You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			220 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			220 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
"""
 | 
						|
Various transforms used for by the 3D code
 | 
						|
"""
 | 
						|
 | 
						|
import numpy as np
 | 
						|
 | 
						|
from matplotlib import _api
 | 
						|
 | 
						|
 | 
						|
def world_transformation(xmin, xmax,
 | 
						|
                         ymin, ymax,
 | 
						|
                         zmin, zmax, pb_aspect=None):
 | 
						|
    """
 | 
						|
    Produce a matrix that scales homogeneous coords in the specified ranges
 | 
						|
    to [0, 1], or [0, pb_aspect[i]] if the plotbox aspect ratio is specified.
 | 
						|
    """
 | 
						|
    dx = xmax - xmin
 | 
						|
    dy = ymax - ymin
 | 
						|
    dz = zmax - zmin
 | 
						|
    if pb_aspect is not None:
 | 
						|
        ax, ay, az = pb_aspect
 | 
						|
        dx /= ax
 | 
						|
        dy /= ay
 | 
						|
        dz /= az
 | 
						|
 | 
						|
    return np.array([[1/dx,    0,    0, -xmin/dx],
 | 
						|
                     [   0, 1/dy,    0, -ymin/dy],
 | 
						|
                     [   0,    0, 1/dz, -zmin/dz],
 | 
						|
                     [   0,    0,    0,        1]])
 | 
						|
 | 
						|
 | 
						|
def _rotation_about_vector(v, angle):
 | 
						|
    """
 | 
						|
    Produce a rotation matrix for an angle in radians about a vector.
 | 
						|
    """
 | 
						|
    vx, vy, vz = v / np.linalg.norm(v)
 | 
						|
    s = np.sin(angle)
 | 
						|
    c = np.cos(angle)
 | 
						|
    t = 2*np.sin(angle/2)**2  # more numerically stable than t = 1-c
 | 
						|
 | 
						|
    R = np.array([
 | 
						|
        [t*vx*vx + c,    t*vx*vy - vz*s, t*vx*vz + vy*s],
 | 
						|
        [t*vy*vx + vz*s, t*vy*vy + c,    t*vy*vz - vx*s],
 | 
						|
        [t*vz*vx - vy*s, t*vz*vy + vx*s, t*vz*vz + c]])
 | 
						|
 | 
						|
    return R
 | 
						|
 | 
						|
 | 
						|
def _view_axes(E, R, V, roll):
 | 
						|
    """
 | 
						|
    Get the unit viewing axes in data coordinates.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    E : 3-element numpy array
 | 
						|
        The coordinates of the eye/camera.
 | 
						|
    R : 3-element numpy array
 | 
						|
        The coordinates of the center of the view box.
 | 
						|
    V : 3-element numpy array
 | 
						|
        Unit vector in the direction of the vertical axis.
 | 
						|
    roll : float
 | 
						|
        The roll angle in radians.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    u : 3-element numpy array
 | 
						|
        Unit vector pointing towards the right of the screen.
 | 
						|
    v : 3-element numpy array
 | 
						|
        Unit vector pointing towards the top of the screen.
 | 
						|
    w : 3-element numpy array
 | 
						|
        Unit vector pointing out of the screen.
 | 
						|
    """
 | 
						|
    w = (E - R)
 | 
						|
    w = w/np.linalg.norm(w)
 | 
						|
    u = np.cross(V, w)
 | 
						|
    u = u/np.linalg.norm(u)
 | 
						|
    v = np.cross(w, u)  # Will be a unit vector
 | 
						|
 | 
						|
    # Save some computation for the default roll=0
 | 
						|
    if roll != 0:
 | 
						|
        # A positive rotation of the camera is a negative rotation of the world
 | 
						|
        Rroll = _rotation_about_vector(w, -roll)
 | 
						|
        u = np.dot(Rroll, u)
 | 
						|
        v = np.dot(Rroll, v)
 | 
						|
    return u, v, w
 | 
						|
 | 
						|
 | 
						|
def _view_transformation_uvw(u, v, w, E):
 | 
						|
    """
 | 
						|
    Return the view transformation matrix.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    u : 3-element numpy array
 | 
						|
        Unit vector pointing towards the right of the screen.
 | 
						|
    v : 3-element numpy array
 | 
						|
        Unit vector pointing towards the top of the screen.
 | 
						|
    w : 3-element numpy array
 | 
						|
        Unit vector pointing out of the screen.
 | 
						|
    E : 3-element numpy array
 | 
						|
        The coordinates of the eye/camera.
