 colors with one extension, and 5 colors with both extensions
first_color = 1 if extend in ['max', 'neither'] else None
last_color = -1 if extend in ['min', 'neither'] else None
c = ax.contourf(data, colors=colors[first_color:last_color],
levels=levels, extend=extend)
else:
# If not filled, we have 4 levels and 4 colors
c = ax.contour(data, colors=colors[:-1],
levels=levels, extend=extend)
plt.colorbar(c, ax=ax)
@image_comparison(['contourf_hatch_colors'],
remove_text=True, style='mpl20', extensions=['png'])
def test_hatch_colors():
fig, ax = plt.subplots()
cf = ax.contourf([[0, 1], [1, 2]], hatches=['-', '/', '\\', '//'], cmap='gray')
cf.set_edgecolors(["blue", "grey", "yellow", "red"])
@pytest.mark.parametrize('color, extend', [('darkred', 'neither'),
('darkred', 'both'),
(('r', 0.5), 'neither'),
((0.1, 0.2, 0.5, 0.3), 'neither')])
def test_single_color_and_extend(color, extend):
z = [[0, 1], [1, 2]]
_, ax = plt.subplots()
levels = [0.5, 0.75, 1, 1.25, 1.5]
cs = ax.contour(z, levels=levels, colors=color, extend=extend)
for c in cs.get_edgecolors():
assert same_color(c, color)
@image_comparison(['contour_log_locator.svg'], style='mpl20', remove_text=False)
def test_log_locator_levels():
fig, ax = plt.subplots()
N = 100
x = np.linspace(-3.0, 3.0, N)
y = np.linspace(-2.0, 2.0, N)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X * 10)**2 - (Y * 10)**2)
data = Z1 + 50 * Z2
c = ax.contourf(data, locator=ticker.LogLocator())
assert_array_almost_equal(c.levels, np.power(10.0, np.arange(-6, 3)))
cb = fig.colorbar(c, ax=ax)
assert_array_almost_equal(cb.ax.get_yticks(), c.levels)
@image_comparison(['contour_datetime_axis.png'], style='mpl20')
def test_contour_datetime_axis():
fig = plt.figure()
fig.subplots_adjust(hspace=0.4, top=0.98, bottom=.15)
base = datetime.datetime(2013, 1, 1)
x = np.array([base + datetime.timedelta(days=d) for d in range(20)])
y = np.arange(20)
z1, z2 = np.meshgrid(np.arange(20), np.arange(20))
z = z1 * z2
plt.subplot(221)
plt.contour(x, y, z)
plt.subplot(222)
plt.contourf(x, y, z)
x = np.repeat(x[np.newaxis], 20, axis=0)
y = np.repeat(y[:, np.newaxis], 20, axis=1)
plt.subplot(223)
plt.contour(x, y, z)
plt.subplot(224)
plt.contourf(x, y, z)
for ax in fig.get_axes():
for label in ax.get_xticklabels():
label.set_ha('right')
label.set_rotation(30)
@image_comparison(['contour_test_label_transforms.png'],
remove_text=True, style='mpl20', tol=1.1)
def test_labels():
# Adapted from pylab_examples example code: contour_demo.py
# see issues #2475, #2843, and #2818 for explanation
delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-2.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-(X**2 + Y**2) / 2) / (2 * np.pi)
Z2 = (np.exp(-(((X - 1) / 1.5)**2 + ((Y - 1) / 0.5)**2) / 2) /
(2 * np.pi * 0.5 * 1.5))
# difference of Gaussians
Z = 10.0 * (Z2 - Z1)
fig, ax = plt.subplots(1, 1)
CS = ax.contour(X, Y, Z)
disp_units = [(216, 177), (359, 290), (521, 406)]
data_units = [(-2, .5), (0, -1.5), (2.8, 1)]
CS.clabel()
for x, y in data_units:
CS.add_label_near(x, y, inline=True, transform=None)
for x, y in disp_units:
CS.add_label_near(x, y, inline=True, transform=False)
def test_label_contour_start():
# Set up data and figure/axes that result in automatic labelling adding the
# label to the start of a contour
_, ax = plt.subplots(dpi=100)
lats = lons = np.linspace(-np.pi / 2, np.pi / 2, 50)
lons, lats = np.meshgrid(lons, lats)
wave = 0.75 * (np.sin(2 * lats) ** 8) * np.cos(4 * lons)
mean = 0.5 * np.cos(2 * lats) * ((np.sin(2 * lats)) ** 2 + 2)
data = wave + mean
cs = ax.contour(lons, lats, data)
with mock.patch.object(
cs, '_split_path_and_get_label_rotation',
wraps=cs._split_path_and_get_label_rotation) as mocked_splitter:
# Smoke test that we can add the labels
cs.clabel(fontsize=9)
