You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			168 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			168 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Python
		
	
"""Test functions for fftpack.helper module
 | 
						|
 | 
						|
Copied from fftpack.helper by Pearu Peterson, October 2005
 | 
						|
 | 
						|
"""
 | 
						|
import numpy as np
 | 
						|
from numpy import fft, pi
 | 
						|
from numpy.testing import assert_array_almost_equal
 | 
						|
 | 
						|
 | 
						|
class TestFFTShift:
 | 
						|
 | 
						|
    def test_definition(self):
 | 
						|
        x = [0, 1, 2, 3, 4, -4, -3, -2, -1]
 | 
						|
        y = [-4, -3, -2, -1, 0, 1, 2, 3, 4]
 | 
						|
        assert_array_almost_equal(fft.fftshift(x), y)
 | 
						|
        assert_array_almost_equal(fft.ifftshift(y), x)
 | 
						|
        x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1]
 | 
						|
        y = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]
 | 
						|
        assert_array_almost_equal(fft.fftshift(x), y)
 | 
						|
        assert_array_almost_equal(fft.ifftshift(y), x)
 | 
						|
 | 
						|
    def test_inverse(self):
 | 
						|
        for n in [1, 4, 9, 100, 211]:
 | 
						|
            x = np.random.random((n,))
 | 
						|
            assert_array_almost_equal(fft.ifftshift(fft.fftshift(x)), x)
 | 
						|
 | 
						|
    def test_axes_keyword(self):
 | 
						|
        freqs = [[0, 1, 2], [3, 4, -4], [-3, -2, -1]]
 | 
						|
        shifted = [[-1, -3, -2], [2, 0, 1], [-4, 3, 4]]
 | 
						|
        assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shifted)
 | 
						|
        assert_array_almost_equal(fft.fftshift(freqs, axes=0),
 | 
						|
                                  fft.fftshift(freqs, axes=(0,)))
 | 
						|
        assert_array_almost_equal(fft.ifftshift(shifted, axes=(0, 1)), freqs)
 | 
						|
        assert_array_almost_equal(fft.ifftshift(shifted, axes=0),
 | 
						|
                                  fft.ifftshift(shifted, axes=(0,)))
 | 
						|
 | 
						|
        assert_array_almost_equal(fft.fftshift(freqs), shifted)
 | 
						|
        assert_array_almost_equal(fft.ifftshift(shifted), freqs)
 | 
						|
 | 
						|
    def test_uneven_dims(self):
 | 
						|
        """ Test 2D input, which has uneven dimension sizes """
 | 
						|
        freqs = [
 | 
						|
            [0, 1],
 | 
						|
            [2, 3],
 | 
						|
            [4, 5]
 | 
						|
        ]
 | 
						|
 | 
						|
        # shift in dimension 0
 | 
						|
        shift_dim0 = [
 | 
						|
            [4, 5],
 | 
						|
            [0, 1],
 | 
						|
            [2, 3]
 | 
						|
        ]
 | 
						|
        assert_array_almost_equal(fft.fftshift(freqs, axes=0), shift_dim0)
 | 
						|
        assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=0), freqs)
 | 
						|
        assert_array_almost_equal(fft.fftshift(freqs, axes=(0,)), shift_dim0)
 | 
						|
        assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=[0]), freqs)
 | 
						|
 | 
						|
        # shift in dimension 1
 | 
						|
        shift_dim1 = [
 | 
						|
            [1, 0],
 | 
						|
            [3, 2],
 | 
						|
            [5, 4]
 | 
						|
        ]
 | 
						|
        assert_array_almost_equal(fft.fftshift(freqs, axes=1), shift_dim1)
 | 
						|
        assert_array_almost_equal(fft.ifftshift(shift_dim1, axes=1), freqs)
 | 
						|
 | 
						|
        # shift in both dimensions
 | 
						|
        shift_dim_both = [
 | 
						|
            [5, 4],
 | 
						|
            [1, 0],
 | 
						|
            [3, 2]
 | 
						|
        ]
 | 
						|
        assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shift_dim_both)
 | 
						|
        assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=(0, 1)), freqs)
 | 
						|
        assert_array_almost_equal(fft.fftshift(freqs, axes=[0, 1]), shift_dim_both)
 | 
						|
        assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=[0, 1]), freqs)
 | 
						|
 | 
						|
        # axes=None (default) shift in all dimensions
 | 
						|
        assert_array_almost_equal(fft.fftshift(freqs, axes=None), shift_dim_both)
