You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			3683 lines
		
	
	
		
			112 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			3683 lines
		
	
	
		
			112 KiB
		
	
	
	
		
			Python
		
	
"""Lite version of scipy.linalg.
 | 
						|
 | 
						|
Notes
 | 
						|
-----
 | 
						|
This module is a lite version of the linalg.py module in SciPy which
 | 
						|
contains high-level Python interface to the LAPACK library.  The lite
 | 
						|
version only accesses the following LAPACK functions: dgesv, zgesv,
 | 
						|
dgeev, zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf,
 | 
						|
zgetrf, dpotrf, zpotrf, dgeqrf, zgeqrf, zungqr, dorgqr.
 | 
						|
"""
 | 
						|
 | 
						|
__all__ = ['matrix_power', 'solve', 'tensorsolve', 'tensorinv', 'inv',
 | 
						|
           'cholesky', 'eigvals', 'eigvalsh', 'pinv', 'slogdet', 'det',
 | 
						|
           'svd', 'svdvals', 'eig', 'eigh', 'lstsq', 'norm', 'qr', 'cond',
 | 
						|
           'matrix_rank', 'LinAlgError', 'multi_dot', 'trace', 'diagonal',
 | 
						|
           'cross', 'outer', 'tensordot', 'matmul', 'matrix_transpose',
 | 
						|
           'matrix_norm', 'vector_norm', 'vecdot']
 | 
						|
 | 
						|
import functools
 | 
						|
import operator
 | 
						|
import warnings
 | 
						|
from typing import Any, NamedTuple
 | 
						|
 | 
						|
from numpy._core import (
 | 
						|
    abs,
 | 
						|
    add,
 | 
						|
    all,
 | 
						|
    amax,
 | 
						|
    amin,
 | 
						|
    argsort,
 | 
						|
    array,
 | 
						|
    asanyarray,
 | 
						|
    asarray,
 | 
						|
    atleast_2d,
 | 
						|
    cdouble,
 | 
						|
    complexfloating,
 | 
						|
    count_nonzero,
 | 
						|
    csingle,
 | 
						|
    divide,
 | 
						|
    dot,
 | 
						|
    double,
 | 
						|
    empty,
 | 
						|
    empty_like,
 | 
						|
    errstate,
 | 
						|
    finfo,
 | 
						|
    inexact,
 | 
						|
    inf,
 | 
						|
    intc,
 | 
						|
    intp,
 | 
						|
    isfinite,
 | 
						|
    isnan,
 | 
						|
    moveaxis,
 | 
						|
    multiply,
 | 
						|
    newaxis,
 | 
						|
    object_,
 | 
						|
    overrides,
 | 
						|
    prod,
 | 
						|
    reciprocal,
 | 
						|
    sign,
 | 
						|
    single,
 | 
						|
    sort,
 | 
						|
    sqrt,
 | 
						|
    sum,
 | 
						|
    swapaxes,
 | 
						|
    zeros,
 | 
						|
)
 | 
						|
from numpy._core import (
 | 
						|
    cross as _core_cross,
 | 
						|
)
 | 
						|
from numpy._core import (
 | 
						|
    diagonal as _core_diagonal,
 | 
						|
)
 | 
						|
from numpy._core import (
 | 
						|
    matmul as _core_matmul,
 | 
						|
)
 | 
						|
from numpy._core import (
 | 
						|
    matrix_transpose as _core_matrix_transpose,
 | 
						|
)
 | 
						|
from numpy._core import (
 | 
						|
    outer as _core_outer,
 | 
						|
)
 | 
						|
from numpy._core import (
 | 
						|
    tensordot as _core_tensordot,
 | 
						|
)
 | 
						|
from numpy._core import (
 | 
						|
    trace as _core_trace,
 | 
						|
)
 | 
						|
from numpy._core import (
 | 
						|
    transpose as _core_transpose,
 | 
						|
)
 | 
						|
from numpy._core import (
 | 
						|
    vecdot as _core_vecdot,
 | 
						|
)
 | 
						|
from numpy._globals import _NoValue
 | 
						|
from numpy._typing import NDArray
 | 
						|
from numpy._utils import set_module
 | 
						|
from numpy.lib._twodim_base_impl import eye, triu
 | 
						|
from numpy.lib.array_utils import normalize_axis_index, normalize_axis_tuple