# Verify at least one label was added to the start of a contour. I.e. the
# splitting method was called with idx=0 at least once.
idxs = [cargs[0][1] for cargs in mocked_splitter.call_args_list]
assert 0 in idxs
@image_comparison(['contour_corner_mask_False.png', 'contour_corner_mask_True.png'],
remove_text=True, tol=1.88)
def test_corner_mask():
n = 60
mask_level = 0.95
noise_amp = 1.0
np.random.seed([1])
x, y = np.meshgrid(np.linspace(0, 2.0, n), np.linspace(0, 2.0, n))
z = np.cos(7*x)*np.sin(8*y) + noise_amp*np.random.rand(n, n)
mask = np.random.rand(n, n) >= mask_level
z = np.ma.array(z, mask=mask)
for corner_mask in [False, True]:
plt.figure()
plt.contourf(z, corner_mask=corner_mask)
def test_contourf_decreasing_levels():
# github issue 5477.
z = [[0.1, 0.3], [0.5, 0.7]]
plt.figure()
with pytest.raises(ValueError):
plt.contourf(z, [1.0, 0.0])
def test_contourf_symmetric_locator():
# github issue 7271
z = np.arange(12).reshape((3, 4))
locator = plt.MaxNLocator(nbins=4, symmetric=True)
cs = plt.contourf(z, locator=locator)
assert_array_almost_equal(cs.levels, np.linspace(-12, 12, 5))
def test_circular_contour_warning():
# Check that almost circular contours don't throw a warning
x, y = np.meshgrid(np.linspace(-2, 2, 4), np.linspace(-2, 2, 4))
r = np.hypot(x, y)
plt.figure()
cs = plt.contour(x, y, r)
plt.clabel(cs)
@pytest.mark.parametrize("use_clabeltext, contour_zorder, clabel_zorder",
[(True, 123, 1234), (False, 123, 1234),
(True, 123, None), (False, 123, None)])
def test_clabel_zorder(use_clabeltext, contour_zorder, clabel_zorder):
x, y = np.meshgrid(np.arange(0, 10), np.arange(0, 10))
z = np.max(np.dstack([abs(x), abs(y)]), 2)
fig, (ax1, ax2) = plt.subplots(ncols=2)
cs = ax1.contour(x, y, z, zorder=contour_zorder)
cs_filled = ax2.contourf(x, y, z, zorder=contour_zorder)
clabels1 = cs.clabel(zorder=clabel_zorder, use_clabeltext=use_clabeltext)
clabels2 = cs_filled.clabel(zorder=clabel_zorder,
use_clabeltext=use_clabeltext)
if clabel_zorder is None:
expected_clabel_zorder = 2+contour_zorder
else:
expected_clabel_zorder = clabel_zorder
for clabel in clabels1:
assert clabel.get_zorder() == expected_clabel_zorder
for clabel in clabels2:
assert clabel.get_zorder() == expected_clabel_zorder
def test_clabel_with_large_spacing():
