You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			2191 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			JavaScript
		
	
			
		
		
	
	
			2191 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			JavaScript
		
	
"use strict";
 | 
						|
(self["webpackChunk_JUPYTERLAB_CORE_OUTPUT"] = self["webpackChunk_JUPYTERLAB_CORE_OUTPUT"] || []).push([[7997],{
 | 
						|
 | 
						|
/***/ 97997:
 | 
						|
/***/ ((__unused_webpack_module, __webpack_exports__, __webpack_require__) => {
 | 
						|
 | 
						|
__webpack_require__.r(__webpack_exports__);
 | 
						|
/* harmony export */ __webpack_require__.d(__webpack_exports__, {
 | 
						|
/* harmony export */   DefaultBufferLength: () => (/* binding */ DefaultBufferLength),
 | 
						|
/* harmony export */   IterMode: () => (/* binding */ IterMode),
 | 
						|
/* harmony export */   MountedTree: () => (/* binding */ MountedTree),
 | 
						|
/* harmony export */   NodeProp: () => (/* binding */ NodeProp),
 | 
						|
/* harmony export */   NodeSet: () => (/* binding */ NodeSet),
 | 
						|
/* harmony export */   NodeType: () => (/* binding */ NodeType),
 | 
						|
/* harmony export */   NodeWeakMap: () => (/* binding */ NodeWeakMap),
 | 
						|
/* harmony export */   Parser: () => (/* binding */ Parser),
 | 
						|
/* harmony export */   Tree: () => (/* binding */ Tree),
 | 
						|
/* harmony export */   TreeBuffer: () => (/* binding */ TreeBuffer),
 | 
						|
/* harmony export */   TreeCursor: () => (/* binding */ TreeCursor),
 | 
						|
/* harmony export */   TreeFragment: () => (/* binding */ TreeFragment),
 | 
						|
/* harmony export */   parseMixed: () => (/* binding */ parseMixed)
 | 
						|
/* harmony export */ });
 | 
						|
/**
 | 
						|
The default maximum length of a `TreeBuffer` node.
 | 
						|
*/
 | 
						|
const DefaultBufferLength = 1024;
 | 
						|
let nextPropID = 0;
 | 
						|
class Range {
 | 
						|
    constructor(from, to) {
 | 
						|
        this.from = from;
 | 
						|
        this.to = to;
 | 
						|
    }
 | 
						|
}
 | 
						|
/**
 | 
						|
Each [node type](#common.NodeType) or [individual tree](#common.Tree)
 | 
						|
can have metadata associated with it in props. Instances of this
 | 
						|
class represent prop names.
 | 
						|
*/
 | 
						|
class NodeProp {
 | 
						|
    /**
 | 
						|
    Create a new node prop type.
 | 
						|
    */
 | 
						|
    constructor(config = {}) {
 | 
						|
        this.id = nextPropID++;
 | 
						|
        this.perNode = !!config.perNode;
 | 
						|
        this.deserialize = config.deserialize || (() => {
 | 
						|
            throw new Error("This node type doesn't define a deserialize function");
 | 
						|
        });
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    This is meant to be used with
 | 
						|
    [`NodeSet.extend`](#common.NodeSet.extend) or
 | 
						|
    [`LRParser.configure`](#lr.ParserConfig.props) to compute
 | 
						|
    prop values for each node type in the set. Takes a [match
 | 
						|
    object](#common.NodeType^match) or function that returns undefined
 | 
						|
    if the node type doesn't get this prop, and the prop's value if
 | 
						|
    it does.
 | 
						|
    */
 | 
						|
    add(match) {
 | 
						|
        if (this.perNode)
 | 
						|
            throw new RangeError("Can't add per-node props to node types");
 | 
						|
        if (typeof match != "function")
 | 
						|
            match = NodeType.match(match);
 | 
						|
        return (type) => {
 | 
						|
            let result = match(type);
 | 
						|
            return result === undefined ? null : [this, result];
 | 
						|
        };
 | 
						|
    }
 | 
						|
}
 | 
						|
/**
 | 
						|
Prop that is used to describe matching delimiters. For opening
 | 
						|
delimiters, this holds an array of node names (written as a
 | 
						|
space-separated string when declaring this prop in a grammar)
 | 
						|
for the node types of closing delimiters that match it.
 | 
						|
*/
 | 
						|
NodeProp.closedBy = new NodeProp({ deserialize: str => str.split(" ") });
 | 
						|
/**
 | 
						|
The inverse of [`closedBy`](#common.NodeProp^closedBy). This is
 | 
						|
attached to closing delimiters, holding an array of node names
 | 
						|
of types of matching opening delimiters.
 | 
						|
*/
 | 
						|
NodeProp.openedBy = new NodeProp({ deserialize: str => str.split(" ") });
 | 
						|
/**
 | 
						|
Used to assign node types to groups (for example, all node
 | 
						|
types that represent an expression could be tagged with an
 | 
						|
`"Expression"` group).
 | 
						|
*/
 | 
						|
NodeProp.group = new NodeProp({ deserialize: str => str.split(" ") });
 | 
						|
/**
 | 
						|
Attached to nodes to indicate these should be
 | 
						|
[displayed](https://codemirror.net/docs/ref/#language.syntaxTree)
 | 
						|
in a bidirectional text isolate, so that direction-neutral
 | 
						|
characters on their sides don't incorrectly get associated with
 | 
						|
surrounding text. You'll generally want to set this for nodes
 | 
						|
that contain arbitrary text, like strings and comments, and for
 | 
						|
nodes that appear _inside_ arbitrary text, like HTML tags. When
 | 
						|
not given a value, in a grammar declaration, defaults to
 | 
						|
`"auto"`.
 | 
						|
*/
 | 
						|
NodeProp.isolate = new NodeProp({ deserialize: value => {
 | 
						|
        if (value && value != "rtl" && value != "ltr" && value != "auto")
 | 
						|
            throw new RangeError("Invalid value for isolate: " + value);
 | 
						|
        return value || "auto";
 | 
						|
    } });
 | 
						|
/**
 | 
						|
The hash of the [context](#lr.ContextTracker.constructor)
 | 
						|
that the node was parsed in, if any. Used to limit reuse of
 | 
						|
contextual nodes.
 | 
						|
*/
 | 
						|
NodeProp.contextHash = new NodeProp({ perNode: true });
 | 
						|
/**
 | 
						|
The distance beyond the end of the node that the tokenizer
 | 
						|
looked ahead for any of the tokens inside the node. (The LR
 | 
						|
parser only stores this when it is larger than 25, for
 | 
						|
efficiency reasons.)
 | 
						|
*/
 | 
						|
NodeProp.lookAhead = new NodeProp({ perNode: true });
 | 
						|
/**
 | 
						|
This per-node prop is used to replace a given node, or part of a
 | 
						|
node, with another tree. This is useful to include trees from
 | 
						|
different languages in mixed-language parsers.
 | 
						|
*/
 | 
						|
NodeProp.mounted = new NodeProp({ perNode: true });
 | 
						|
/**
 | 
						|
A mounted tree, which can be [stored](#common.NodeProp^mounted) on
 | 
						|
a tree node to indicate that parts of its content are
 | 
						|
represented by another tree.
 | 
						|
*/
 | 
						|
class MountedTree {
 | 
						|
    constructor(
 | 
						|
    /**
 | 
						|
    The inner tree.
 | 
						|
    */
 | 
						|
    tree, 
 | 
						|
    /**
 | 
						|
    If this is null, this tree replaces the entire node (it will
 | 
						|
    be included in the regular iteration instead of its host
 | 
						|
    node). If not, only the given ranges are considered to be
 | 
						|
    covered by this tree. This is used for trees that are mixed in
 | 
						|
    a way that isn't strictly hierarchical. Such mounted trees are
 | 
						|
    only entered by [`resolveInner`](#common.Tree.resolveInner)
 | 
						|
    and [`enter`](#common.SyntaxNode.enter).
 | 
						|
    */
 | 
						|
    overlay, 
 | 
						|
    /**
 | 
						|
    The parser used to create this subtree.
 | 
						|
    */
 | 
						|
    parser) {
 | 
						|
        this.tree = tree;
 | 
						|
        this.overlay = overlay;
 | 
						|
        this.parser = parser;
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    @internal
 | 
						|
    */
 | 
						|
    static get(tree) {
 | 
						|
        return tree && tree.props && tree.props[NodeProp.mounted.id];
 | 
						|
    }
 | 
						|
}
 | 
						|
const noProps = Object.create(null);
 | 
						|
/**
 | 
						|
Each node in a syntax tree has a node type associated with it.
 | 
						|
*/
 | 
						|
class NodeType {
 | 
						|
    /**
 | 
						|
    @internal
 | 
						|
    */
 | 
						|
    constructor(
 | 
						|
    /**
 | 
						|
    The name of the node type. Not necessarily unique, but if the
 | 
						|
    grammar was written properly, different node types with the
 | 
						|
    same name within a node set should play the same semantic
 | 
						|
    role.
 | 
						|
    */
 | 
						|
    name, 
 | 
						|
    /**
 | 
						|
    @internal
 | 
						|
    */
 | 
						|
    props, 
 | 
						|
    /**
 | 
						|
    The id of this node in its set. Corresponds to the term ids
 | 
						|
    used in the parser.
 | 
						|
    */
 | 
						|
    id, 
 | 
						|
    /**
 | 
						|
    @internal
 | 
						|
    */
 | 
						|
    flags = 0) {
 | 
						|
        this.name = name;
 | 
						|
        this.props = props;
 | 
						|
        this.id = id;
 | 
						|
        this.flags = flags;
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Define a node type.
 | 
						|
    */
 | 
						|
    static define(spec) {
 | 
						|
        let props = spec.props && spec.props.length ? Object.create(null) : noProps;
 | 
						|
        let flags = (spec.top ? 1 /* NodeFlag.Top */ : 0) | (spec.skipped ? 2 /* NodeFlag.Skipped */ : 0) |
 | 
						|
            (spec.error ? 4 /* NodeFlag.Error */ : 0) | (spec.name == null ? 8 /* NodeFlag.Anonymous */ : 0);
 | 
						|
        let type = new NodeType(spec.name || "", props, spec.id, flags);
 | 
						|
        if (spec.props)
 | 
						|
            for (let src of spec.props) {
 | 
						|
                if (!Array.isArray(src))
 | 
						|
                    src = src(type);
 | 
						|
                if (src) {
 | 
						|
                    if (src[0].perNode)
 | 
						|
                        throw new RangeError("Can't store a per-node prop on a node type");
 | 
						|
                    props[src[0].id] = src[1];
 | 
						|
                }
 | 
						|
            }
 | 
						|
        return type;
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Retrieves a node prop for this type. Will return `undefined` if
 | 
						|
    the prop isn't present on this node.
 | 
						|
    */
 | 
						|
    prop(prop) { return this.props[prop.id]; }
 | 
						|
    /**
 | 
						|
    True when this is the top node of a grammar.
 | 
						|
    */
 | 
						|
    get isTop() { return (this.flags & 1 /* NodeFlag.Top */) > 0; }
 | 
						|
    /**
 | 
						|
    True when this node is produced by a skip rule.
 | 
						|
    */
 | 
						|
    get isSkipped() { return (this.flags & 2 /* NodeFlag.Skipped */) > 0; }
 | 
						|
    /**
 | 
						|
    Indicates whether this is an error node.
 | 
						|
    */
 | 
						|
    get isError() { return (this.flags & 4 /* NodeFlag.Error */) > 0; }
 | 
						|
    /**
 | 
						|
    When true, this node type doesn't correspond to a user-declared
 | 
						|
    named node, for example because it is used to cache repetition.
 | 
						|
    */
 | 
						|
    get isAnonymous() { return (this.flags & 8 /* NodeFlag.Anonymous */) > 0; }
 | 
						|
    /**
 | 
						|
    Returns true when this node's name or one of its
 | 
						|
    [groups](#common.NodeProp^group) matches the given string.
 | 
						|
    */
 | 
						|
    is(name) {
 | 
						|
        if (typeof name == 'string') {
 | 
						|
            if (this.name == name)
 | 
						|
                return true;
 | 
						|
            let group = this.prop(NodeProp.group);
 | 
						|
            return group ? group.indexOf(name) > -1 : false;
 | 
						|
        }
 | 
						|
        return this.id == name;
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Create a function from node types to arbitrary values by
 | 
						|
    specifying an object whose property names are node or
 | 
						|
    [group](#common.NodeProp^group) names. Often useful with
 | 
						|
    [`NodeProp.add`](#common.NodeProp.add). You can put multiple
 | 
						|
    names, separated by spaces, in a single property name to map
 | 
						|
    multiple node names to a single value.
 | 
						|
    */
 | 
						|
    static match(map) {
 | 
						|
        let direct = Object.create(null);
 | 
						|
        for (let prop in map)
 | 
						|
            for (let name of prop.split(" "))
 | 
						|
                direct[name] = map[prop];
 | 
						|
        return (node) => {
 | 
						|
            for (let groups = node.prop(NodeProp.group), i = -1; i < (groups ? groups.length : 0); i++) {
 | 
						|
                let found = direct[i < 0 ? node.name : groups[i]];
 | 
						|
                if (found)
 | 
						|
                    return found;
 | 
						|
            }
 | 
						|
        };
 | 
						|
    }
 | 
						|
}
 | 
						|
/**
 | 
						|
An empty dummy node type to use when no actual type is available.