 | 
						|
from numpy.linalg import _umath_linalg
 | 
						|
 | 
						|
 | 
						|
class EigResult(NamedTuple):
 | 
						|
    eigenvalues: NDArray[Any]
 | 
						|
    eigenvectors: NDArray[Any]
 | 
						|
 | 
						|
class EighResult(NamedTuple):
 | 
						|
    eigenvalues: NDArray[Any]
 | 
						|
    eigenvectors: NDArray[Any]
 | 
						|
 | 
						|
class QRResult(NamedTuple):
 | 
						|
    Q: NDArray[Any]
 | 
						|
    R: NDArray[Any]
 | 
						|
 | 
						|
class SlogdetResult(NamedTuple):
 | 
						|
    sign: NDArray[Any]
 | 
						|
    logabsdet: NDArray[Any]
 | 
						|
 | 
						|
class SVDResult(NamedTuple):
 | 
						|
    U: NDArray[Any]
 | 
						|
    S: NDArray[Any]
 | 
						|
    Vh: NDArray[Any]
 | 
						|
 | 
						|
 | 
						|
array_function_dispatch = functools.partial(
 | 
						|
    overrides.array_function_dispatch, module='numpy.linalg'
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
fortran_int = intc
 | 
						|
 | 
						|
 | 
						|
@set_module('numpy.linalg')
 | 
						|
class LinAlgError(ValueError):
 | 
						|
    """
 | 
						|
    Generic Python-exception-derived object raised by linalg functions.
 | 
						|
 | 
						|
    General purpose exception class, derived from Python's ValueError
 | 
						|
    class, programmatically raised in linalg functions when a Linear
 | 
						|
    Algebra-related condition would prevent further correct execution of the
 | 
						|
    function.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    None
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> from numpy import linalg as LA
 | 
						|
    >>> LA.inv(np.zeros((2,2)))
 | 
						|
    Traceback (most recent call last):
 | 
						|
      File "<stdin>", line 1, in <module>
 | 
						|
      File "...linalg.py", line 350,
 | 
						|
        in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype)))
 | 
						|
      File "...linalg.py", line 249,
 | 
						|
        in solve
 | 
						|
        raise LinAlgError('Singular matrix')
 | 
						|
    numpy.linalg.LinAlgError: Singular matrix
 | 
						|
 | 
						|
    """
 | 
						|
 | 
						|
 | 
						|
def _raise_linalgerror_singular(err, flag):
 | 
						|
    raise LinAlgError("Singular matrix")
 | 
						|
 | 
						|
def _raise_linalgerror_nonposdef(err, flag):
 | 
						|
    raise LinAlgError("Matrix is not positive definite")
 | 
						|
 | 
						|
def _raise_linalgerror_eigenvalues_nonconvergence(err, flag):
 | 
						|
    raise LinAlgError("Eigenvalues did not converge")
 | 
						|
 | 
						|
def _raise_linalgerror_svd_nonconvergence(err, flag):
 | 
						|
    raise LinAlgError("SVD did not converge")
 | 
						|
 | 
						|
def _raise_linalgerror_lstsq(err, flag):
 | 
						|
    raise LinAlgError("SVD did not converge in Linear Least Squares")
 | 
						|
 | 
						|
def _raise_linalgerror_qr(err, flag):
 | 
						|
    raise LinAlgError("Incorrect argument found while performing "
 | 
						|
                      "QR factorization")
 | 
						|
 | 
						|
 | 
						|
def _makearray(a):
 | 
						|
    new = asarray(a)
 | 
						|
    wrap = getattr(a, "__array_wrap__", new.__array_wrap__)
 | 
						|
    return new, wrap
 | 
						|
 | 
						|
def isComplexType(t):
 | 
						|
    return issubclass(t, complexfloating)
 | 
						|
 | 
						|
 | 
						|
_real_types_map = {single: single,
 | 
						|
                   double: double,
 | 
						|
                   csingle: single,
 | 
						|
                   cdouble: double}