# When the inline spacing is large relative to the contour, it may cause the
# entire contour to be removed. In current implementation, one line segment is
# retained between the identified points.
# This behavior may be worth reconsidering, but check to be sure we do not produce
# an invalid path, which results in an error at clabel call time.
# see gh-27045 for more information
x = y = np.arange(-3.0, 3.01, 0.05)
X, Y = np.meshgrid(x, y)
Z = np.exp(-X**2 - Y**2)
fig, ax = plt.subplots()
contourset = ax.contour(X, Y, Z, levels=[0.01, 0.2, .5, .8])
ax.clabel(contourset, inline_spacing=100)
# tol because ticks happen to fall on pixel boundaries so small
# floating point changes in tick location flip which pixel gets
# the tick.
@image_comparison(['contour_log_extension.png'],
remove_text=True, style='mpl20',
tol=1.444)
def test_contourf_log_extension():
# Remove this line when this test image is regenerated.
plt.rcParams['pcolormesh.snap'] = False
# Test that contourf with lognorm is extended correctly
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(10, 5))
fig.subplots_adjust(left=0.05, right=0.95)
# make data set with large range e.g. between 1e-8 and 1e10
data_exp = np.linspace(-7.5, 9.5, 1200)
data = np.power(10, data_exp).reshape(30, 40)
# make manual levels e.g. between 1e-4 and 1e-6
levels_exp = np.arange(-4., 7.)
levels = np.power(10., levels_exp)
# original data
c1 = ax1.contourf(data,
norm=LogNorm(vmin=data.min(), vmax=data.max()))
# just show data in levels
c2 = ax2.contourf(data, levels=levels,
norm=LogNorm(vmin=levels.min(), vmax=levels.max()),
extend='neither')
# extend data from levels
c3 = ax3.contourf(data, levels=levels,
norm=LogNorm(vmin=levels.min(), vmax=levels.max()),
extend='both')
cb = plt.colorbar(c1, ax=ax1)
assert cb.ax.get_ylim() == (1e-8, 1e10)
cb = plt.colorbar(c2, ax=ax2)
assert_array_almost_equal_nulp(cb.ax.get_ylim(), np.array((1e-4, 1e6)))
cb = plt.colorbar(c3, ax=ax3)
@image_comparison(['contour_addlines.png'], remove_text=True, style='mpl20',
tol=0.03 if platform.machine() == 'x86_64' else 0.15)
# tolerance is because image changed minutely when tick finding on
# colorbars was cleaned up...
def test_contour_addlines():
# Remove this line when this test image is regenerated.
plt.rcParams['pcolormesh.snap'] = False
fig, ax = plt.subplots()
np.random.seed(19680812)
X = np.random.rand(10, 10)*10000
pcm = ax.pcolormesh(X)
# add 1000 to make colors visible...
cont = ax.contour(X+1000)
cb = fig.colorbar(pcm)
cb.add_lines(cont)
assert_array_almost_equal(cb.ax.get_ylim(), [114.3091, 9972.30735], 3)
@image_comparison(baseline_images=['contour_uneven'],
extensions=['png'], remove_text=True, style='mpl20')
def test_contour_uneven():
# Remove this line when this test image is regenerated.
plt.rcParams['pcolormesh.snap'] = False
z = np.arange(24).reshape(4, 6)
fig, axs = plt.subplots(1, 2)
ax = axs[0]
cs = ax.contourf(z, levels=[2, 4, 6, 10, 20])
fig.colorbar(cs, ax=ax, spacing='proportional')
ax = axs[1]
cs = ax.contourf(z, levels=[2, 4, 6, 10, 20])
fig.colorbar(cs, ax=ax, spacing='uniform')
@pytest.mark.parametrize(
"rc_lines_linewidth, rc_contour_linewidth, call_linewidths, expected", [
(1.23, None, None, 1.23),
(1.23, 4.24, None, 4.24),
(1.23, 4.24, 5.02, 5.02)
])
def test_contour_linewidth(
rc_lines_linewidth, rc_contour_linewidth, call_linewidths, expected):
with rc_context(rc={"lines.linewidth": rc_lines_linewidth,
"contour.linewidth": rc_contour_linewidth}):
fig, ax = plt.subplots()
X = np.arange(4*3).reshape(4, 3)
cs = ax.contour(X, linewidths=call_linewidths)
assert cs.get_linewidths()[0] == expected
@pytest.mark.backend("pdf")
def test_label_nonagg():