 | 
						|
        assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=None), freqs)
 | 
						|
        assert_array_almost_equal(fft.fftshift(freqs), shift_dim_both)
 | 
						|
        assert_array_almost_equal(fft.ifftshift(shift_dim_both), freqs)
 | 
						|
 | 
						|
    def test_equal_to_original(self):
 | 
						|
        """ Test the new (>=v1.15) and old implementations are equal (see #10073) """
 | 
						|
        from numpy._core import arange, asarray, concatenate, take
 | 
						|
 | 
						|
        def original_fftshift(x, axes=None):
 | 
						|
            """ How fftshift was implemented in v1.14"""
 | 
						|
            tmp = asarray(x)
 | 
						|
            ndim = tmp.ndim
 | 
						|
            if axes is None:
 | 
						|
                axes = list(range(ndim))
 | 
						|
            elif isinstance(axes, int):
 | 
						|
                axes = (axes,)
 | 
						|
            y = tmp
 | 
						|
            for k in axes:
 | 
						|
                n = tmp.shape[k]
 | 
						|
                p2 = (n + 1) // 2
 | 
						|
                mylist = concatenate((arange(p2, n), arange(p2)))
 | 
						|
                y = take(y, mylist, k)
 | 
						|
            return y
 | 
						|
 | 
						|
        def original_ifftshift(x, axes=None):
 | 
						|
            """ How ifftshift was implemented in v1.14 """
 | 
						|
            tmp = asarray(x)
 | 
						|
            ndim = tmp.ndim
 | 
						|
            if axes is None:
 | 
						|
                axes = list(range(ndim))
 | 
						|
            elif isinstance(axes, int):
 | 
						|
                axes = (axes,)
 | 
						|
            y = tmp
 | 
						|
            for k in axes:
 | 
						|
                n = tmp.shape[k]
 | 
						|
                p2 = n - (n + 1) // 2
 | 
						|
                mylist = concatenate((arange(p2, n), arange(p2)))
 | 
						|
                y = take(y, mylist, k)
 | 
						|
            return y
 | 
						|
 | 
						|
        # create possible 2d array combinations and try all possible keywords
 | 
						|
        # compare output to original functions
 | 
						|
        for i in range(16):
 | 
						|
            for j in range(16):
 | 
						|
                for axes_keyword in [0, 1, None, (0,), (0, 1)]:
 | 
						|
                    inp = np.random.rand(i, j)
 | 
						|
 | 
						|
                    assert_array_almost_equal(fft.fftshift(inp, axes_keyword),
 | 
						|
                                              original_fftshift(inp, axes_keyword))
 | 
						|
 | 
						|
                    assert_array_almost_equal(fft.ifftshift(inp, axes_keyword),
 | 
						|
                                              original_ifftshift(inp, axes_keyword))
 | 
						|
 | 
						|
 | 
						|
class TestFFTFreq:
 | 
						|
 | 
						|
    def test_definition(self):
 | 
						|
        x = [0, 1, 2, 3, 4, -4, -3, -2, -1]
 | 
						|
        assert_array_almost_equal(9 * fft.fftfreq(9), x)
 | 
						|
        assert_array_almost_equal(9 * pi * fft.fftfreq(9, pi), x)
 | 
						|
        x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1]
 | 
						|
        assert_array_almost_equal(10 * fft.fftfreq(10), x)
 | 
						|
        assert_array_almost_equal(10 * pi * fft.fftfreq(10, pi), x)
 | 
						|
 | 
						|
 | 
						|
class TestRFFTFreq:
 | 
						|
 | 
						|
    def test_definition(self):
 | 
						|
        x = [0, 1, 2, 3, 4]
 | 
						|
        assert_array_almost_equal(9 * fft.rfftfreq(9), x)
 | 
						|
        assert_array_almost_equal(9 * pi * fft.rfftfreq(9, pi), x)
 | 
						|
        x = [0, 1, 2, 3, 4, 5]
 | 
						|
        assert_array_almost_equal(10 * fft.rfftfreq(10), x)
 | 
						|
        assert_array_almost_equal(10 * pi * fft.rfftfreq(10, pi), x)
 | 
						|
 | 
						|
 | 
						|
class TestIRFFTN:
 | 
						|
 | 
						|
    def test_not_last_axis_success(self):
 | 
						|
        ar, ai = np.random.random((2, 16, 8, 32))
 | 
						|
        a = ar + 1j * ai
 | 
						|
 | 
						|
        axes = (-2,)
 | 
						|
 | 
						|
        # Should not raise error
 | 
						|
        fft.irfftn(a, axes=axes)
 |