 | 
						|
*/
 | 
						|
NodeType.none = new NodeType("", Object.create(null), 0, 8 /* NodeFlag.Anonymous */);
 | 
						|
/**
 | 
						|
A node set holds a collection of node types. It is used to
 | 
						|
compactly represent trees by storing their type ids, rather than a
 | 
						|
full pointer to the type object, in a numeric array. Each parser
 | 
						|
[has](#lr.LRParser.nodeSet) a node set, and [tree
 | 
						|
buffers](#common.TreeBuffer) can only store collections of nodes
 | 
						|
from the same set. A set can have a maximum of 2**16 (65536) node
 | 
						|
types in it, so that the ids fit into 16-bit typed array slots.
 | 
						|
*/
 | 
						|
class NodeSet {
 | 
						|
    /**
 | 
						|
    Create a set with the given types. The `id` property of each
 | 
						|
    type should correspond to its position within the array.
 | 
						|
    */
 | 
						|
    constructor(
 | 
						|
    /**
 | 
						|
    The node types in this set, by id.
 | 
						|
    */
 | 
						|
    types) {
 | 
						|
        this.types = types;
 | 
						|
        for (let i = 0; i < types.length; i++)
 | 
						|
            if (types[i].id != i)
 | 
						|
                throw new RangeError("Node type ids should correspond to array positions when creating a node set");
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Create a copy of this set with some node properties added. The
 | 
						|
    arguments to this method can be created with
 | 
						|
    [`NodeProp.add`](#common.NodeProp.add).
 | 
						|
    */
 | 
						|
    extend(...props) {
 | 
						|
        let newTypes = [];
 | 
						|
        for (let type of this.types) {
 | 
						|
            let newProps = null;
 | 
						|
            for (let source of props) {
 | 
						|
                let add = source(type);
 | 
						|
                if (add) {
 | 
						|
                    if (!newProps)
 | 
						|
                        newProps = Object.assign({}, type.props);
 | 
						|
                    newProps[add[0].id] = add[1];
 | 
						|
                }
 | 
						|
            }
 | 
						|
            newTypes.push(newProps ? new NodeType(type.name, newProps, type.id, type.flags) : type);
 | 
						|
        }
 | 
						|
        return new NodeSet(newTypes);
 | 
						|
    }
 | 
						|
}
 | 
						|
const CachedNode = new WeakMap(), CachedInnerNode = new WeakMap();
 | 
						|
/**
 | 
						|
Options that control iteration. Can be combined with the `|`
 | 
						|
operator to enable multiple ones.
 | 
						|
*/
 | 
						|
var IterMode;
 | 
						|
(function (IterMode) {
 | 
						|
    /**
 | 
						|
    When enabled, iteration will only visit [`Tree`](#common.Tree)
 | 
						|
    objects, not nodes packed into
 | 
						|
    [`TreeBuffer`](#common.TreeBuffer)s.
 | 
						|
    */
 | 
						|
    IterMode[IterMode["ExcludeBuffers"] = 1] = "ExcludeBuffers";
 | 
						|
    /**
 | 
						|
    Enable this to make iteration include anonymous nodes (such as
 | 
						|
    the nodes that wrap repeated grammar constructs into a balanced
 | 
						|
    tree).
 | 
						|
    */
 | 
						|
    IterMode[IterMode["IncludeAnonymous"] = 2] = "IncludeAnonymous";
 | 
						|
    /**
 | 
						|
    By default, regular [mounted](#common.NodeProp^mounted) nodes
 | 
						|
    replace their base node in iteration. Enable this to ignore them
 | 
						|
    instead.
 | 
						|
    */
 | 
						|
    IterMode[IterMode["IgnoreMounts"] = 4] = "IgnoreMounts";
 | 
						|
    /**
 | 
						|
    This option only applies in
 | 
						|
    [`enter`](#common.SyntaxNode.enter)-style methods. It tells the
 | 
						|
    library to not enter mounted overlays if one covers the given
 | 
						|
    position.
 | 
						|
    */
 | 
						|
    IterMode[IterMode["IgnoreOverlays"] = 8] = "IgnoreOverlays";
 | 
						|
})(IterMode || (IterMode = {}));
 | 
						|
/**
 | 
						|
A piece of syntax tree. There are two ways to approach these
 | 
						|
trees: the way they are actually stored in memory, and the
 | 
						|
convenient way.
 | 
						|
 | 
						|
Syntax trees are stored as a tree of `Tree` and `TreeBuffer`
 | 
						|
objects. By packing detail information into `TreeBuffer` leaf
 | 
						|
nodes, the representation is made a lot more memory-efficient.
 | 
						|
 | 
						|
However, when you want to actually work with tree nodes, this
 | 
						|
representation is very awkward, so most client code will want to
 | 
						|
use the [`TreeCursor`](#common.TreeCursor) or
 | 
						|
[`SyntaxNode`](#common.SyntaxNode) interface instead, which provides
 | 
						|
a view on some part of this data structure, and can be used to
 | 
						|
move around to adjacent nodes.
 | 
						|
*/
 | 
						|
class Tree {
 | 
						|
    /**
 | 
						|
    Construct a new tree. See also [`Tree.build`](#common.Tree^build).
 | 
						|
    */
 | 
						|
    constructor(
 | 
						|
    /**
 | 
						|
    The type of the top node.
 | 
						|
    */
 | 
						|
    type, 
 | 
						|
    /**
 | 
						|
    This node's child nodes.
 | 
						|
    */
 | 
						|
    children, 
 | 
						|
    /**
 | 
						|
    The positions (offsets relative to the start of this tree) of
 | 
						|
    the children.
 | 
						|
    */
 | 
						|
    positions, 
 | 
						|
    /**
 | 
						|
    The total length of this tree
 | 
						|
    */
 | 
						|
    length, 
 | 
						|
    /**
 | 
						|
    Per-node [node props](#common.NodeProp) to associate with this node.
 | 
						|
    */
 | 
						|
    props) {
 | 
						|
        this.type = type;
 | 
						|
        this.children = children;
 | 
						|
        this.positions = positions;
 | 
						|
        this.length = length;
 | 
						|
        /**
 | 
						|
        @internal
 | 
						|
        */
 | 
						|
        this.props = null;
 | 
						|
        if (props && props.length) {
 | 
						|
            this.props = Object.create(null);
 | 
						|
            for (let [prop, value] of props)
 | 
						|
                this.props[typeof prop == "number" ? prop : prop.id] = value;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    @internal
 | 
						|
    */
 | 
						|
    toString() {
 | 
						|
        let mounted = MountedTree.get(this);
 | 
						|
        if (mounted && !mounted.overlay)
 | 
						|
            return mounted.tree.toString();
 | 
						|
        let children = "";
 | 
						|
        for (let ch of this.children) {
 | 
						|
            let str = ch.toString();
 | 
						|
            if (str) {
 | 
						|
                if (children)
 | 
						|
                    children += ",";
 | 
						|
                children += str;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return !this.type.name ? children :
 | 
						|
            (/\W/.test(this.type.name) && !this.type.isError ? JSON.stringify(this.type.name) : this.type.name) +
 | 
						|
                (children.length ? "(" + children + ")" : "");
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Get a [tree cursor](#common.TreeCursor) positioned at the top of
 | 
						|
    the tree. Mode can be used to [control](#common.IterMode) which
 | 
						|
    nodes the cursor visits.
 | 
						|
    */
 | 
						|
    cursor(mode = 0) {
 | 
						|
        return new TreeCursor(this.topNode, mode);
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Get a [tree cursor](#common.TreeCursor) pointing into this tree
 | 
						|
    at the given position and side (see
 | 
						|
    [`moveTo`](#common.TreeCursor.moveTo).
 | 
						|
    */
 | 
						|
    cursorAt(pos, side = 0, mode = 0) {
 | 
						|
        let scope = CachedNode.get(this) || this.topNode;
 | 
						|
        let cursor = new TreeCursor(scope);
 | 
						|
        cursor.moveTo(pos, side);
 | 
						|
        CachedNode.set(this, cursor._tree);
 | 
						|
        return cursor;
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Get a [syntax node](#common.SyntaxNode) object for the top of the
 | 
						|
    tree.
 | 
						|
    */
 | 
						|
    get topNode() {
 | 
						|
        return new TreeNode(this, 0, 0, null);
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Get the [syntax node](#common.SyntaxNode) at the given position.
 | 
						|
    If `side` is -1, this will move into nodes that end at the
 | 
						|
    position. If 1, it'll move into nodes that start at the
 | 
						|
    position. With 0, it'll only enter nodes that cover the position
 | 
						|
    from both sides.
 | 
						|
    
 | 
						|
    Note that this will not enter
 | 
						|
    [overlays](#common.MountedTree.overlay), and you often want
 | 
						|
    [`resolveInner`](#common.Tree.resolveInner) instead.
 | 
						|
    */
 | 
						|
    resolve(pos, side = 0) {
 | 
						|
        let node = resolveNode(CachedNode.get(this) || this.topNode, pos, side, false);
 | 
						|
        CachedNode.set(this, node);
 | 
						|
        return node;
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Like [`resolve`](#common.Tree.resolve), but will enter
 | 
						|
    [overlaid](#common.MountedTree.overlay) nodes, producing a syntax node
 | 
						|
    pointing into the innermost overlaid tree at the given position
 | 
						|
    (with parent links going through all parent structure, including
 | 
						|
    the host trees).
 | 
						|
    */
 | 
						|
    resolveInner(pos, side = 0) {
 | 
						|
        let node = resolveNode(CachedInnerNode.get(this) || this.topNode, pos, side, true);
 | 
						|
        CachedInnerNode.set(this, node);
 | 
						|
        return node;
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    In some situations, it can be useful to iterate through all
 | 
						|
    nodes around a position, including those in overlays that don't
 | 
						|
    directly cover the position. This method gives you an iterator
 | 
						|
    that will produce all nodes, from small to big, around the given
 | 
						|
    position.
 | 
						|
    */
 | 
						|
    resolveStack(pos, side = 0) {
 | 
						|
        return stackIterator(this, pos, side);
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Iterate over the tree and its children, calling `enter` for any
 | 
						|
    node that touches the `from`/`to` region (if given) before
 | 
						|
    running over such a node's children, and `leave` (if given) when
 | 
						|
    leaving the node. When `enter` returns `false`, that node will
 | 
						|
    not have its children iterated over (or `leave` called).
 | 
						|
    */
 | 
						|
    iterate(spec) {
 | 
						|
        let { enter, leave, from = 0, to = this.length } = spec;
 | 
						|
        let mode = spec.mode || 0, anon = (mode & IterMode.IncludeAnonymous) > 0;
 | 
						|
        for (let c = this.cursor(mode | IterMode.IncludeAnonymous);;) {
 | 
						|
            let entered = false;
 | 
						|
            if (c.from <= to && c.to >= from && (!anon && c.type.isAnonymous || enter(c) !== false)) {
 | 
						|
                if (c.firstChild())
 | 
						|
                    continue;
 | 
						|
                entered = true;
 | 
						|
            }
 | 
						|
            for (;;) {
 | 
						|
                if (entered && leave && (anon || !c.type.isAnonymous))
 | 
						|
                    leave(c);
 | 
						|
                if (c.nextSibling())
 | 
						|
                    break;
 | 
						|
                if (!c.parent())
 | 
						|
                    return;
 | 
						|
                entered = true;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Get the value of the given [node prop](#common.NodeProp) for this
 | 
						|
    node. Works with both per-node and per-type props.
 | 
						|
    */
 | 
						|
    prop(prop) {
 | 
						|
        return !prop.perNode ? this.type.prop(prop) : this.props ? this.props[prop.id] : undefined;
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Returns the node's [per-node props](#common.NodeProp.perNode) in a
 | 
						|
    format that can be passed to the [`Tree`](#common.Tree)
 | 
						|
    constructor.
 | 
						|
    */
 | 
						|
    get propValues() {
 | 
						|
        let result = [];
 | 
						|
        if (this.props)
 | 
						|
            for (let id in this.props)
 | 
						|
                result.push([+id, this.props[id]]);
 | 
						|
        return result;
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Balance the direct children of this tree, producing a copy of
 | 
						|
    which may have children grouped into subtrees with type
 | 
						|
    [`NodeType.none`](#common.NodeType^none).
 | 
						|
    */
 | 
						|
    balance(config = {}) {
 | 
						|
        return this.children.length <= 8 /* Balance.BranchFactor */ ? this :
 | 
						|
            balanceRange(NodeType.none, this.children, this.positions, 0, this.children.length, 0, this.length, (children, positions, length) => new Tree(this.type, children, positions, length, this.propValues), config.makeTree || ((children, positions, length) => new Tree(NodeType.none, children, positions, length)));
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Build a tree from a postfix-ordered buffer of node information,
 | 
						|
    or a cursor over such a buffer.