# This should not crash even if the canvas doesn't have a get_renderer().
plt.clabel(plt.contour([[1, 2], [3, 4]]))
@image_comparison(baseline_images=['contour_closed_line_loop'],
extensions=['png'], remove_text=True)
def test_contour_closed_line_loop():
# github issue 19568.
z = [[0, 0, 0], [0, 2, 0], [0, 0, 0], [2, 1, 2]]
fig, ax = plt.subplots(figsize=(2, 2))
ax.contour(z, [0.5], linewidths=[20], alpha=0.7)
ax.set_xlim(-0.1, 2.1)
ax.set_ylim(-0.1, 3.1)
def test_quadcontourset_reuse():
# If QuadContourSet returned from one contour(f) call is passed as first
# argument to another the underlying C++ contour generator will be reused.
x, y = np.meshgrid([0.0, 1.0], [0.0, 1.0])
z = x + y
fig, ax = plt.subplots()
qcs1 = ax.contourf(x, y, z)
qcs2 = ax.contour(x, y, z)
assert qcs2._contour_generator != qcs1._contour_generator
qcs3 = ax.contour(qcs1, z)
assert qcs3._contour_generator == qcs1._contour_generator
@image_comparison(baseline_images=['contour_manual'],
extensions=['png'], remove_text=True, tol=0.89)
def test_contour_manual():
# Manually specifying contour lines/polygons to plot.
from matplotlib.contour import ContourSet
fig, ax = plt.subplots(figsize=(4, 4))
cmap = 'viridis'
# Segments only (no 'kind' codes).
lines0 = [[[2, 0], [1, 2], [1, 3]]] # Single line.
lines1 = [[[3, 0], [3, 2]], [[3, 3], [3, 4]]] # Two lines.
filled01 = [[[0, 0], [0, 4], [1, 3], [1, 2], [2, 0]]]
filled12 = [[[2, 0], [3, 0], [3, 2], [1, 3], [1, 2]], # Two polygons.
[[1, 4], [3, 4], [3, 3]]]
ContourSet(ax, [0, 1, 2], [filled01, filled12], filled=True, cmap=cmap)
ContourSet(ax, [1, 2], [lines0, lines1], linewidths=3, colors=['r', 'k'])
# Segments and kind codes (1 = MOVETO, 2 = LINETO, 79 = CLOSEPOLY).
segs = [[[4, 0], [7, 0], [7, 3], [4, 3], [4, 0],
[5, 1], [5, 2], [6, 2], [6, 1], [5, 1]]]
kinds = [[1, 2, 2, 2, 79, 1, 2, 2, 2, 79]] # Polygon containing hole.