 | 
						|
 | 
						|
_complex_types_map = {single: csingle,
 | 
						|
                      double: cdouble,
 | 
						|
                      csingle: csingle,
 | 
						|
                      cdouble: cdouble}
 | 
						|
 | 
						|
def _realType(t, default=double):
 | 
						|
    return _real_types_map.get(t, default)
 | 
						|
 | 
						|
def _complexType(t, default=cdouble):
 | 
						|
    return _complex_types_map.get(t, default)
 | 
						|
 | 
						|
def _commonType(*arrays):
 | 
						|
    # in lite version, use higher precision (always double or cdouble)
 | 
						|
    result_type = single
 | 
						|
    is_complex = False
 | 
						|
    for a in arrays:
 | 
						|
        type_ = a.dtype.type
 | 
						|
        if issubclass(type_, inexact):
 | 
						|
            if isComplexType(type_):
 | 
						|
                is_complex = True
 | 
						|
            rt = _realType(type_, default=None)
 | 
						|
            if rt is double:
 | 
						|
                result_type = double
 | 
						|
            elif rt is None:
 | 
						|
                # unsupported inexact scalar
 | 
						|
                raise TypeError(f"array type {a.dtype.name} is unsupported in linalg")
 | 
						|
        else:
 | 
						|
            result_type = double
 | 
						|
    if is_complex:
 | 
						|
        result_type = _complex_types_map[result_type]
 | 
						|
        return cdouble, result_type
 | 
						|
    else:
 | 
						|
        return double, result_type
 | 
						|
 | 
						|
 | 
						|
def _to_native_byte_order(*arrays):
 | 
						|
    ret = []
 | 
						|
    for arr in arrays:
 | 
						|
        if arr.dtype.byteorder not in ('=', '|'):
 | 
						|
            ret.append(asarray(arr, dtype=arr.dtype.newbyteorder('=')))
 | 
						|
        else:
 | 
						|
            ret.append(arr)
 | 
						|
    if len(ret) == 1:
 | 
						|
        return ret[0]
 | 
						|
    else:
 | 
						|
        return ret
 | 
						|
 | 
						|
 | 
						|
def _assert_2d(*arrays):
 | 
						|
    for a in arrays:
 | 
						|
        if a.ndim != 2:
 | 
						|
            raise LinAlgError('%d-dimensional array given. Array must be '
 | 
						|
                    'two-dimensional' % a.ndim)
 | 
						|
 | 
						|
def _assert_stacked_2d(*arrays):
 | 
						|
    for a in arrays:
 | 
						|
        if a.ndim < 2:
 | 
						|
            raise LinAlgError('%d-dimensional array given. Array must be '
 | 
						|
                    'at least two-dimensional' % a.ndim)
 | 
						|
 | 
						|
def _assert_stacked_square(*arrays):
 | 
						|
    for a in arrays:
 | 
						|
        try:
 | 
						|
            m, n = a.shape[-2:]
 | 
						|
        except ValueError:
 | 
						|
            raise LinAlgError('%d-dimensional array given. Array must be '
 | 
						|
                    'at least two-dimensional' % a.ndim)
 | 
						|
        if m != n:
 | 
						|
            raise LinAlgError('Last 2 dimensions of the array must be square')
 | 
						|
 | 
						|
def _assert_finite(*arrays):
 | 
						|
    for a in arrays:
 | 
						|
        if not isfinite(a).all():
 | 
						|
            raise LinAlgError("Array must not contain infs or NaNs")
 | 
						|
 | 
						|
def _is_empty_2d(arr):
 | 
						|
    # check size first for efficiency
 | 
						|
    return arr.size == 0 and prod(arr.shape[-2:]) == 0
 | 
						|
 | 
						|
 | 
						|
def transpose(a):
 | 
						|
    """
 | 
						|
    Transpose each matrix in a stack of matrices.