 | 
						|
    */
 | 
						|
    static build(data) { return buildTree(data); }
 | 
						|
}
 | 
						|
/**
 | 
						|
The empty tree
 | 
						|
*/
 | 
						|
Tree.empty = new Tree(NodeType.none, [], [], 0);
 | 
						|
class FlatBufferCursor {
 | 
						|
    constructor(buffer, index) {
 | 
						|
        this.buffer = buffer;
 | 
						|
        this.index = index;
 | 
						|
    }
 | 
						|
    get id() { return this.buffer[this.index - 4]; }
 | 
						|
    get start() { return this.buffer[this.index - 3]; }
 | 
						|
    get end() { return this.buffer[this.index - 2]; }
 | 
						|
    get size() { return this.buffer[this.index - 1]; }
 | 
						|
    get pos() { return this.index; }
 | 
						|
    next() { this.index -= 4; }
 | 
						|
    fork() { return new FlatBufferCursor(this.buffer, this.index); }
 | 
						|
}
 | 
						|
/**
 | 
						|
Tree buffers contain (type, start, end, endIndex) quads for each
 | 
						|
node. In such a buffer, nodes are stored in prefix order (parents
 | 
						|
before children, with the endIndex of the parent indicating which
 | 
						|
children belong to it).
 | 
						|
*/
 | 
						|
class TreeBuffer {
 | 
						|
    /**
 | 
						|
    Create a tree buffer.
 | 
						|
    */
 | 
						|
    constructor(
 | 
						|
    /**
 | 
						|
    The buffer's content.
 | 
						|
    */
 | 
						|
    buffer, 
 | 
						|
    /**
 | 
						|
    The total length of the group of nodes in the buffer.
 | 
						|
    */
 | 
						|
    length, 
 | 
						|
    /**
 | 
						|
    The node set used in this buffer.
 | 
						|
    */
 | 
						|
    set) {
 | 
						|
        this.buffer = buffer;
 | 
						|
        this.length = length;
 | 
						|
        this.set = set;
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    @internal
 | 
						|
    */
 | 
						|
    get type() { return NodeType.none; }
 | 
						|
    /**
 | 
						|
    @internal
 | 
						|
    */
 | 
						|
    toString() {
 | 
						|
        let result = [];
 | 
						|
        for (let index = 0; index < this.buffer.length;) {
 | 
						|
            result.push(this.childString(index));
 | 
						|
            index = this.buffer[index + 3];
 | 
						|
        }
 | 
						|
        return result.join(",");
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    @internal
 | 
						|
    */
 | 
						|
    childString(index) {
 | 
						|
        let id = this.buffer[index], endIndex = this.buffer[index + 3];
 | 
						|
        let type = this.set.types[id], result = type.name;
 | 
						|
        if (/\W/.test(result) && !type.isError)
 | 
						|
            result = JSON.stringify(result);
 | 
						|
        index += 4;
 | 
						|
        if (endIndex == index)
 | 
						|
            return result;
 | 
						|
        let children = [];
 | 
						|
        while (index < endIndex) {
 | 
						|
            children.push(this.childString(index));
 | 
						|
            index = this.buffer[index + 3];
 | 
						|
        }
 | 
						|
        return result + "(" + children.join(",") + ")";
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    @internal
 | 
						|
    */
 | 
						|
    findChild(startIndex, endIndex, dir, pos, side) {
 | 
						|
        let { buffer } = this, pick = -1;
 | 
						|
        for (let i = startIndex; i != endIndex; i = buffer[i + 3]) {
 | 
						|
            if (checkSide(side, pos, buffer[i + 1], buffer[i + 2])) {
 | 
						|
                pick = i;
 | 
						|
                if (dir > 0)
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return pick;
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    @internal
 | 
						|
    */
 | 
						|
    slice(startI, endI, from) {
 | 
						|
        let b = this.buffer;
 | 
						|
        let copy = new Uint16Array(endI - startI), len = 0;
 | 
						|
        for (let i = startI, j = 0; i < endI;) {
 | 
						|
            copy[j++] = b[i++];
 | 
						|
            copy[j++] = b[i++] - from;
 | 
						|
            let to = copy[j++] = b[i++] - from;
 | 
						|
            copy[j++] = b[i++] - startI;
 | 
						|
            len = Math.max(len, to);
 | 
						|
        }
 | 
						|
        return new TreeBuffer(copy, len, this.set);
 | 
						|
    }
 | 
						|
}
 | 
						|
function checkSide(side, pos, from, to) {
 | 
						|
    switch (side) {
 | 
						|
        case -2 /* Side.Before */: return from < pos;
 | 
						|
        case -1 /* Side.AtOrBefore */: return to >= pos && from < pos;
 | 
						|
        case 0 /* Side.Around */: return from < pos && to > pos;
 | 
						|
        case 1 /* Side.AtOrAfter */: return from <= pos && to > pos;
 | 
						|
        case 2 /* Side.After */: return to > pos;
 | 
						|
        case 4 /* Side.DontCare */: return true;
 | 
						|
    }
 | 
						|
}
 | 
						|
function resolveNode(node, pos, side, overlays) {
 | 
						|
    var _a;
 | 
						|
    // Move up to a node that actually holds the position, if possible
 | 
						|
    while (node.from == node.to ||
 | 
						|
        (side < 1 ? node.from >= pos : node.from > pos) ||
 | 
						|
        (side > -1 ? node.to <= pos : node.to < pos)) {
 | 
						|
        let parent = !overlays && node instanceof TreeNode && node.index < 0 ? null : node.parent;
 | 
						|
        if (!parent)
 | 
						|
            return node;
 | 
						|
        node = parent;
 | 
						|
    }
 | 
						|
    let mode = overlays ? 0 : IterMode.IgnoreOverlays;
 | 
						|
    // Must go up out of overlays when those do not overlap with pos
 | 
						|
    if (overlays)
 | 
						|
        for (let scan = node, parent = scan.parent; parent; scan = parent, parent = scan.parent) {
 | 
						|
            if (scan instanceof TreeNode && scan.index < 0 && ((_a = parent.enter(pos, side, mode)) === null || _a === void 0 ? void 0 : _a.from) != scan.from)
 | 
						|
                node = parent;
 | 
						|
        }
 | 
						|
    for (;;) {
 | 
						|
        let inner = node.enter(pos, side, mode);
 | 
						|
        if (!inner)
 | 
						|
            return node;
 | 
						|
        node = inner;
 | 
						|
    }
 | 
						|
}
 | 
						|
class BaseNode {
 | 
						|
    cursor(mode = 0) { return new TreeCursor(this, mode); }
 | 
						|
    getChild(type, before = null, after = null) {
 | 
						|
        let r = getChildren(this, type, before, after);
 | 
						|
        return r.length ? r[0] : null;
 | 
						|
    }
 | 
						|
    getChildren(type, before = null, after = null) {
 | 
						|
        return getChildren(this, type, before, after);
 | 
						|
    }
 | 
						|
    resolve(pos, side = 0) {
 | 
						|
        return resolveNode(this, pos, side, false);
 | 
						|
    }
 | 
						|
    resolveInner(pos, side = 0) {
 | 
						|
        return resolveNode(this, pos, side, true);
 | 
						|
    }
 | 
						|
    matchContext(context) {
 | 
						|
        return matchNodeContext(this, context);
 | 
						|
    }
 | 
						|
    enterUnfinishedNodesBefore(pos) {
 | 
						|
        let scan = this.childBefore(pos), node = this;
 | 
						|
        while (scan) {
 | 
						|
            let last = scan.lastChild;
 | 
						|
            if (!last || last.to != scan.to)
 | 
						|
                break;
 | 
						|
            if (last.type.isError && last.from == last.to) {
 | 
						|
                node = scan;
 | 
						|
                scan = last.prevSibling;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                scan = last;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return node;
 | 
						|
    }
 | 
						|
    get node() { return this; }
 | 
						|
    get next() { return this.parent; }
 | 
						|
}
 | 
						|
class TreeNode extends BaseNode {
 | 
						|
    constructor(_tree, from, 
 | 
						|
    // Index in parent node, set to -1 if the node is not a direct child of _parent.node (overlay)
 | 
						|
    index, _parent) {
 | 
						|
        super();
 | 
						|
        this._tree = _tree;
 | 
						|
        this.from = from;
 | 
						|
        this.index = index;
 | 
						|
        this._parent = _parent;
 | 
						|
    }
 | 
						|
    get type() { return this._tree.type; }
 | 
						|
    get name() { return this._tree.type.name; }
 | 
						|
    get to() { return this.from + this._tree.length; }
 | 
						|
    nextChild(i, dir, pos, side, mode = 0) {
 | 
						|
        for (let parent = this;;) {
 | 
						|
            for (let { children, positions } = parent._tree, e = dir > 0 ? children.length : -1; i != e; i += dir) {
 | 
						|
                let next = children[i], start = positions[i] + parent.from;
 | 
						|
                if (!checkSide(side, pos, start, start + next.length))
 | 
						|
                    continue;
 | 
						|
                if (next instanceof TreeBuffer) {
 | 
						|
                    if (mode & IterMode.ExcludeBuffers)
 | 
						|
                        continue;
 | 
						|
                    let index = next.findChild(0, next.buffer.length, dir, pos - start, side);
 | 
						|
                    if (index > -1)
 | 
						|
                        return new BufferNode(new BufferContext(parent, next, i, start), null, index);
 | 
						|
                }
 | 
						|
                else if ((mode & IterMode.IncludeAnonymous) || (!next.type.isAnonymous || hasChild(next))) {
 | 
						|
                    let mounted;
 | 
						|
                    if (!(mode & IterMode.IgnoreMounts) && (mounted = MountedTree.get(next)) && !mounted.overlay)
 | 
						|
                        return new TreeNode(mounted.tree, start, i, parent);
 | 
						|
                    let inner = new TreeNode(next, start, i, parent);
 | 
						|
                    return (mode & IterMode.IncludeAnonymous) || !inner.type.isAnonymous ? inner
 | 
						|
                        : inner.nextChild(dir < 0 ? next.children.length - 1 : 0, dir, pos, side);
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if ((mode & IterMode.IncludeAnonymous) || !parent.type.isAnonymous)
 | 
						|
                return null;
 | 
						|
            if (parent.index >= 0)
 | 
						|
                i = parent.index + dir;
 | 
						|
            else
 | 
						|
                i = dir < 0 ? -1 : parent._parent._tree.children.length;
 | 
						|
            parent = parent._parent;
 | 
						|
            if (!parent)
 | 
						|
                return null;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    get firstChild() { return this.nextChild(0, 1, 0, 4 /* Side.DontCare */); }
 | 
						|
    get lastChild() { return this.nextChild(this._tree.children.length - 1, -1, 0, 4 /* Side.DontCare */); }
 | 
						|
    childAfter(pos) { return this.nextChild(0, 1, pos, 2 /* Side.After */); }
 | 
						|
    childBefore(pos) { return this.nextChild(this._tree.children.length - 1, -1, pos, -2 /* Side.Before */); }
 | 
						|
    enter(pos, side, mode = 0) {
 | 
						|
        let mounted;
 | 
						|
        if (!(mode & IterMode.IgnoreOverlays) && (mounted = MountedTree.get(this._tree)) && mounted.overlay) {
 | 
						|
            let rPos = pos - this.from;
 | 
						|
            for (let { from, to } of mounted.overlay) {
 | 
						|
                if ((side > 0 ? from <= rPos : from < rPos) &&
 | 
						|
                    (side < 0 ? to >= rPos : to > rPos))
 | 
						|
                    return new TreeNode(mounted.tree, mounted.overlay[0].from + this.from, -1, this);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return this.nextChild(0, 1, pos, side, mode);
 | 
						|
    }
 | 
						|
    nextSignificantParent() {
 | 
						|
        let val = this;
 | 
						|
        while (val.type.isAnonymous && val._parent)
 | 
						|
            val = val._parent;
 | 
						|
        return val;
 | 
						|
    }
 | 
						|
    get parent() {
 | 
						|
        return this._parent ? this._parent.nextSignificantParent() : null;
 | 
						|
    }
 | 
						|
    get nextSibling() {
 | 
						|
        return this._parent && this.index >= 0 ? this._parent.nextChild(this.index + 1, 1, 0, 4 /* Side.DontCare */) : null;
 | 
						|
    }
 | 
						|
    get prevSibling() {
 | 
						|
        return this._parent && this.index >= 0 ? this._parent.nextChild(this.index - 1, -1, 0, 4 /* Side.DontCare */) : null;
 | 
						|
    }
 | 
						|
    get tree() { return this._tree; }
 | 
						|
    toTree() { return this._tree; }
 | 
						|
    /**
 | 
						|
    @internal
 | 
						|
    */
 | 
						|
    toString() { return this._tree.toString(); }
 | 
						|
}
 | 
						|
function getChildren(node, type, before, after) {
 | 
						|
    let cur = node.cursor(), result = [];
 | 
						|
    if (!cur.firstChild())
 | 
						|
        return result;
 | 
						|
    if (before != null)
 | 
						|
        for (let found = false; !found;) {
 | 
						|
            found = cur.type.is(before);
 | 
						|
            if (!cur.nextSibling())
 | 
						|
                return result;
 | 
						|
        }
 | 
						|
    for (;;) {
 | 
						|
        if (after != null && cur.type.is(after))
 | 
						|
            return result;
 | 
						|
        if (cur.type.is(type))
 | 
						|
            result.push(cur.node);
 | 
						|
        if (!cur.nextSibling())
 | 
						|
            return after == null ? result : [];
 | 
						|
    }
 | 
						|
}
 | 
						|
function matchNodeContext(node, context, i = context.length - 1) {