ContourSet(ax, [2, 3], [segs], [kinds], filled=True, cmap=cmap)
ContourSet(ax, [2], [segs], [kinds], colors='k', linewidths=3)
@image_comparison(baseline_images=['contour_line_start_on_corner_edge'],
extensions=['png'], remove_text=True)
def test_contour_line_start_on_corner_edge():
fig, ax = plt.subplots(figsize=(6, 5))
x, y = np.meshgrid([0, 1, 2, 3, 4], [0, 1, 2])
z = 1.2 - (x - 2)**2 + (y - 1)**2
mask = np.zeros_like(z, dtype=bool)
mask[1, 1] = mask[1, 3] = True
z = np.ma.array(z, mask=mask)
filled = ax.contourf(x, y, z, corner_mask=True)
cbar = fig.colorbar(filled)
lines = ax.contour(x, y, z, corner_mask=True, colors='k')
cbar.add_lines(lines)
def test_find_nearest_contour():
xy = np.indices((15, 15))
img = np.exp(-np.pi * (np.sum((xy - 5)**2, 0)/5.**2))
cs = plt.contour(img, 10)
nearest_contour = cs.find_nearest_contour(1, 1, pixel=False)
expected_nearest = (1, 0, 33, 1.965966, 1.965966, 1.866183)
assert_array_almost_equal(nearest_contour, expected_nearest)
nearest_contour = cs.find_nearest_contour(8, 1, pixel=False)
expected_nearest = (1, 0, 5, 7.550173, 1.587542, 0.547550)
assert_array_almost_equal(nearest_contour, expected_nearest)
nearest_contour = cs.find_nearest_contour(2, 5, pixel=False)
expected_nearest = (3, 0, 21, 1.884384, 5.023335, 0.013911)
assert_array_almost_equal(nearest_contour, expected_nearest)
nearest_contour = cs.find_nearest_contour(2, 5, indices=(5, 7), pixel=False)
expected_nearest = (5, 0, 16, 2.628202, 5.0, 0.394638)
assert_array_almost_equal(nearest_contour, expected_nearest)
def test_find_nearest_contour_no_filled():
xy = np.indices((15, 15))
img = np.exp(-np.pi * (np.sum((xy - 5)**2, 0)/5.**2))
cs = plt.contourf(img, 10)
with pytest.raises(ValueError, match="Method does not support filled contours"):
cs.find_nearest_contour(1, 1, pixel=False)
with pytest.raises(ValueError, match="Method does not support filled contours"):
cs.find_nearest_contour(1, 10, indices=(5, 7), pixel=False)
with pytest.raises(ValueError, match="Method does not support filled contours"):
cs.find_nearest_contour(2, 5, indices=(2, 7), pixel=True)
@mpl.style.context("default")
def test_contour_autolabel_beyond_powerlimits():
ax = plt.figure().add_subplot()
cs = plt.contour(np.geomspace(1e-6, 1e-4, 100).reshape(10, 10),
levels=[.25e-5, 1e-5, 4e-5])
ax.clabel(cs)
# Currently, the exponent is missing, but that may be fixed in the future.
assert {text.get_text() for text in ax.texts} == {"0.25", "1.00", "4.00"}
def test_contourf_legend_elements():
from matplotlib.patches import Rectangle
x = np.arange(1, 10)
y = x.reshape(-1, 1)
h = x * y
cs = plt.contourf(h, levels=[10, 30, 50],
colors=['#FFFF00', '#FF00FF', '#00FFFF'],
extend='both')
cs.cmap.set_over('red')
cs.cmap.set_under('blue')
cs.changed()
artists, labels = cs.legend_elements()
assert labels == ['$x \\leq -1e+250s$',
'$10.0 < x \\leq 30.0$',
'$30.0 < x \\leq 50.0$',
'$x > 1e+250s$']
expected_colors = ('blue', '#FFFF00', '#FF00FF', 'red')
assert all(isinstance(a, Rectangle) for a in artists)
assert all(same_color(a.get_facecolor(), c)
for a, c in zip(artists, expected_colors))
def test_contour_legend_elements():
x = np.arange(1, 10)
y = x.reshape(-1, 1)
h = x * y
colors = ['blue', '#00FF00', 'red']
cs = plt.contour(h, levels=[10, 30, 50],
colors=colors,
extend='both')
artists, labels = cs.legend_elements()
assert labels == ['$x = 10.0$', '$x = 30.0$', '$x = 50.0$']