 | 
						|
 | 
						|
    Unlike np.transpose, this only swaps the last two axes, rather than all of
 | 
						|
    them
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    a : (...,M,N) array_like
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    aT : (...,N,M) ndarray
 | 
						|
    """
 | 
						|
    return swapaxes(a, -1, -2)
 | 
						|
 | 
						|
# Linear equations
 | 
						|
 | 
						|
def _tensorsolve_dispatcher(a, b, axes=None):
 | 
						|
    return (a, b)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_tensorsolve_dispatcher)
 | 
						|
def tensorsolve(a, b, axes=None):
 | 
						|
    """
 | 
						|
    Solve the tensor equation ``a x = b`` for x.
 | 
						|
 | 
						|
    It is assumed that all indices of `x` are summed over in the product,
 | 
						|
    together with the rightmost indices of `a`, as is done in, for example,
 | 
						|
    ``tensordot(a, x, axes=x.ndim)``.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    a : array_like
 | 
						|
        Coefficient tensor, of shape ``b.shape + Q``. `Q`, a tuple, equals
 | 
						|
        the shape of that sub-tensor of `a` consisting of the appropriate
 | 
						|
        number of its rightmost indices, and must be such that
 | 
						|
        ``prod(Q) == prod(b.shape)`` (in which sense `a` is said to be
 | 
						|
        'square').
 | 
						|
    b : array_like
 | 
						|
        Right-hand tensor, which can be of any shape.
 | 
						|
    axes : tuple of ints, optional
 | 
						|
        Axes in `a` to reorder to the right, before inversion.
 | 
						|
        If None (default), no reordering is done.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    x : ndarray, shape Q
 | 
						|
 | 
						|
    Raises
 | 
						|
    ------
 | 
						|
    LinAlgError
 | 
						|
        If `a` is singular or not 'square' (in the above sense).
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    numpy.tensordot, tensorinv, numpy.einsum
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> a = np.eye(2*3*4)
 | 
						|
    >>> a.shape = (2*3, 4, 2, 3, 4)
 | 
						|
    >>> rng = np.random.default_rng()
 | 
						|
    >>> b = rng.normal(size=(2*3, 4))
 | 
						|
    >>> x = np.linalg.tensorsolve(a, b)
 | 
						|
    >>> x.shape
 | 
						|
    (2, 3, 4)
 | 
						|
    >>> np.allclose(np.tensordot(a, x, axes=3), b)
 | 
						|
    True
 | 
						|
 | 
						|
    """
 | 
						|
    a, wrap = _makearray(a)
 | 
						|
    b = asarray(b)
 | 
						|
    an = a.ndim
 | 
						|
 | 
						|
    if axes is not None:
 | 
						|
        allaxes = list(range(an))
 | 
						|
        for k in axes:
 | 
						|
            allaxes.remove(k)
 | 
						|
            allaxes.insert(an, k)
 | 
						|
        a = a.transpose(allaxes)
 | 
						|
 | 
						|
    oldshape = a.shape[-(an - b.ndim):]
 | 
						|
    prod = 1
 | 
						|
    for k in oldshape:
 | 
						|
        prod *= k
 | 
						|
 | 
						|
    if a.size != prod ** 2:
 | 
						|
        raise LinAlgError(
 | 
						|
            "Input arrays must satisfy the requirement \
 | 
						|
            prod(a.shape[b.ndim:]) == prod(a.shape[:b.ndim])"
 | 
						|
        )
 | 
						|
 | 
						|
    a = a.reshape(prod, prod)
 | 
						|
    b = b.ravel()
 | 
						|
    res = wrap(solve(a, b))
 | 
						|
    res.shape = oldshape
 | 
						|
    return res
 | 
						|
 | 
						|
 | 
						|
def _solve_dispatcher(a, b):
 | 
						|
    return (a, b)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_solve_dispatcher)
 | 
						|
def solve(a, b):
 | 
						|
    """
 | 
						|
    Solve a linear matrix equation, or system of linear scalar equations.
 | 
						|
 | 
						|
    Computes the "exact" solution, `x`, of the well-determined, i.e., full
 | 
						|
    rank, linear matrix equation `ax = b`.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    a : (..., M, M) array_like
 | 
						|
        Coefficient matrix.