 | 
						|
    for (let p = node.parent; i >= 0; p = p.parent) {
 | 
						|
        if (!p)
 | 
						|
            return false;
 | 
						|
        if (!p.type.isAnonymous) {
 | 
						|
            if (context[i] && context[i] != p.name)
 | 
						|
                return false;
 | 
						|
            i--;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
}
 | 
						|
class BufferContext {
 | 
						|
    constructor(parent, buffer, index, start) {
 | 
						|
        this.parent = parent;
 | 
						|
        this.buffer = buffer;
 | 
						|
        this.index = index;
 | 
						|
        this.start = start;
 | 
						|
    }
 | 
						|
}
 | 
						|
class BufferNode extends BaseNode {
 | 
						|
    get name() { return this.type.name; }
 | 
						|
    get from() { return this.context.start + this.context.buffer.buffer[this.index + 1]; }
 | 
						|
    get to() { return this.context.start + this.context.buffer.buffer[this.index + 2]; }
 | 
						|
    constructor(context, _parent, index) {
 | 
						|
        super();
 | 
						|
        this.context = context;
 | 
						|
        this._parent = _parent;
 | 
						|
        this.index = index;
 | 
						|
        this.type = context.buffer.set.types[context.buffer.buffer[index]];
 | 
						|
    }
 | 
						|
    child(dir, pos, side) {
 | 
						|
        let { buffer } = this.context;
 | 
						|
        let index = buffer.findChild(this.index + 4, buffer.buffer[this.index + 3], dir, pos - this.context.start, side);
 | 
						|
        return index < 0 ? null : new BufferNode(this.context, this, index);
 | 
						|
    }
 | 
						|
    get firstChild() { return this.child(1, 0, 4 /* Side.DontCare */); }
 | 
						|
    get lastChild() { return this.child(-1, 0, 4 /* Side.DontCare */); }
 | 
						|
    childAfter(pos) { return this.child(1, pos, 2 /* Side.After */); }
 | 
						|
    childBefore(pos) { return this.child(-1, pos, -2 /* Side.Before */); }
 | 
						|
    enter(pos, side, mode = 0) {
 | 
						|
        if (mode & IterMode.ExcludeBuffers)
 | 
						|
            return null;
 | 
						|
        let { buffer } = this.context;
 | 
						|
        let index = buffer.findChild(this.index + 4, buffer.buffer[this.index + 3], side > 0 ? 1 : -1, pos - this.context.start, side);
 | 
						|
        return index < 0 ? null : new BufferNode(this.context, this, index);
 | 
						|
    }
 | 
						|
    get parent() {
 | 
						|
        return this._parent || this.context.parent.nextSignificantParent();
 | 
						|
    }
 | 
						|
    externalSibling(dir) {
 | 
						|
        return this._parent ? null : this.context.parent.nextChild(this.context.index + dir, dir, 0, 4 /* Side.DontCare */);
 | 
						|
    }
 | 
						|
    get nextSibling() {
 | 
						|
        let { buffer } = this.context;
 | 
						|
        let after = buffer.buffer[this.index + 3];
 | 
						|
        if (after < (this._parent ? buffer.buffer[this._parent.index + 3] : buffer.buffer.length))
 | 
						|
            return new BufferNode(this.context, this._parent, after);
 | 
						|
        return this.externalSibling(1);
 | 
						|
    }
 | 
						|
    get prevSibling() {
 | 
						|
        let { buffer } = this.context;
 | 
						|
        let parentStart = this._parent ? this._parent.index + 4 : 0;
 | 
						|
        if (this.index == parentStart)
 | 
						|
            return this.externalSibling(-1);
 | 
						|
        return new BufferNode(this.context, this._parent, buffer.findChild(parentStart, this.index, -1, 0, 4 /* Side.DontCare */));
 | 
						|
    }
 | 
						|
    get tree() { return null; }
 | 
						|
    toTree() {
 | 
						|
        let children = [], positions = [];
 | 
						|
        let { buffer } = this.context;
 | 
						|
        let startI = this.index + 4, endI = buffer.buffer[this.index + 3];
 | 
						|
        if (endI > startI) {
 | 
						|
            let from = buffer.buffer[this.index + 1];
 | 
						|
            children.push(buffer.slice(startI, endI, from));
 | 
						|
            positions.push(0);
 | 
						|
        }
 | 
						|
        return new Tree(this.type, children, positions, this.to - this.from);
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    @internal
 | 
						|
    */
 | 
						|
    toString() { return this.context.buffer.childString(this.index); }
 | 
						|
}
 | 
						|
function iterStack(heads) {
 | 
						|
    if (!heads.length)
 | 
						|
        return null;
 | 
						|
    let pick = 0, picked = heads[0];
 | 
						|
    for (let i = 1; i < heads.length; i++) {
 | 
						|
        let node = heads[i];
 | 
						|
        if (node.from > picked.from || node.to < picked.to) {
 | 
						|
            picked = node;
 | 
						|
            pick = i;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    let next = picked instanceof TreeNode && picked.index < 0 ? null : picked.parent;
 | 
						|
    let newHeads = heads.slice();
 | 
						|
    if (next)
 | 
						|
        newHeads[pick] = next;
 | 
						|
    else
 | 
						|
        newHeads.splice(pick, 1);
 | 
						|
    return new StackIterator(newHeads, picked);
 | 
						|
}
 | 
						|
class StackIterator {
 | 
						|
    constructor(heads, node) {
 | 
						|
        this.heads = heads;
 | 
						|
        this.node = node;
 | 
						|
    }
 | 
						|
    get next() { return iterStack(this.heads); }
 | 
						|
}
 | 
						|
function stackIterator(tree, pos, side) {
 | 
						|
    let inner = tree.resolveInner(pos, side), layers = null;
 | 
						|
    for (let scan = inner instanceof TreeNode ? inner : inner.context.parent; scan; scan = scan.parent) {
 | 
						|
        if (scan.index < 0) { // This is an overlay root
 | 
						|
            let parent = scan.parent;
 | 
						|
            (layers || (layers = [inner])).push(parent.resolve(pos, side));
 | 
						|
            scan = parent;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            let mount = MountedTree.get(scan.tree);
 | 
						|
            // Relevant overlay branching off
 | 
						|
            if (mount && mount.overlay && mount.overlay[0].from <= pos && mount.overlay[mount.overlay.length - 1].to >= pos) {
 | 
						|
                let root = new TreeNode(mount.tree, mount.overlay[0].from + scan.from, -1, scan);
 | 
						|
                (layers || (layers = [inner])).push(resolveNode(root, pos, side, false));
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return layers ? iterStack(layers) : inner;
 | 
						|
}
 | 
						|
/**
 | 
						|
A tree cursor object focuses on a given node in a syntax tree, and
 | 
						|
allows you to move to adjacent nodes.
 | 
						|
*/
 | 
						|
class TreeCursor {
 | 
						|
    /**
 | 
						|
    Shorthand for `.type.name`.
 | 
						|
    */
 | 
						|
    get name() { return this.type.name; }
 | 
						|
    /**
 | 
						|
    @internal
 | 
						|
    */
 | 
						|
    constructor(node, 
 | 
						|
    /**
 | 
						|
    @internal
 | 
						|
    */
 | 
						|
    mode = 0) {
 | 
						|
        this.mode = mode;
 | 
						|
        /**
 | 
						|
        @internal
 | 
						|
        */
 | 
						|
        this.buffer = null;
 | 
						|
        this.stack = [];
 | 
						|
        /**
 | 
						|
        @internal
 | 
						|
        */
 | 
						|
        this.index = 0;
 | 
						|
        this.bufferNode = null;
 | 
						|
        if (node instanceof TreeNode) {
 | 
						|
            this.yieldNode(node);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            this._tree = node.context.parent;
 | 
						|
            this.buffer = node.context;
 | 
						|
            for (let n = node._parent; n; n = n._parent)
 | 
						|
                this.stack.unshift(n.index);
 | 
						|
            this.bufferNode = node;
 | 
						|
            this.yieldBuf(node.index);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    yieldNode(node) {
 | 
						|
        if (!node)
 | 
						|
            return false;
 | 
						|
        this._tree = node;
 | 
						|
        this.type = node.type;
 | 
						|
        this.from = node.from;
 | 
						|
        this.to = node.to;
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    yieldBuf(index, type) {
 | 
						|
        this.index = index;
 | 
						|
        let { start, buffer } = this.buffer;
 | 
						|
        this.type = type || buffer.set.types[buffer.buffer[index]];
 | 
						|
        this.from = start + buffer.buffer[index + 1];
 | 
						|
        this.to = start + buffer.buffer[index + 2];
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    @internal
 | 
						|
    */
 | 
						|
    yield(node) {
 | 
						|
        if (!node)
 | 
						|
            return false;
 | 
						|
        if (node instanceof TreeNode) {
 | 
						|
            this.buffer = null;
 | 
						|
            return this.yieldNode(node);
 | 
						|
        }
 | 
						|
        this.buffer = node.context;
 | 
						|
        return this.yieldBuf(node.index, node.type);
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    @internal
 | 
						|
    */
 | 
						|
    toString() {
 | 
						|
        return this.buffer ? this.buffer.buffer.childString(this.index) : this._tree.toString();
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    @internal
 | 
						|
    */
 | 
						|
    enterChild(dir, pos, side) {
 | 
						|
        if (!this.buffer)
 | 
						|
            return this.yield(this._tree.nextChild(dir < 0 ? this._tree._tree.children.length - 1 : 0, dir, pos, side, this.mode));
 | 
						|
        let { buffer } = this.buffer;
 | 
						|
        let index = buffer.findChild(this.index + 4, buffer.buffer[this.index + 3], dir, pos - this.buffer.start, side);
 | 
						|
        if (index < 0)
 | 
						|
            return false;
 | 
						|
        this.stack.push(this.index);
 | 
						|
        return this.yieldBuf(index);
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Move the cursor to this node's first child. When this returns
 | 
						|
    false, the node has no child, and the cursor has not been moved.
 | 
						|
    */
 | 
						|
    firstChild() { return this.enterChild(1, 0, 4 /* Side.DontCare */); }
 | 
						|
    /**
 | 
						|
    Move the cursor to this node's last child.
 | 
						|
    */
 | 
						|
    lastChild() { return this.enterChild(-1, 0, 4 /* Side.DontCare */); }
 | 
						|
    /**
 | 
						|
    Move the cursor to the first child that ends after `pos`.
 | 
						|
    */
 | 
						|
    childAfter(pos) { return this.enterChild(1, pos, 2 /* Side.After */); }
 | 
						|
    /**
 | 
						|
    Move to the last child that starts before `pos`.
 | 
						|
    */
 | 
						|
    childBefore(pos) { return this.enterChild(-1, pos, -2 /* Side.Before */); }
 | 
						|
    /**
 | 
						|
    Move the cursor to the child around `pos`. If side is -1 the
 | 
						|
    child may end at that position, when 1 it may start there. This
 | 
						|
    will also enter [overlaid](#common.MountedTree.overlay)
 | 
						|
    [mounted](#common.NodeProp^mounted) trees unless `overlays` is
 | 
						|
    set to false.
 | 
						|
    */
 | 
						|
    enter(pos, side, mode = this.mode) {
 | 
						|
        if (!this.buffer)
 | 
						|
            return this.yield(this._tree.enter(pos, side, mode));
 | 
						|
        return mode & IterMode.ExcludeBuffers ? false : this.enterChild(1, pos, side);
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Move to the node's parent node, if this isn't the top node.
 | 
						|
    */
 | 
						|
    parent() {
 | 
						|
        if (!this.buffer)
 | 
						|
            return this.yieldNode((this.mode & IterMode.IncludeAnonymous) ? this._tree._parent : this._tree.parent);
 | 
						|
        if (this.stack.length)
 | 
						|
            return this.yieldBuf(this.stack.pop());
 | 
						|
        let parent = (this.mode & IterMode.IncludeAnonymous) ? this.buffer.parent : this.buffer.parent.nextSignificantParent();
 | 
						|
        this.buffer = null;
 | 
						|
        return this.yieldNode(parent);
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    @internal
 | 
						|
    */
 | 
						|
    sibling(dir) {
 | 
						|
        if (!this.buffer)
 | 
						|
            return !this._tree._parent ? false
 | 
						|
                : this.yield(this._tree.index < 0 ? null
 | 
						|
                    : this._tree._parent.nextChild(this._tree.index + dir, dir, 0, 4 /* Side.DontCare */, this.mode));
 | 
						|
        let { buffer } = this.buffer, d = this.stack.length - 1;
 | 
						|
        if (dir < 0) {
 | 
						|
            let parentStart = d < 0 ? 0 : this.stack[d] + 4;
 | 
						|
            if (this.index != parentStart)
 | 
						|
                return this.yieldBuf(buffer.findChild(parentStart, this.index, -1, 0, 4 /* Side.DontCare */));
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            let after = buffer.buffer[this.index + 3];
 | 
						|
            if (after < (d < 0 ? buffer.buffer.length : buffer.buffer[this.stack[d] + 3]))
 | 
						|
                return this.yieldBuf(after);
 | 
						|
        }
 | 
						|
        return d < 0 ? this.yield(this.buffer.parent.nextChild(this.buffer.index + dir, dir, 0, 4 /* Side.DontCare */, this.mode)) : false;
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Move to this node's next sibling, if any.