assert all(isinstance(a, mpl.lines.Line2D) for a in artists)
assert all(same_color(a.get_color(), c)
for a, c in zip(artists, colors))
@pytest.mark.parametrize(
"algorithm, klass",
[('mpl2005', contourpy.Mpl2005ContourGenerator),
('mpl2014', contourpy.Mpl2014ContourGenerator),
('serial', contourpy.SerialContourGenerator),
('threaded', contourpy.ThreadedContourGenerator),
('invalid', None)])
def test_algorithm_name(algorithm, klass):
z = np.array([[1.0, 2.0], [3.0, 4.0]])
if klass is not None:
cs = plt.contourf(z, algorithm=algorithm)
assert isinstance(cs._contour_generator, klass)
else:
with pytest.raises(ValueError):
plt.contourf(z, algorithm=algorithm)
@pytest.mark.parametrize(
"algorithm", ['mpl2005', 'mpl2014', 'serial', 'threaded'])
def test_algorithm_supports_corner_mask(algorithm):
z = np.array([[1.0, 2.0], [3.0, 4.0]])
# All algorithms support corner_mask=False
plt.contourf(z, algorithm=algorithm, corner_mask=False)
# Only some algorithms support corner_mask=True
if algorithm != 'mpl2005':
plt.contourf(z, algorithm=algorithm, corner_mask=True)
else:
with pytest.raises(ValueError):
plt.contourf(z, algorithm=algorithm, corner_mask=True)
@image_comparison(baseline_images=['contour_all_algorithms'],
extensions=['png'], remove_text=True, tol=0.06)
def test_all_algorithms():
algorithms = ['mpl2005', 'mpl2014', 'serial', 'threaded']
rng = np.random.default_rng(2981)
x, y = np.meshgrid(np.linspace(0.0, 1.0, 10), np.linspace(0.0, 1.0, 6))
z = np.sin(15*x)*np.cos(10*y) + rng.normal(scale=0.5, size=(6, 10))
mask = np.zeros_like(z, dtype=bool)
mask[3, 7] = True
z = np.ma.array(z, mask=mask)
_, axs = plt.subplots(2, 2)
for ax, algorithm in zip(axs.ravel(), algorithms):
ax.contourf(x, y, z, algorithm=algorithm)
ax.contour(x, y, z, algorithm=algorithm, colors='k')
ax.set_title(algorithm)
def test_subfigure_clabel():
# Smoke test for gh#23173
delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-2.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-(X**2) - Y**2)
Z2 = np.exp(-((X - 1) ** 2) - (Y - 1) ** 2)
Z = (Z1 - Z2) * 2
fig = plt.figure()
figs = fig.subfigures(nrows=1, ncols=2)
for f in figs:
ax = f.subplots()
CS = ax.contour(X, Y, Z)
ax.clabel(CS, inline=True, fontsize=10)
ax.set_title("Simplest default with labels")
@pytest.mark.parametrize(
"style", ['solid', 'dashed', 'dashdot', 'dotted'])
def test_linestyles(style):
delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-2.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2
# Positive contour defaults to solid
fig1, ax1 = plt.subplots()
CS1 = ax1.contour(X, Y, Z, 6, colors='k')
ax1.clabel(CS1, fontsize=9, inline=True)
ax1.set_title('Single color - positive contours solid (default)')
assert CS1.linestyles is None # default
# Change linestyles using linestyles kwarg
fig2, ax2 = plt.subplots()
CS2 = ax2.contour(X, Y, Z, 6, colors='k', linestyles=style)
ax2.clabel(CS2, fontsize=9, inline=True)
ax2.set_title(f'Single color - positive contours {style}')
assert CS2.linestyles == style
# Ensure linestyles do not change when negative_linestyles is defined
fig3, ax3 = plt.subplots()
CS3 = ax3.contour(X, Y, Z, 6, colors='k', linestyles=style,
negative_linestyles='dashdot')
ax3.clabel(CS3, fontsize=9, inline=True)
ax3.set_title(f'Single color - positive contours {style}')
assert CS3.linestyles == style
@pytest.mark.parametrize(
"style", ['solid', 'dashed', 'dashdot', 'dotted'])