 | 
						|
    """
 | 
						|
    Mr = np.eye(4)
 | 
						|
    Mt = np.eye(4)
 | 
						|
    Mr[:3, :3] = [u, v, w]
 | 
						|
    Mt[:3, -1] = -E
 | 
						|
    M = np.dot(Mr, Mt)
 | 
						|
    return M
 | 
						|
 | 
						|
 | 
						|
def _persp_transformation(zfront, zback, focal_length):
 | 
						|
    e = focal_length
 | 
						|
    a = 1  # aspect ratio
 | 
						|
    b = (zfront+zback)/(zfront-zback)
 | 
						|
    c = -2*(zfront*zback)/(zfront-zback)
 | 
						|
    proj_matrix = np.array([[e,   0,  0, 0],
 | 
						|
                            [0, e/a,  0, 0],
 | 
						|
                            [0,   0,  b, c],
 | 
						|
                            [0,   0, -1, 0]])
 | 
						|
    return proj_matrix
 | 
						|
 | 
						|
 | 
						|
def _ortho_transformation(zfront, zback):
 | 
						|
    # note: w component in the resulting vector will be (zback-zfront), not 1
 | 
						|
    a = -(zfront + zback)
 | 
						|
    b = -(zfront - zback)
 | 
						|
    proj_matrix = np.array([[2, 0,  0, 0],
 | 
						|
                            [0, 2,  0, 0],
 | 
						|
                            [0, 0, -2, 0],
 | 
						|
                            [0, 0,  a, b]])
 | 
						|
    return proj_matrix
 | 
						|
 | 
						|
 | 
						|
def _proj_transform_vec(vec, M):
 | 
						|
    vecw = np.dot(M, vec.data)
 | 
						|
    w = vecw[3]
 | 
						|
    txs, tys, tzs = vecw[0]/w, vecw[1]/w, vecw[2]/w
 | 
						|
    if np.ma.isMA(vec[0]):  # we check each to protect for scalars
 | 
						|
        txs = np.ma.array(txs, mask=vec[0].mask)
 | 
						|
    if np.ma.isMA(vec[1]):
 | 
						|
        tys = np.ma.array(tys, mask=vec[1].mask)
 | 
						|
    if np.ma.isMA(vec[2]):
 | 
						|
        tzs = np.ma.array(tzs, mask=vec[2].mask)
 | 
						|
    return txs, tys, tzs
 | 
						|
 | 
						|
 | 
						|
def _proj_transform_vec_clip(vec, M, focal_length):
 | 
						|
    vecw = np.dot(M, vec.data)
 | 
						|
    w = vecw[3]
 | 
						|
    txs, tys, tzs = vecw[0] / w, vecw[1] / w, vecw[2] / w
 | 
						|
    if np.isinf(focal_length):  # don't clip orthographic projection
 | 
						|
        tis = np.ones(txs.shape, dtype=bool)
 | 
						|
    else:
 | 
						|
        tis = (-1 <= txs) & (txs <= 1) & (-1 <= tys) & (tys <= 1) & (tzs <= 0)
 | 
						|
    if np.ma.isMA(vec[0]):
 | 
						|
        tis = tis & ~vec[0].mask
 | 
						|
    if np.ma.isMA(vec[1]):
 | 
						|
        tis = tis & ~vec[1].mask
 | 
						|
    if np.ma.isMA(vec[2]):
 | 
						|
        tis = tis & ~vec[2].mask
 | 
						|
 | 
						|
    txs = np.ma.masked_array(txs, ~tis)
 | 
						|
    tys = np.ma.masked_array(tys, ~tis)
 | 
						|
    tzs = np.ma.masked_array(tzs, ~tis)
 | 
						|
    return txs, tys, tzs, tis
 | 
						|
 | 
						|
 | 
						|
def inv_transform(xs, ys, zs, invM):
 | 
						|
    """
 | 
						|
    Transform the points by the inverse of the projection matrix, *invM*.
 | 
						|
    """
 | 
						|
    vec = _vec_pad_ones(xs, ys, zs)
 | 
						|
    vecr = np.dot(invM, vec)
 | 
						|
    if vecr.shape == (4,):
 | 
						|
        vecr = vecr.reshape((4, 1))
 | 
						|
    for i in range(vecr.shape[1]):
 | 
						|
        if vecr[3][i] != 0:
 | 
						|
            vecr[:, i] = vecr[:, i] / vecr[3][i]
 | 
						|
    return vecr[0], vecr[1], vecr[2]
 | 
						|
 | 
						|
 | 
						|
def _vec_pad_ones(xs, ys, zs):
 | 
						|
    if np.ma.isMA(xs) or np.ma.isMA(ys) or np.ma.isMA(zs):
 | 
						|
        return np.ma.array([xs, ys, zs, np.ones_like(xs)])
 | 
						|
    else:
 | 
						|
        return np.array([xs, ys, zs, np.ones_like(xs)])
 | 
						|
 | 
						|
 | 
						|
def proj_transform(xs, ys, zs, M):
 | 
						|
    """
 | 
						|
    Transform the points by the projection matrix *M*.
 | 
						|
    """
 | 
						|
    vec = _vec_pad_ones(xs, ys, zs)
 | 
						|
    return _proj_transform_vec(vec, M)
 | 
						|
 | 
						|
 | 
						|
@_api.deprecated("3.10")
 | 
						|
def proj_transform_clip(xs, ys, zs, M):
 | 
						|
    return _proj_transform_clip(xs, ys, zs, M, focal_length=np.inf)
 | 
						|
 | 
						|
 | 
						|
def _proj_transform_clip(xs, ys, zs, M, focal_length):
 | 
						|
    """
 | 
						|
    Transform the points by the projection matrix
 | 
						|
    and return the clipping result
 | 
						|
    returns txs, tys, tzs, tis
 | 
						|
    """
 | 
						|
    vec = _vec_pad_ones(xs, ys, zs)
 | 
						|
    return _proj_transform_vec_clip(vec, M, focal_length)
 | 
						|
 | 
						|
 | 
						|
def _proj_points(points, M):
 | 
						|
    return np.column_stack(_proj_trans_points(points, M))
 | 
						|
 | 
						|
 | 
						|
def _proj_trans_points(points, M):
 | 
						|
    points = np.asanyarray(points)
 | 
						|
    xs, ys, zs = points[:, 0], points[:, 1], points[:, 2]
 | 
						|
    return proj_transform(xs, ys, zs, M)
 |