 | 
						|
    */
 | 
						|
    nextSibling() { return this.sibling(1); }
 | 
						|
    /**
 | 
						|
    Move to this node's previous sibling, if any.
 | 
						|
    */
 | 
						|
    prevSibling() { return this.sibling(-1); }
 | 
						|
    atLastNode(dir) {
 | 
						|
        let index, parent, { buffer } = this;
 | 
						|
        if (buffer) {
 | 
						|
            if (dir > 0) {
 | 
						|
                if (this.index < buffer.buffer.buffer.length)
 | 
						|
                    return false;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                for (let i = 0; i < this.index; i++)
 | 
						|
                    if (buffer.buffer.buffer[i + 3] < this.index)
 | 
						|
                        return false;
 | 
						|
            }
 | 
						|
            ({ index, parent } = buffer);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            ({ index, _parent: parent } = this._tree);
 | 
						|
        }
 | 
						|
        for (; parent; { index, _parent: parent } = parent) {
 | 
						|
            if (index > -1)
 | 
						|
                for (let i = index + dir, e = dir < 0 ? -1 : parent._tree.children.length; i != e; i += dir) {
 | 
						|
                    let child = parent._tree.children[i];
 | 
						|
                    if ((this.mode & IterMode.IncludeAnonymous) ||
 | 
						|
                        child instanceof TreeBuffer ||
 | 
						|
                        !child.type.isAnonymous ||
 | 
						|
                        hasChild(child))
 | 
						|
                        return false;
 | 
						|
                }
 | 
						|
        }
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    move(dir, enter) {
 | 
						|
        if (enter && this.enterChild(dir, 0, 4 /* Side.DontCare */))
 | 
						|
            return true;
 | 
						|
        for (;;) {
 | 
						|
            if (this.sibling(dir))
 | 
						|
                return true;
 | 
						|
            if (this.atLastNode(dir) || !this.parent())
 | 
						|
                return false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Move to the next node in a
 | 
						|
    [pre-order](https://en.wikipedia.org/wiki/Tree_traversal#Pre-order,_NLR)
 | 
						|
    traversal, going from a node to its first child or, if the
 | 
						|
    current node is empty or `enter` is false, its next sibling or
 | 
						|
    the next sibling of the first parent node that has one.
 | 
						|
    */
 | 
						|
    next(enter = true) { return this.move(1, enter); }
 | 
						|
    /**
 | 
						|
    Move to the next node in a last-to-first pre-order traveral. A
 | 
						|
    node is followed by its last child or, if it has none, its
 | 
						|
    previous sibling or the previous sibling of the first parent
 | 
						|
    node that has one.
 | 
						|
    */
 | 
						|
    prev(enter = true) { return this.move(-1, enter); }
 | 
						|
    /**
 | 
						|
    Move the cursor to the innermost node that covers `pos`. If
 | 
						|
    `side` is -1, it will enter nodes that end at `pos`. If it is 1,
 | 
						|
    it will enter nodes that start at `pos`.
 | 
						|
    */
 | 
						|
    moveTo(pos, side = 0) {
 | 
						|
        // Move up to a node that actually holds the position, if possible
 | 
						|
        while (this.from == this.to ||
 | 
						|
            (side < 1 ? this.from >= pos : this.from > pos) ||
 | 
						|
            (side > -1 ? this.to <= pos : this.to < pos))
 | 
						|
            if (!this.parent())
 | 
						|
                break;
 | 
						|
        // Then scan down into child nodes as far as possible
 | 
						|
        while (this.enterChild(1, pos, side)) { }
 | 
						|
        return this;
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Get a [syntax node](#common.SyntaxNode) at the cursor's current
 | 
						|
    position.
 | 
						|
    */
 | 
						|
    get node() {
 | 
						|
        if (!this.buffer)
 | 
						|
            return this._tree;
 | 
						|
        let cache = this.bufferNode, result = null, depth = 0;
 | 
						|
        if (cache && cache.context == this.buffer) {
 | 
						|
            scan: for (let index = this.index, d = this.stack.length; d >= 0;) {
 | 
						|
                for (let c = cache; c; c = c._parent)
 | 
						|
                    if (c.index == index) {
 | 
						|
                        if (index == this.index)
 | 
						|
                            return c;
 | 
						|
                        result = c;
 | 
						|
                        depth = d + 1;
 | 
						|
                        break scan;
 | 
						|
                    }
 | 
						|
                index = this.stack[--d];
 | 
						|
            }
 | 
						|
        }
 | 
						|
        for (let i = depth; i < this.stack.length; i++)
 | 
						|
            result = new BufferNode(this.buffer, result, this.stack[i]);
 | 
						|
        return this.bufferNode = new BufferNode(this.buffer, result, this.index);
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Get the [tree](#common.Tree) that represents the current node, if
 | 
						|
    any. Will return null when the node is in a [tree
 | 
						|
    buffer](#common.TreeBuffer).
 | 
						|
    */
 | 
						|
    get tree() {
 | 
						|
        return this.buffer ? null : this._tree._tree;
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Iterate over the current node and all its descendants, calling
 | 
						|
    `enter` when entering a node and `leave`, if given, when leaving
 | 
						|
    one. When `enter` returns `false`, any children of that node are
 | 
						|
    skipped, and `leave` isn't called for it.
 | 
						|
    */
 | 
						|
    iterate(enter, leave) {
 | 
						|
        for (let depth = 0;;) {
 | 
						|
            let mustLeave = false;
 | 
						|
            if (this.type.isAnonymous || enter(this) !== false) {
 | 
						|
                if (this.firstChild()) {
 | 
						|
                    depth++;
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
                if (!this.type.isAnonymous)
 | 
						|
                    mustLeave = true;
 | 
						|
            }
 | 
						|
            for (;;) {
 | 
						|
                if (mustLeave && leave)
 | 
						|
                    leave(this);
 | 
						|
                mustLeave = this.type.isAnonymous;
 | 
						|
                if (this.nextSibling())
 | 
						|
                    break;
 | 
						|
                if (!depth)
 | 
						|
                    return;
 | 
						|
                this.parent();
 | 
						|
                depth--;
 | 
						|
                mustLeave = true;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Test whether the current node matches a given context—a sequence
 | 
						|
    of direct parent node names. Empty strings in the context array
 | 
						|
    are treated as wildcards.
 | 
						|
    */
 | 
						|
    matchContext(context) {
 | 
						|
        if (!this.buffer)
 | 
						|
            return matchNodeContext(this.node, context);
 | 
						|
        let { buffer } = this.buffer, { types } = buffer.set;
 | 
						|
        for (let i = context.length - 1, d = this.stack.length - 1; i >= 0; d--) {
 | 
						|
            if (d < 0)
 | 
						|
                return matchNodeContext(this.node, context, i);
 | 
						|
            let type = types[buffer.buffer[this.stack[d]]];
 | 
						|
            if (!type.isAnonymous) {
 | 
						|
                if (context[i] && context[i] != type.name)
 | 
						|
                    return false;
 | 
						|
                i--;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
}
 | 
						|
function hasChild(tree) {
 | 
						|
    return tree.children.some(ch => ch instanceof TreeBuffer || !ch.type.isAnonymous || hasChild(ch));
 | 
						|
}
 | 
						|
function buildTree(data) {
 | 
						|
    var _a;
 | 
						|
    let { buffer, nodeSet, maxBufferLength = DefaultBufferLength, reused = [], minRepeatType = nodeSet.types.length } = data;
 | 
						|
    let cursor = Array.isArray(buffer) ? new FlatBufferCursor(buffer, buffer.length) : buffer;
 | 
						|
    let types = nodeSet.types;
 | 
						|
    let contextHash = 0, lookAhead = 0;
 | 
						|
    function takeNode(parentStart, minPos, children, positions, inRepeat, depth) {
 | 
						|
        let { id, start, end, size } = cursor;
 | 
						|
        let lookAheadAtStart = lookAhead;
 | 
						|
        while (size < 0) {
 | 
						|
            cursor.next();
 | 
						|
            if (size == -1 /* SpecialRecord.Reuse */) {
 | 
						|
                let node = reused[id];
 | 
						|
                children.push(node);
 | 
						|
                positions.push(start - parentStart);
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            else if (size == -3 /* SpecialRecord.ContextChange */) { // Context change
 | 
						|
                contextHash = id;
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            else if (size == -4 /* SpecialRecord.LookAhead */) {
 | 
						|
                lookAhead = id;
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                throw new RangeError(`Unrecognized record size: ${size}`);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        let type = types[id], node, buffer;
 | 
						|
        let startPos = start - parentStart;
 | 
						|
        if (end - start <= maxBufferLength && (buffer = findBufferSize(cursor.pos - minPos, inRepeat))) {
 | 
						|
            // Small enough for a buffer, and no reused nodes inside
 | 
						|
            let data = new Uint16Array(buffer.size - buffer.skip);
 | 
						|
            let endPos = cursor.pos - buffer.size, index = data.length;
 | 
						|
            while (cursor.pos > endPos)
 | 
						|
                index = copyToBuffer(buffer.start, data, index);
 | 
						|
            node = new TreeBuffer(data, end - buffer.start, nodeSet);
 | 
						|
            startPos = buffer.start - parentStart;
 | 
						|
        }
 | 
						|
        else { // Make it a node
 | 
						|
            let endPos = cursor.pos - size;
 | 
						|
            cursor.next();
 | 
						|
            let localChildren = [], localPositions = [];
 | 
						|
            let localInRepeat = id >= minRepeatType ? id : -1;
 | 
						|
            let lastGroup = 0, lastEnd = end;
 | 
						|
            while (cursor.pos > endPos) {
 | 
						|
                if (localInRepeat >= 0 && cursor.id == localInRepeat && cursor.size >= 0) {
 | 
						|
                    if (cursor.end <= lastEnd - maxBufferLength) {
 | 
						|
                        makeRepeatLeaf(localChildren, localPositions, start, lastGroup, cursor.end, lastEnd, localInRepeat, lookAheadAtStart);
 | 
						|
                        lastGroup = localChildren.length;
 | 
						|
                        lastEnd = cursor.end;
 | 
						|
                    }
 | 
						|
                    cursor.next();
 | 
						|
                }
 | 
						|
                else if (depth > 2500 /* CutOff.Depth */) {
 | 
						|
                    takeFlatNode(start, endPos, localChildren, localPositions);
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    takeNode(start, endPos, localChildren, localPositions, localInRepeat, depth + 1);
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (localInRepeat >= 0 && lastGroup > 0 && lastGroup < localChildren.length)
 | 
						|
                makeRepeatLeaf(localChildren, localPositions, start, lastGroup, start, lastEnd, localInRepeat, lookAheadAtStart);
 | 
						|
            localChildren.reverse();
 | 
						|
            localPositions.reverse();
 | 
						|
            if (localInRepeat > -1 && lastGroup > 0) {
 | 
						|
                let make = makeBalanced(type);
 | 
						|
                node = balanceRange(type, localChildren, localPositions, 0, localChildren.length, 0, end - start, make, make);
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                node = makeTree(type, localChildren, localPositions, end - start, lookAheadAtStart - end);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        children.push(node);
 | 
						|
        positions.push(startPos);
 | 
						|
    }
 | 
						|
    function takeFlatNode(parentStart, minPos, children, positions) {
 | 
						|
        let nodes = []; // Temporary, inverted array of leaf nodes found, with absolute positions
 | 
						|
        let nodeCount = 0, stopAt = -1;
 | 
						|
        while (cursor.pos > minPos) {
 | 
						|
            let { id, start, end, size } = cursor;
 | 
						|
            if (size > 4) { // Not a leaf
 | 
						|
                cursor.next();
 | 
						|
            }
 | 
						|
            else if (stopAt > -1 && start < stopAt) {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                if (stopAt < 0)
 | 
						|
                    stopAt = end - maxBufferLength;
 | 
						|
                nodes.push(id, start, end);
 | 
						|
                nodeCount++;
 | 
						|
                cursor.next();
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (nodeCount) {
 | 
						|
            let buffer = new Uint16Array(nodeCount * 4);
 | 
						|
            let start = nodes[nodes.length - 2];
 | 
						|
            for (let i = nodes.length - 3, j = 0; i >= 0; i -= 3) {
 | 
						|
                buffer[j++] = nodes[i];
 | 
						|
                buffer[j++] = nodes[i + 1] - start;
 | 
						|
                buffer[j++] = nodes[i + 2] - start;
 | 
						|
                buffer[j++] = j;
 | 
						|
            }
 | 
						|
            children.push(new TreeBuffer(buffer, nodes[2] - start, nodeSet));
 | 
						|
            positions.push(start - parentStart);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    function makeBalanced(type) {
 | 
						|
        return (children, positions, length) => {
 | 
						|
            let lookAhead = 0, lastI = children.length - 1, last, lookAheadProp;
 | 
						|
            if (lastI >= 0 && (last = children[lastI]) instanceof Tree) {
 | 
						|
                if (!lastI && last.type == type && last.length == length)
 | 
						|
                    return last;
 | 
						|
                if (lookAheadProp = last.prop(NodeProp.lookAhead))
 | 
						|
                    lookAhead = positions[lastI] + last.length + lookAheadProp;
 | 
						|
            }
 | 
						|
            return makeTree(type, children, positions, length, lookAhead);
 | 
						|
        };
 | 
						|
    }
 | 
						|
    function makeRepeatLeaf(children, positions, base, i, from, to, type, lookAhead) {
 | 
						|
        let localChildren = [], localPositions = [];
 | 
						|
        while (children.length > i) {
 | 
						|
            localChildren.push(children.pop());
 | 
						|
            localPositions.push(positions.pop() + base - from);
 | 
						|
        }
 | 
						|
        children.push(makeTree(nodeSet.types[type], localChildren, localPositions, to - from, lookAhead - to));
 | 
						|
        positions.push(from - base);
 | 
						|
    }
 | 
						|
    function makeTree(type, children, positions, length, lookAhead = 0, props) {
 | 
						|
        if (contextHash) {
 | 
						|
            let pair = [NodeProp.contextHash, contextHash];
 | 
						|
            props = props ? [pair].concat(props) : [pair];
 | 
						|
        }
 | 
						|
        if (lookAhead > 25) {
 | 
						|
            let pair = [NodeProp.lookAhead, lookAhead];
 | 
						|
            props = props ? [pair].concat(props) : [pair];
 | 
						|
        }
 | 
						|
        return new Tree(type, children, positions, length, props);
 | 
						|
    }
 | 
						|
    function findBufferSize(maxSize, inRepeat) {
 | 
						|
        // Scan through the buffer to find previous siblings that fit
 | 
						|
        // together in a TreeBuffer, and don't contain any reused nodes
 | 
						|
        // (which can't be stored in a buffer).