def test_negative_linestyles(style):
delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-2.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2
# Negative contour defaults to dashed
fig1, ax1 = plt.subplots()
CS1 = ax1.contour(X, Y, Z, 6, colors='k')
ax1.clabel(CS1, fontsize=9, inline=True)
ax1.set_title('Single color - negative contours dashed (default)')
assert CS1.negative_linestyles == 'dashed' # default
# Change negative_linestyles using rcParams
plt.rcParams['contour.negative_linestyle'] = style
fig2, ax2 = plt.subplots()
CS2 = ax2.contour(X, Y, Z, 6, colors='k')
ax2.clabel(CS2, fontsize=9, inline=True)
ax2.set_title(f'Single color - negative contours {style}'
'(using rcParams)')
assert CS2.negative_linestyles == style
# Change negative_linestyles using negative_linestyles kwarg
fig3, ax3 = plt.subplots()
CS3 = ax3.contour(X, Y, Z, 6, colors='k', negative_linestyles=style)
ax3.clabel(CS3, fontsize=9, inline=True)
ax3.set_title(f'Single color - negative contours {style}')
assert CS3.negative_linestyles == style
# Ensure negative_linestyles do not change when linestyles is defined
fig4, ax4 = plt.subplots()
CS4 = ax4.contour(X, Y, Z, 6, colors='k', linestyles='dashdot',
negative_linestyles=style)
ax4.clabel(CS4, fontsize=9, inline=True)
ax4.set_title(f'Single color - negative contours {style}')
assert CS4.negative_linestyles == style
def test_contour_remove():
ax = plt.figure().add_subplot()
orig_children = ax.get_children()
cs = ax.contour(np.arange(16).reshape((4, 4)))
cs.clabel()
assert ax.get_children() != orig_children
cs.remove()
assert ax.get_children() == orig_children
def test_contour_no_args():
fig, ax = plt.subplots()
data = [[0, 1], [1, 0]]
with pytest.raises(TypeError, match=r"contour\(\) takes from 1 to 4"):
ax.contour(Z=data)
def test_contour_clip_path():
fig, ax = plt.subplots()
data = [[0, 1], [1, 0]]
circle = mpatches.Circle([0.5, 0.5], 0.5, transform=ax.transAxes)
cs = ax.contour(data, clip_path=circle)
assert cs.get_clip_path() is not None
def test_bool_autolevel():
x, y = np.random.rand(2, 9)
z = (np.arange(9) % 2).reshape((3, 3)).astype(bool)
m = [[False, False, False], [False, True, False], [False, False, False]]
assert plt.contour(z.tolist()).levels.tolist() == [.5]
assert plt.contour(z).levels.tolist() == [.5]
assert plt.contour(np.ma.array(z, mask=m)).levels.tolist() == [.5]
assert plt.contourf(z.tolist()).levels.tolist() == [0, .5, 1]
assert plt.contourf(z).levels.tolist() == [0, .5, 1]
assert plt.contourf(np.ma.array(z, mask=m)).levels.tolist() == [0, .5, 1]
z = z.ravel()
assert plt.tricontour(x, y, z.tolist()).levels.tolist() == [.5]
assert plt.tricontour(x, y, z).levels.tolist() == [.5]
assert plt.tricontourf(x, y, z.tolist()).levels.tolist() == [0, .5, 1]
assert plt.tricontourf(x, y, z).levels.tolist() == [0, .5, 1]
def test_all_nan():
x = np.array([[np.nan, np.nan], [np.nan, np.nan]])
assert_array_almost_equal(plt.contour(x).levels,
[-1e-13, -7.5e-14, -5e-14, -2.4e-14, 0.0,
2.4e-14, 5e-14, 7.5e-14, 1e-13])
def test_allsegs_allkinds():
x, y = np.meshgrid(np.arange(0, 10, 2), np.arange(0, 10, 2))
z = np.sin(x) * np.cos(y)
cs = plt.contour(x, y, z, levels=[0, 0.5])
# Expect two levels, the first with 5 segments and the second with 4.
for result in [cs.allsegs, cs.allkinds]:
assert len(result) == 2
assert len(result[0]) == 5
assert len(result[1]) == 4