 | 
						|
    b : {(M,), (..., M, K)}, array_like
 | 
						|
        Ordinate or "dependent variable" values.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    x : {(..., M,), (..., M, K)} ndarray
 | 
						|
        Solution to the system a x = b.  Returned shape is (..., M) if b is
 | 
						|
        shape (M,) and (..., M, K) if b is (..., M, K), where the "..." part is
 | 
						|
        broadcasted between a and b.
 | 
						|
 | 
						|
    Raises
 | 
						|
    ------
 | 
						|
    LinAlgError
 | 
						|
        If `a` is singular or not square.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    scipy.linalg.solve : Similar function in SciPy.
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    Broadcasting rules apply, see the `numpy.linalg` documentation for
 | 
						|
    details.
 | 
						|
 | 
						|
    The solutions are computed using LAPACK routine ``_gesv``.
 | 
						|
 | 
						|
    `a` must be square and of full-rank, i.e., all rows (or, equivalently,
 | 
						|
    columns) must be linearly independent; if either is not true, use
 | 
						|
    `lstsq` for the least-squares best "solution" of the
 | 
						|
    system/equation.
 | 
						|
 | 
						|
    .. versionchanged:: 2.0
 | 
						|
 | 
						|
       The b array is only treated as a shape (M,) column vector if it is
 | 
						|
       exactly 1-dimensional. In all other instances it is treated as a stack
 | 
						|
       of (M, K) matrices. Previously b would be treated as a stack of (M,)
 | 
						|
       vectors if b.ndim was equal to a.ndim - 1.
 | 
						|
 | 
						|
    References
 | 
						|
    ----------
 | 
						|
    .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
 | 
						|
           FL, Academic Press, Inc., 1980, pg. 22.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    Solve the system of equations:
 | 
						|
    ``x0 + 2 * x1 = 1`` and
 | 
						|
    ``3 * x0 + 5 * x1 = 2``:
 | 
						|
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> a = np.array([[1, 2], [3, 5]])
 | 
						|
    >>> b = np.array([1, 2])
 | 
						|
    >>> x = np.linalg.solve(a, b)
 | 
						|
    >>> x
 | 
						|
    array([-1.,  1.])
 | 
						|
 | 
						|
    Check that the solution is correct:
 | 
						|
 | 
						|
    >>> np.allclose(np.dot(a, x), b)
 | 
						|
    True
 | 
						|
 | 
						|
    """
 | 
						|
    a, _ = _makearray(a)
 | 
						|
    _assert_stacked_square(a)
 | 
						|
    b, wrap = _makearray(b)
 | 
						|
    t, result_t = _commonType(a, b)
 | 
						|
 | 
						|
    # We use the b = (..., M,) logic, only if the number of extra dimensions
 | 
						|
    # match exactly
 | 
						|
    if b.ndim == 1:
 | 
						|
        gufunc = _umath_linalg.solve1
 | 
						|
    else:
 | 
						|
        gufunc = _umath_linalg.solve
 | 
						|
 | 
						|
    signature = 'DD->D' if isComplexType(t) else 'dd->d'
 | 
						|
    with errstate(call=_raise_linalgerror_singular, invalid='call',
 | 
						|
                  over='ignore', divide='ignore', under='ignore'):
 | 
						|
        r = gufunc(a, b, signature=signature)
 | 
						|
 | 
						|
    return wrap(r.astype(result_t, copy=False))
 | 
						|
 | 
						|
 | 
						|
def _tensorinv_dispatcher(a, ind=None):
 | 
						|
    return (a,)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_tensorinv_dispatcher)
 | 
						|
def tensorinv(a, ind=2):
 | 
						|
    """
 | 
						|
    Compute the 'inverse' of an N-dimensional array.
 | 
						|
 | 
						|
    The result is an inverse for `a` relative to the tensordot operation
 | 
						|
    ``tensordot(a, b, ind)``, i. e., up to floating-point accuracy,
 | 
						|
    ``tensordot(tensorinv(a), a, ind)`` is the "identity" tensor for the
 | 
						|
    tensordot operation.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    a : array_like
 | 
						|
        Tensor to 'invert'. Its shape must be 'square', i. e.,
 | 
						|
        ``prod(a.shape[:ind]) == prod(a.shape[ind:])``.