 | 
						|
        // If `inRepeat` is > -1, ignore node boundaries of that type for
 | 
						|
        // nesting, but make sure the end falls either at the start
 | 
						|
        // (`maxSize`) or before such a node.
 | 
						|
        let fork = cursor.fork();
 | 
						|
        let size = 0, start = 0, skip = 0, minStart = fork.end - maxBufferLength;
 | 
						|
        let result = { size: 0, start: 0, skip: 0 };
 | 
						|
        scan: for (let minPos = fork.pos - maxSize; fork.pos > minPos;) {
 | 
						|
            let nodeSize = fork.size;
 | 
						|
            // Pretend nested repeat nodes of the same type don't exist
 | 
						|
            if (fork.id == inRepeat && nodeSize >= 0) {
 | 
						|
                // Except that we store the current state as a valid return
 | 
						|
                // value.
 | 
						|
                result.size = size;
 | 
						|
                result.start = start;
 | 
						|
                result.skip = skip;
 | 
						|
                skip += 4;
 | 
						|
                size += 4;
 | 
						|
                fork.next();
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            let startPos = fork.pos - nodeSize;
 | 
						|
            if (nodeSize < 0 || startPos < minPos || fork.start < minStart)
 | 
						|
                break;
 | 
						|
            let localSkipped = fork.id >= minRepeatType ? 4 : 0;
 | 
						|
            let nodeStart = fork.start;
 | 
						|
            fork.next();
 | 
						|
            while (fork.pos > startPos) {
 | 
						|
                if (fork.size < 0) {
 | 
						|
                    if (fork.size == -3 /* SpecialRecord.ContextChange */)
 | 
						|
                        localSkipped += 4;
 | 
						|
                    else
 | 
						|
                        break scan;
 | 
						|
                }
 | 
						|
                else if (fork.id >= minRepeatType) {
 | 
						|
                    localSkipped += 4;
 | 
						|
                }
 | 
						|
                fork.next();
 | 
						|
            }
 | 
						|
            start = nodeStart;
 | 
						|
            size += nodeSize;
 | 
						|
            skip += localSkipped;
 | 
						|
        }
 | 
						|
        if (inRepeat < 0 || size == maxSize) {
 | 
						|
            result.size = size;
 | 
						|
            result.start = start;
 | 
						|
            result.skip = skip;
 | 
						|
        }
 | 
						|
        return result.size > 4 ? result : undefined;
 | 
						|
    }
 | 
						|
    function copyToBuffer(bufferStart, buffer, index) {
 | 
						|
        let { id, start, end, size } = cursor;
 | 
						|
        cursor.next();
 | 
						|
        if (size >= 0 && id < minRepeatType) {
 | 
						|
            let startIndex = index;
 | 
						|
            if (size > 4) {
 | 
						|
                let endPos = cursor.pos - (size - 4);
 | 
						|
                while (cursor.pos > endPos)
 | 
						|
                    index = copyToBuffer(bufferStart, buffer, index);
 | 
						|
            }
 | 
						|
            buffer[--index] = startIndex;
 | 
						|
            buffer[--index] = end - bufferStart;
 | 
						|
            buffer[--index] = start - bufferStart;
 | 
						|
            buffer[--index] = id;
 | 
						|
        }
 | 
						|
        else if (size == -3 /* SpecialRecord.ContextChange */) {
 | 
						|
            contextHash = id;
 | 
						|
        }
 | 
						|
        else if (size == -4 /* SpecialRecord.LookAhead */) {
 | 
						|
            lookAhead = id;
 | 
						|
        }
 | 
						|
        return index;
 | 
						|
    }
 | 
						|
    let children = [], positions = [];
 | 
						|
    while (cursor.pos > 0)
 | 
						|
        takeNode(data.start || 0, data.bufferStart || 0, children, positions, -1, 0);
 | 
						|
    let length = (_a = data.length) !== null && _a !== void 0 ? _a : (children.length ? positions[0] + children[0].length : 0);
 | 
						|
    return new Tree(types[data.topID], children.reverse(), positions.reverse(), length);
 | 
						|
}
 | 
						|
const nodeSizeCache = new WeakMap;
 | 
						|
function nodeSize(balanceType, node) {
 | 
						|
    if (!balanceType.isAnonymous || node instanceof TreeBuffer || node.type != balanceType)
 | 
						|
        return 1;
 | 
						|
    let size = nodeSizeCache.get(node);
 | 
						|
    if (size == null) {
 | 
						|
        size = 1;
 | 
						|
        for (let child of node.children) {
 | 
						|
            if (child.type != balanceType || !(child instanceof Tree)) {
 | 
						|
                size = 1;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            size += nodeSize(balanceType, child);
 | 
						|
        }
 | 
						|
        nodeSizeCache.set(node, size);
 | 
						|
    }
 | 
						|
    return size;
 | 
						|
}
 | 
						|
function balanceRange(
 | 
						|
// The type the balanced tree's inner nodes.
 | 
						|
balanceType, 
 | 
						|
// The direct children and their positions
 | 
						|
children, positions, 
 | 
						|
// The index range in children/positions to use
 | 
						|
from, to, 
 | 
						|
// The start position of the nodes, relative to their parent.
 | 
						|
start, 
 | 
						|
// Length of the outer node
 | 
						|
length, 
 | 
						|
// Function to build the top node of the balanced tree
 | 
						|
mkTop, 
 | 
						|
// Function to build internal nodes for the balanced tree
 | 
						|
mkTree) {
 | 
						|
    let total = 0;
 | 
						|
    for (let i = from; i < to; i++)
 | 
						|
        total += nodeSize(balanceType, children[i]);
 | 
						|
    let maxChild = Math.ceil((total * 1.5) / 8 /* Balance.BranchFactor */);
 | 
						|
    let localChildren = [], localPositions = [];
 | 
						|
    function divide(children, positions, from, to, offset) {
 | 
						|
        for (let i = from; i < to;) {
 | 
						|
            let groupFrom = i, groupStart = positions[i], groupSize = nodeSize(balanceType, children[i]);
 | 
						|
            i++;
 | 
						|
            for (; i < to; i++) {
 | 
						|
                let nextSize = nodeSize(balanceType, children[i]);
 | 
						|
                if (groupSize + nextSize >= maxChild)
 | 
						|
                    break;
 | 
						|
                groupSize += nextSize;
 | 
						|
            }
 | 
						|
            if (i == groupFrom + 1) {
 | 
						|
                if (groupSize > maxChild) {
 | 
						|
                    let only = children[groupFrom]; // Only trees can have a size > 1
 | 
						|
                    divide(only.children, only.positions, 0, only.children.length, positions[groupFrom] + offset);
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
                localChildren.push(children[groupFrom]);
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                let length = positions[i - 1] + children[i - 1].length - groupStart;
 | 
						|
                localChildren.push(balanceRange(balanceType, children, positions, groupFrom, i, groupStart, length, null, mkTree));
 | 
						|
            }
 | 
						|
            localPositions.push(groupStart + offset - start);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    divide(children, positions, from, to, 0);
 | 
						|
    return (mkTop || mkTree)(localChildren, localPositions, length);
 | 
						|
}
 | 
						|
/**
 | 
						|
Provides a way to associate values with pieces of trees. As long
 | 
						|
as that part of the tree is reused, the associated values can be
 | 
						|
retrieved from an updated tree.
 | 
						|
*/
 | 
						|
class NodeWeakMap {
 | 
						|
    constructor() {
 | 
						|
        this.map = new WeakMap();
 | 
						|
    }
 | 
						|
    setBuffer(buffer, index, value) {
 | 
						|
        let inner = this.map.get(buffer);
 | 
						|
        if (!inner)
 | 
						|
            this.map.set(buffer, inner = new Map);
 | 
						|
        inner.set(index, value);
 | 
						|
    }
 | 
						|
    getBuffer(buffer, index) {
 | 
						|
        let inner = this.map.get(buffer);
 | 
						|
        return inner && inner.get(index);
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Set the value for this syntax node.
 | 
						|
    */
 | 
						|
    set(node, value) {
 | 
						|
        if (node instanceof BufferNode)
 | 
						|
            this.setBuffer(node.context.buffer, node.index, value);
 | 
						|
        else if (node instanceof TreeNode)
 | 
						|
            this.map.set(node.tree, value);
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Retrieve value for this syntax node, if it exists in the map.
 | 
						|
    */
 | 
						|
    get(node) {
 | 
						|
        return node instanceof BufferNode ? this.getBuffer(node.context.buffer, node.index)
 | 
						|
            : node instanceof TreeNode ? this.map.get(node.tree) : undefined;
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Set the value for the node that a cursor currently points to.
 | 
						|
    */
 | 
						|
    cursorSet(cursor, value) {
 | 
						|
        if (cursor.buffer)
 | 
						|
            this.setBuffer(cursor.buffer.buffer, cursor.index, value);
 | 
						|
        else
 | 
						|
            this.map.set(cursor.tree, value);
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Retrieve the value for the node that a cursor currently points
 | 
						|
    to.
 | 
						|
    */
 | 
						|
    cursorGet(cursor) {
 | 
						|
        return cursor.buffer ? this.getBuffer(cursor.buffer.buffer, cursor.index) : this.map.get(cursor.tree);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
Tree fragments are used during [incremental
 | 
						|
parsing](#common.Parser.startParse) to track parts of old trees
 | 
						|
that can be reused in a new parse. An array of fragments is used
 | 
						|
to track regions of an old tree whose nodes might be reused in new
 | 
						|
parses. Use the static
 | 
						|
[`applyChanges`](#common.TreeFragment^applyChanges) method to
 | 
						|
update fragments for document changes.
 | 
						|
*/
 | 
						|
class TreeFragment {
 | 
						|
    /**
 | 
						|
    Construct a tree fragment. You'll usually want to use
 | 
						|
    [`addTree`](#common.TreeFragment^addTree) and
 | 
						|
    [`applyChanges`](#common.TreeFragment^applyChanges) instead of
 | 
						|
    calling this directly.
 | 
						|
    */
 | 
						|
    constructor(
 | 
						|
    /**
 | 
						|
    The start of the unchanged range pointed to by this fragment.
 | 
						|
    This refers to an offset in the _updated_ document (as opposed
 | 
						|
    to the original tree).
 | 
						|
    */
 | 
						|
    from, 
 | 
						|
    /**
 | 
						|
    The end of the unchanged range.
 | 
						|
    */
 | 
						|
    to, 
 | 
						|
    /**
 | 
						|
    The tree that this fragment is based on.
 | 
						|
    */
 | 
						|
    tree, 
 | 
						|
    /**
 | 
						|
    The offset between the fragment's tree and the document that
 | 
						|
    this fragment can be used against. Add this when going from
 | 
						|
    document to tree positions, subtract it to go from tree to
 | 
						|
    document positions.