 | 
						|
    ind : int, optional
 | 
						|
        Number of first indices that are involved in the inverse sum.
 | 
						|
        Must be a positive integer, default is 2.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    b : ndarray
 | 
						|
        `a`'s tensordot inverse, shape ``a.shape[ind:] + a.shape[:ind]``.
 | 
						|
 | 
						|
    Raises
 | 
						|
    ------
 | 
						|
    LinAlgError
 | 
						|
        If `a` is singular or not 'square' (in the above sense).
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    numpy.tensordot, tensorsolve
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> a = np.eye(4*6)
 | 
						|
    >>> a.shape = (4, 6, 8, 3)
 | 
						|
    >>> ainv = np.linalg.tensorinv(a, ind=2)
 | 
						|
    >>> ainv.shape
 | 
						|
    (8, 3, 4, 6)
 | 
						|
    >>> rng = np.random.default_rng()
 | 
						|
    >>> b = rng.normal(size=(4, 6))
 | 
						|
    >>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b))
 | 
						|
    True
 | 
						|
 | 
						|
    >>> a = np.eye(4*6)
 | 
						|
    >>> a.shape = (24, 8, 3)
 | 
						|
    >>> ainv = np.linalg.tensorinv(a, ind=1)
 | 
						|
    >>> ainv.shape
 | 
						|
    (8, 3, 24)
 | 
						|
    >>> rng = np.random.default_rng()
 | 
						|
    >>> b = rng.normal(size=24)
 | 
						|
    >>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b))
 | 
						|
    True
 | 
						|
 | 
						|
    """
 | 
						|
    a = asarray(a)
 | 
						|
    oldshape = a.shape
 | 
						|
    prod = 1
 | 
						|
    if ind > 0:
 | 
						|
        invshape = oldshape[ind:] + oldshape[:ind]
 | 
						|
        for k in oldshape[ind:]:
 | 
						|
            prod *= k
 | 
						|
    else:
 | 
						|
        raise ValueError("Invalid ind argument.")
 | 
						|
    a = a.reshape(prod, -1)
 | 
						|
    ia = inv(a)
 | 
						|
    return ia.reshape(*invshape)
 | 
						|
 | 
						|
 | 
						|
# Matrix inversion
 | 
						|
 | 
						|
def _unary_dispatcher(a):
 | 
						|
    return (a,)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_unary_dispatcher)
 | 
						|
def inv(a):
 | 
						|
    """
 | 
						|
    Compute the inverse of a matrix.
 | 
						|
 | 
						|
    Given a square matrix `a`, return the matrix `ainv` satisfying
 | 
						|
    ``a @ ainv = ainv @ a = eye(a.shape[0])``.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    a : (..., M, M) array_like
 | 
						|
        Matrix to be inverted.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    ainv : (..., M, M) ndarray or matrix
 | 
						|
        Inverse of the matrix `a`.
 | 
						|
 | 
						|
    Raises
 | 
						|
    ------
 | 
						|
    LinAlgError
 | 
						|
        If `a` is not square or inversion fails.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    scipy.linalg.inv : Similar function in SciPy.
 | 
						|
    numpy.linalg.cond : Compute the condition number of a matrix.
 | 
						|
    numpy.linalg.svd : Compute the singular value decomposition of a matrix.