 | 
						|
    */
 | 
						|
    offset, openStart = false, openEnd = false) {
 | 
						|
        this.from = from;
 | 
						|
        this.to = to;
 | 
						|
        this.tree = tree;
 | 
						|
        this.offset = offset;
 | 
						|
        this.open = (openStart ? 1 /* Open.Start */ : 0) | (openEnd ? 2 /* Open.End */ : 0);
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Whether the start of the fragment represents the start of a
 | 
						|
    parse, or the end of a change. (In the second case, it may not
 | 
						|
    be safe to reuse some nodes at the start, depending on the
 | 
						|
    parsing algorithm.)
 | 
						|
    */
 | 
						|
    get openStart() { return (this.open & 1 /* Open.Start */) > 0; }
 | 
						|
    /**
 | 
						|
    Whether the end of the fragment represents the end of a
 | 
						|
    full-document parse, or the start of a change.
 | 
						|
    */
 | 
						|
    get openEnd() { return (this.open & 2 /* Open.End */) > 0; }
 | 
						|
    /**
 | 
						|
    Create a set of fragments from a freshly parsed tree, or update
 | 
						|
    an existing set of fragments by replacing the ones that overlap
 | 
						|
    with a tree with content from the new tree. When `partial` is
 | 
						|
    true, the parse is treated as incomplete, and the resulting
 | 
						|
    fragment has [`openEnd`](#common.TreeFragment.openEnd) set to
 | 
						|
    true.
 | 
						|
    */
 | 
						|
    static addTree(tree, fragments = [], partial = false) {
 | 
						|
        let result = [new TreeFragment(0, tree.length, tree, 0, false, partial)];
 | 
						|
        for (let f of fragments)
 | 
						|
            if (f.to > tree.length)
 | 
						|
                result.push(f);
 | 
						|
        return result;
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Apply a set of edits to an array of fragments, removing or
 | 
						|
    splitting fragments as necessary to remove edited ranges, and
 | 
						|
    adjusting offsets for fragments that moved.
 | 
						|
    */
 | 
						|
    static applyChanges(fragments, changes, minGap = 128) {
 | 
						|
        if (!changes.length)
 | 
						|
            return fragments;
 | 
						|
        let result = [];
 | 
						|
        let fI = 1, nextF = fragments.length ? fragments[0] : null;
 | 
						|
        for (let cI = 0, pos = 0, off = 0;; cI++) {
 | 
						|
            let nextC = cI < changes.length ? changes[cI] : null;
 | 
						|
            let nextPos = nextC ? nextC.fromA : 1e9;
 | 
						|
            if (nextPos - pos >= minGap)
 | 
						|
                while (nextF && nextF.from < nextPos) {
 | 
						|
                    let cut = nextF;
 | 
						|
                    if (pos >= cut.from || nextPos <= cut.to || off) {
 | 
						|
                        let fFrom = Math.max(cut.from, pos) - off, fTo = Math.min(cut.to, nextPos) - off;
 | 
						|
                        cut = fFrom >= fTo ? null : new TreeFragment(fFrom, fTo, cut.tree, cut.offset + off, cI > 0, !!nextC);
 | 
						|
                    }
 | 
						|
                    if (cut)
 | 
						|
                        result.push(cut);
 | 
						|
                    if (nextF.to > nextPos)
 | 
						|
                        break;
 | 
						|
                    nextF = fI < fragments.length ? fragments[fI++] : null;
 | 
						|
                }
 | 
						|
            if (!nextC)
 | 
						|
                break;
 | 
						|
            pos = nextC.toA;
 | 
						|
            off = nextC.toA - nextC.toB;
 | 
						|
        }
 | 
						|
        return result;
 | 
						|
    }
 | 
						|
}
 | 
						|
/**
 | 
						|
A superclass that parsers should extend.
 | 
						|
*/
 | 
						|
class Parser {
 | 
						|
    /**
 | 
						|
    Start a parse, returning a [partial parse](#common.PartialParse)
 | 
						|
    object. [`fragments`](#common.TreeFragment) can be passed in to
 | 
						|
    make the parse incremental.
 | 
						|
    
 | 
						|
    By default, the entire input is parsed. You can pass `ranges`,
 | 
						|
    which should be a sorted array of non-empty, non-overlapping
 | 
						|
    ranges, to parse only those ranges. The tree returned in that
 | 
						|
    case will start at `ranges[0].from`.
 | 
						|
    */
 | 
						|
    startParse(input, fragments, ranges) {
 | 
						|
        if (typeof input == "string")
 | 
						|
            input = new StringInput(input);
 | 
						|
        ranges = !ranges ? [new Range(0, input.length)] : ranges.length ? ranges.map(r => new Range(r.from, r.to)) : [new Range(0, 0)];
 | 
						|
        return this.createParse(input, fragments || [], ranges);
 | 
						|
    }
 | 
						|
    /**
 | 
						|
    Run a full parse, returning the resulting tree.
 | 
						|
    */
 | 
						|
    parse(input, fragments, ranges) {
 | 
						|
        let parse = this.startParse(input, fragments, ranges);
 | 
						|
        for (;;) {
 | 
						|
            let done = parse.advance();
 | 
						|
            if (done)
 | 
						|
                return done;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
class StringInput {
 | 
						|
    constructor(string) {
 | 
						|
        this.string = string;
 | 
						|
    }
 | 
						|
    get length() { return this.string.length; }
 | 
						|
    chunk(from) { return this.string.slice(from); }
 | 
						|
    get lineChunks() { return false; }
 | 
						|
    read(from, to) { return this.string.slice(from, to); }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
Create a parse wrapper that, after the inner parse completes,
 | 
						|
scans its tree for mixed language regions with the `nest`
 | 
						|
function, runs the resulting [inner parses](#common.NestedParse),
 | 
						|
and then [mounts](#common.NodeProp^mounted) their results onto the
 | 
						|
tree.
 | 
						|
*/
 | 
						|
function parseMixed(nest) {
 | 
						|
    return (parse, input, fragments, ranges) => new MixedParse(parse, nest, input, fragments, ranges);
 | 
						|
}
 | 
						|
class InnerParse {
 | 
						|
    constructor(parser, parse, overlay, target, from) {
 | 
						|
        this.parser = parser;
 | 
						|
        this.parse = parse;
 | 
						|
        this.overlay = overlay;
 | 
						|
        this.target = target;
 | 
						|
        this.from = from;
 | 
						|
    }
 | 
						|
}
 | 
						|
function checkRanges(ranges) {
 | 
						|
    if (!ranges.length || ranges.some(r => r.from >= r.to))
 | 
						|
        throw new RangeError("Invalid inner parse ranges given: " + JSON.stringify(ranges));
 | 
						|
}
 | 
						|
class ActiveOverlay {
 | 
						|
    constructor(parser, predicate, mounts, index, start, target, prev) {
 | 
						|
        this.parser = parser;
 | 
						|
        this.predicate = predicate;
 | 
						|
        this.mounts = mounts;
 | 
						|
        this.index = index;
 | 
						|
        this.start = start;
 | 
						|
        this.target = target;
 | 
						|
        this.prev = prev;
 | 
						|
        this.depth = 0;
 | 
						|
        this.ranges = [];
 | 
						|
    }
 | 
						|
}
 | 
						|
const stoppedInner = new NodeProp({ perNode: true });
 | 
						|
class MixedParse {
 | 
						|
    constructor(base, nest, input, fragments, ranges) {
 | 
						|
        this.nest = nest;
 | 
						|
        this.input = input;
 | 
						|
        this.fragments = fragments;
 | 
						|
        this.ranges = ranges;
 | 
						|
        this.inner = [];
 | 
						|
        this.innerDone = 0;
 | 
						|
        this.baseTree = null;
 | 
						|
        this.stoppedAt = null;
 | 
						|
        this.baseParse = base;
 | 
						|
    }
 | 
						|
    advance() {
 | 
						|
        if (this.baseParse) {
 | 
						|
            let done = this.baseParse.advance();
 | 
						|
            if (!done)
 | 
						|
                return null;
 | 
						|
            this.baseParse = null;
 | 
						|
            this.baseTree = done;
 | 
						|
            this.startInner();
 | 
						|
            if (this.stoppedAt != null)
 | 
						|
                for (let inner of this.inner)
 | 
						|
                    inner.parse.stopAt(this.stoppedAt);
 | 
						|
        }
 | 
						|
        if (this.innerDone == this.inner.length) {
 | 
						|
            let result = this.baseTree;
 | 
						|
            if (this.stoppedAt != null)
 | 
						|
                result = new Tree(result.type, result.children, result.positions, result.length, result.propValues.concat([[stoppedInner, this.stoppedAt]]));
 | 
						|
            return result;
 | 
						|
        }
 | 
						|
        let inner = this.inner[this.innerDone], done = inner.parse.advance();
 | 
						|
        if (done) {
 | 
						|
            this.innerDone++;
 | 
						|
            // This is a somewhat dodgy but super helpful hack where we
 | 
						|
            // patch up nodes created by the inner parse (and thus
 | 
						|
            // presumably not aliased anywhere else) to hold the information
 | 
						|
            // about the inner parse.
 | 
						|
            let props = Object.assign(Object.create(null), inner.target.props);
 | 
						|
            props[NodeProp.mounted.id] = new MountedTree(done, inner.overlay, inner.parser);
 | 
						|
            inner.target.props = props;
 | 
						|
        }
 | 
						|
        return null;
 | 
						|
    }
 | 
						|
    get parsedPos() {
 | 
						|
        if (this.baseParse)
 | 
						|
            return 0;
 | 
						|
        let pos = this.input.length;
 | 
						|
        for (let i = this.innerDone; i < this.inner.length; i++) {
 | 
						|
            if (this.inner[i].from < pos)
 | 
						|
                pos = Math.min(pos, this.inner[i].parse.parsedPos);
 | 
						|
        }
 | 
						|
        return pos;
 | 
						|
    }
 | 
						|
    stopAt(pos) {
 | 
						|
        this.stoppedAt = pos;
 | 
						|
        if (this.baseParse)
 | 
						|
            this.baseParse.stopAt(pos);
 | 
						|
        else
 | 
						|
            for (let i = this.innerDone; i < this.inner.length; i++)
 | 
						|
                this.inner[i].parse.stopAt(pos);
 | 
						|
    }
 | 
						|
    startInner() {
 | 
						|
        let fragmentCursor = new FragmentCursor(this.fragments);
 | 
						|
        let overlay = null;
 | 
						|
        let covered = null;
 | 
						|
        let cursor = new TreeCursor(new TreeNode(this.baseTree, this.ranges[0].from, 0, null), IterMode.IncludeAnonymous | IterMode.IgnoreMounts);
 | 
						|
        scan: for (let nest, isCovered;;) {
 | 
						|
            let enter = true, range;
 | 
						|
            if (this.stoppedAt != null && cursor.from >= this.stoppedAt) {
 | 
						|
                enter = false;
 | 
						|
            }
 | 
						|
            else if (fragmentCursor.hasNode(cursor)) {
 | 
						|
                if (overlay) {
 | 
						|
                    let match = overlay.mounts.find(m => m.frag.from <= cursor.from && m.frag.to >= cursor.to && m.mount.overlay);
 | 
						|
                    if (match)
 | 
						|
                        for (let r of match.mount.overlay) {
 | 
						|
                            let from = r.from + match.pos, to = r.to + match.pos;
 | 
						|
                            if (from >= cursor.from && to <= cursor.to && !overlay.ranges.some(r => r.from < to && r.to > from))
 | 
						|
                                overlay.ranges.push({ from, to });
 | 
						|
                        }
 | 
						|
                }
 | 
						|
                enter = false;
 | 
						|
            }
 | 
						|
            else if (covered && (isCovered = checkCover(covered.ranges, cursor.from, cursor.to))) {
 | 
						|
                enter = isCovered != 2 /* Cover.Full */;
 | 
						|
            }
 | 
						|
            else if (!cursor.type.isAnonymous && (nest = this.nest(cursor, this.input)) &&
 | 
						|
                (cursor.from < cursor.to || !nest.overlay)) {
 | 
						|
                if (!cursor.tree)
 | 
						|
                    materialize(cursor);
 | 
						|
                let oldMounts = fragmentCursor.findMounts(cursor.from, nest.parser);
 | 
						|
                if (typeof nest.overlay == "function") {
 | 
						|
                    overlay = new ActiveOverlay(nest.parser, nest.overlay, oldMounts, this.inner.length, cursor.from, cursor.tree, overlay);
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    let ranges = punchRanges(this.ranges, nest.overlay ||
 | 
						|
                        (cursor.from < cursor.to ? [new Range(cursor.from, cursor.to)] : []));
 | 
						|
                    if (ranges.length)
 | 
						|
                        checkRanges(ranges);
 | 
						|
                    if (ranges.length || !nest.overlay)
 | 
						|
                        this.inner.push(new InnerParse(nest.parser, ranges.length ? nest.parser.startParse(this.input, enterFragments(oldMounts, ranges), ranges)
 | 
						|
                            : nest.parser.startParse(""), nest.overlay ? nest.overlay.map(r => new Range(r.from - cursor.from, r.to - cursor.from)) : null, cursor.tree, ranges.length ? ranges[0].from : cursor.from));
 | 
						|
                    if (!nest.overlay)
 | 
						|
                        enter = false;
 | 
						|
                    else if (ranges.length)
 | 
						|
                        covered = { ranges, depth: 0, prev: covered };
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else if (overlay && (range = overlay.predicate(cursor))) {
 | 
						|
                if (range === true)
 | 
						|
                    range = new Range(cursor.from, cursor.to);
 | 
						|
                if (range.from < range.to)
 | 
						|
                    overlay.ranges.push(range);
 | 
						|
            }
 | 
						|
            if (enter && cursor.firstChild()) {
 | 
						|
                if (overlay)
 | 
						|
                    overlay.depth++;
 | 
						|
                if (covered)
 | 
						|
                    covered.depth++;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                for (;;) {
 | 
						|
                    if (cursor.nextSibling())
 | 
						|
                        break;
 | 
						|
                    if (!cursor.parent())
 | 
						|
                        break scan;
 | 
						|
                    if (overlay && !--overlay.depth) {
 | 
						|
                        let ranges = punchRanges(this.ranges, overlay.ranges);
 | 
						|
                        if (ranges.length) {
 | 
						|
                            checkRanges(ranges);
 | 
						|
                            this.inner.splice(overlay.index, 0, new InnerParse(overlay.parser, overlay.parser.startParse(this.input, enterFragments(overlay.mounts, ranges), ranges), overlay.ranges.map(r => new Range(r.from - overlay.start, r.to - overlay.start)), overlay.target, ranges[0].from));
 | 
						|
                        }
 | 
						|
                        overlay = overlay.prev;
 | 
						|
                    }
 | 
						|
                    if (covered && !--covered.depth)
 | 
						|
                        covered = covered.prev;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
function checkCover(covered, from, to) {
 | 
						|
    for (let range of covered) {
 | 
						|
        if (range.from >= to)
 | 
						|
            break;
 | 
						|
        if (range.to > from)
 | 
						|
            return range.from <= from && range.to >= to ? 2 /* Cover.Full */ : 1 /* Cover.Partial */;
 | 
						|
    }
 | 
						|
    return 0 /* Cover.None */;
 | 
						|
}
 | 
						|
// Take a piece of buffer and convert it into a stand-alone
 | 
						|
// TreeBuffer.
 | 
						|
function sliceBuf(buf, startI, endI, nodes, positions, off) {
 | 
						|
    if (startI < endI) {
 | 
						|
        let from = buf.buffer[startI + 1];
 | 
						|
        nodes.push(buf.slice(startI, endI, from));
 | 
						|
        positions.push(from - off);
 | 
						|
    }
 | 
						|
}
 | 
						|
// This function takes a node that's in a buffer, and converts it, and
 | 
						|
// its parent buffer nodes, into a Tree. This is again acting on the
 | 
						|
// assumption that the trees and buffers have been constructed by the
 | 
						|
// parse that was ran via the mix parser, and thus aren't shared with
 | 
						|
// any other code, making violations of the immutability safe.
 | 
						|
function materialize(cursor) {
 | 
						|
    let { node } = cursor, stack = [];
 | 
						|
    let buffer = node.context.buffer;
 | 
						|
    // Scan up to the nearest tree
 | 
						|
    do {
 | 
						|
        stack.push(cursor.index);
 | 
						|
        cursor.parent();
 | 
						|
    } while (!cursor.tree);
 | 
						|
    // Find the index of the buffer in that tree
 | 
						|
    let base = cursor.tree, i = base.children.indexOf(buffer);
 | 
						|
    let buf = base.children[i], b = buf.buffer, newStack = [i];
 | 
						|
    // Split a level in the buffer, putting the nodes before and after
 | 
						|
    // the child that contains `node` into new buffers.
 | 
						|
    function split(startI, endI, type, innerOffset, length, stackPos) {
 | 
						|
        let targetI = stack[stackPos];
 | 
						|
        let children = [], positions = [];
 | 
						|
        sliceBuf(buf, startI, targetI, children, positions, innerOffset);
 | 
						|
        let from = b[targetI + 1], to = b[targetI + 2];
 | 
						|
        newStack.push(children.length);
 | 
						|
        let child = stackPos
 | 
						|
            ? split(targetI + 4, b[targetI + 3], buf.set.types[b[targetI]], from, to - from, stackPos - 1)
 | 
						|
            : node.toTree();
 | 
						|
        children.push(child);
 | 
						|
        positions.push(from - innerOffset);
 | 
						|
        sliceBuf(buf, b[targetI + 3], endI, children, positions, innerOffset);
 | 
						|
        return new Tree(type, children, positions, length);
 | 
						|
    }
 | 
						|
    base.children[i] = split(0, b.length, NodeType.none, 0, buf.length, stack.length - 1);
 | 
						|
    // Move the cursor back to the target node
 | 
						|
    for (let index of newStack) {
 | 
						|
        let tree = cursor.tree.children[index], pos = cursor.tree.positions[index];
 | 
						|
        cursor.yield(new TreeNode(tree, pos + cursor.from, index, cursor._tree));
 | 
						|
    }
 | 
						|
}
 | 
						|
class StructureCursor {
 | 
						|
    constructor(root, offset) {
 | 
						|
        this.offset = offset;
 | 
						|
        this.done = false;
 | 
						|
        this.cursor = root.cursor(IterMode.IncludeAnonymous | IterMode.IgnoreMounts);
 | 
						|
    }
 | 
						|
    // Move to the first node (in pre-order) that starts at or after `pos`.
 | 
						|
    moveTo(pos) {
 | 
						|
        let { cursor } = this, p = pos - this.offset;
 | 
						|
        while (!this.done && cursor.from < p) {
 | 
						|
            if (cursor.to >= pos && cursor.enter(p, 1, IterMode.IgnoreOverlays | IterMode.ExcludeBuffers)) ;
 | 
						|
            else if (!cursor.next(false))
 | 
						|
                this.done = true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    hasNode(cursor) {
 | 
						|
        this.moveTo(cursor.from);
 | 
						|
        if (!this.done && this.cursor.from + this.offset == cursor.from && this.cursor.tree) {
 | 
						|
            for (let tree = this.cursor.tree;;) {
 | 
						|
                if (tree == cursor.tree)
 | 
						|
                    return true;
 | 
						|
                if (tree.children.length && tree.positions[0] == 0 && tree.children[0] instanceof Tree)
 | 
						|
                    tree = tree.children[0];
 | 
						|
                else
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
}
 | 
						|
class FragmentCursor {
 | 
						|
    constructor(fragments) {
 | 
						|
        var _a;
 | 
						|
        this.fragments = fragments;
 | 
						|
        this.curTo = 0;
 | 
						|
        this.fragI = 0;
 | 
						|
        if (fragments.length) {
 | 
						|
            let first = this.curFrag = fragments[0];
 | 
						|
            this.curTo = (_a = first.tree.prop(stoppedInner)) !== null && _a !== void 0 ? _a : first.to;
 | 
						|
            this.inner = new StructureCursor(first.tree, -first.offset);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            this.curFrag = this.inner = null;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    hasNode(node) {
 | 
						|
        while (this.curFrag && node.from >= this.curTo)
 | 
						|
            this.nextFrag();
 | 
						|
        return this.curFrag && this.curFrag.from <= node.from && this.curTo >= node.to && this.inner.hasNode(node);
 | 
						|
    }
 | 
						|
    nextFrag() {
 | 
						|
        var _a;
 | 
						|
        this.fragI++;
 | 
						|
        if (this.fragI == this.fragments.length) {
 | 
						|
            this.curFrag = this.inner = null;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            let frag = this.curFrag = this.fragments[this.fragI];
 | 
						|
            this.curTo = (_a = frag.tree.prop(stoppedInner)) !== null && _a !== void 0 ? _a : frag.to;
 | 
						|
            this.inner = new StructureCursor(frag.tree, -frag.offset);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    findMounts(pos, parser) {
 | 
						|
        var _a;
 | 
						|
        let result = [];
 | 
						|
        if (this.inner) {
 | 
						|
            this.inner.cursor.moveTo(pos, 1);
 | 
						|
            for (let pos = this.inner.cursor.node; pos; pos = pos.parent) {
 | 
						|
                let mount = (_a = pos.tree) === null || _a === void 0 ? void 0 : _a.prop(NodeProp.mounted);
 | 
						|
                if (mount && mount.parser == parser) {
 | 
						|
                    for (let i = this.fragI; i < this.fragments.length; i++) {
 | 
						|
                        let frag = this.fragments[i];
 | 
						|
                        if (frag.from >= pos.to)
 | 
						|
                            break;
 | 
						|
                        if (frag.tree == this.curFrag.tree)
 | 
						|
                            result.push({
 | 
						|
                                frag,
 | 
						|
                                pos: pos.from - frag.offset,
 | 
						|
                                mount
 | 
						|
                            });
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return result;
 | 
						|
    }
 | 
						|
}
 | 
						|
function punchRanges(outer, ranges) {
 | 
						|
    let copy = null, current = ranges;
 | 
						|
    for (let i = 1, j = 0; i < outer.length; i++) {
 | 
						|
        let gapFrom = outer[i - 1].to, gapTo = outer[i].from;
 | 
						|
        for (; j < current.length; j++) {
 | 
						|
            let r = current[j];
 | 
						|
            if (r.from >= gapTo)
 | 
						|
                break;
 | 
						|
            if (r.to <= gapFrom)
 | 
						|
                continue;
 | 
						|
            if (!copy)
 | 
						|
                current = copy = ranges.slice();
 | 
						|
            if (r.from < gapFrom) {
 | 
						|
                copy[j] = new Range(r.from, gapFrom);
 | 
						|
                if (r.to > gapTo)
 | 
						|
                    copy.splice(j + 1, 0, new Range(gapTo, r.to));
 | 
						|
            }
 | 
						|
            else if (r.to > gapTo) {
 | 
						|
                copy[j--] = new Range(gapTo, r.to);
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                copy.splice(j--, 1);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return current;
 | 
						|
}
 | 
						|
function findCoverChanges(a, b, from, to) {
 | 
						|
    let iA = 0, iB = 0, inA = false, inB = false, pos = -1e9;
 | 
						|
    let result = [];
 | 
						|
    for (;;) {
 | 
						|
        let nextA = iA == a.length ? 1e9 : inA ? a[iA].to : a[iA].from;
 | 
						|
        let nextB = iB == b.length ? 1e9 : inB ? b[iB].to : b[iB].from;
 | 
						|
        if (inA != inB) {
 | 
						|
            let start = Math.max(pos, from), end = Math.min(nextA, nextB, to);
 | 
						|
            if (start < end)
 | 
						|
                result.push(new Range(start, end));
 | 
						|
        }
 | 
						|
        pos = Math.min(nextA, nextB);
 | 
						|
        if (pos == 1e9)
 | 
						|
            break;
 | 
						|
        if (nextA == pos) {
 | 
						|
            if (!inA)
 | 
						|
                inA = true;
 | 
						|
            else {
 | 
						|
                inA = false;
 | 
						|
                iA++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (nextB == pos) {
 | 
						|
            if (!inB)
 | 
						|
                inB = true;
 | 
						|
            else {
 | 
						|
                inB = false;
 | 
						|
                iB++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
}
 | 
						|
// Given a number of fragments for the outer tree, and a set of ranges
 | 
						|
// to parse, find fragments for inner trees mounted around those
 | 
						|
// ranges, if any.
 | 
						|
function enterFragments(mounts, ranges) {
 | 
						|
    let result = [];
 | 
						|
    for (let { pos, mount, frag } of mounts) {
 | 
						|
        let startPos = pos + (mount.overlay ? mount.overlay[0].from : 0), endPos = startPos + mount.tree.length;
 | 
						|
        let from = Math.max(frag.from, startPos), to = Math.min(frag.to, endPos);
 | 
						|
        if (mount.overlay) {
 | 
						|
            let overlay = mount.overlay.map(r => new Range(r.from + pos, r.to + pos));
 | 
						|
            let changes = findCoverChanges(ranges, overlay, from, to);
 | 
						|
            for (let i = 0, pos = from;; i++) {
 | 
						|
                let last = i == changes.length, end = last ? to : changes[i].from;
 | 
						|
                if (end > pos)
 | 
						|
                    result.push(new TreeFragment(pos, end, mount.tree, -startPos, frag.from >= pos || frag.openStart, frag.to <= end || frag.openEnd));
 | 
						|
                if (last)
 | 
						|
                    break;
 | 
						|
                pos = changes[i].to;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            result.push(new TreeFragment(from, to, mount.tree, -startPos, frag.from >= startPos || frag.openStart, frag.to <= endPos || frag.openEnd));
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/***/ })
 | 
						|
 | 
						|
}]);
 | 
						|
//# sourceMappingURL=7997.1469ff294f8b64fd26ec.js.map?v=1469ff294f8b64fd26ec
 |