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    Broadcasting rules apply, see the `numpy.linalg` documentation for
 | 
						|
    details.
 | 
						|
 | 
						|
    If `a` is detected to be singular, a `LinAlgError` is raised. If `a` is
 | 
						|
    ill-conditioned, a `LinAlgError` may or may not be raised, and results may
 | 
						|
    be inaccurate due to floating-point errors.
 | 
						|
 | 
						|
    References
 | 
						|
    ----------
 | 
						|
    .. [1] Wikipedia, "Condition number",
 | 
						|
           https://en.wikipedia.org/wiki/Condition_number
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> from numpy.linalg import inv
 | 
						|
    >>> a = np.array([[1., 2.], [3., 4.]])
 | 
						|
    >>> ainv = inv(a)
 | 
						|
    >>> np.allclose(a @ ainv, np.eye(2))
 | 
						|
    True
 | 
						|
    >>> np.allclose(ainv @ a, np.eye(2))
 | 
						|
    True
 | 
						|
 | 
						|
    If a is a matrix object, then the return value is a matrix as well:
 | 
						|
 | 
						|
    >>> ainv = inv(np.matrix(a))
 | 
						|
    >>> ainv
 | 
						|
    matrix([[-2. ,  1. ],
 | 
						|
            [ 1.5, -0.5]])
 | 
						|
 | 
						|
    Inverses of several matrices can be computed at once:
 | 
						|
 | 
						|
    >>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]])
 | 
						|
    >>> inv(a)
 | 
						|
    array([[[-2.  ,  1.  ],
 | 
						|
            [ 1.5 , -0.5 ]],
 | 
						|
           [[-1.25,  0.75],
 | 
						|
            [ 0.75, -0.25]]])
 | 
						|
 | 
						|
    If a matrix is close to singular, the computed inverse may not satisfy
 | 
						|
    ``a @ ainv = ainv @ a = eye(a.shape[0])`` even if a `LinAlgError`
 | 
						|
    is not raised:
 | 
						|
 | 
						|
    >>> a = np.array([[2,4,6],[2,0,2],[6,8,14]])
 | 
						|
    >>> inv(a)  # No errors raised
 | 
						|
    array([[-1.12589991e+15, -5.62949953e+14,  5.62949953e+14],
 | 
						|
       [-1.12589991e+15, -5.62949953e+14,  5.62949953e+14],
 | 
						|
       [ 1.12589991e+15,  5.62949953e+14, -5.62949953e+14]])
 | 
						|
    >>> a @ inv(a)
 | 
						|
    array([[ 0.   , -0.5  ,  0.   ],  # may vary
 | 
						|
           [-0.5  ,  0.625,  0.25 ],
 | 
						|
           [ 0.   ,  0.   ,  1.   ]])
 | 
						|
 | 
						|
    To detect ill-conditioned matrices, you can use `numpy.linalg.cond` to
 | 
						|
    compute its *condition number* [1]_. The larger the condition number, the
 | 
						|
    more ill-conditioned the matrix is. As a rule of thumb, if the condition
 | 
						|
    number ``cond(a) = 10**k``, then you may lose up to ``k`` digits of
 | 
						|
    accuracy on top of what would be lost to the numerical method due to loss
 | 
						|
    of precision from arithmetic methods.
 | 
						|
 | 
						|
    >>> from numpy.linalg import cond
 | 
						|
    >>> cond(a)
 | 
						|
    np.float64(8.659885634118668e+17)  # may vary
 | 
						|
 | 
						|
    It is also possible to detect ill-conditioning by inspecting the matrix's
 | 
						|
    singular values directly. The ratio between the largest and the smallest
 | 
						|
    singular value is the condition number:
 | 
						|
 | 
						|
    >>> from numpy.linalg import svd
 | 
						|
    >>> sigma = svd(a, compute_uv=False)  # Do not compute singular vectors
 | 
						|
    >>> sigma.max()/sigma.min()
 | 
						|
    8.659885634118668e+17  # may vary
 | 
						|
 | 
						|
    """
 | 
						|
    a, wrap = _makearray(a)
 | 
						|
    _assert_stacked_square(a)
 | 
						|
    t, result_t = _commonType(a)
 | 
						|
 | 
						|
    signature = 'D->D' if isComplexType(t) else 'd->d'
 | 
						|
    with errstate(call=_raise_linalgerror_singular, invalid='call',
 | 
						|
                  over='ignore', divide='ignore', under='ignore'):
 | 
						|
        ainv = _umath_linalg.inv(a, signature=signature)
 | 
						|
    return wrap(ainv.astype(result_t, copy=False))
 | 
						|
 | 
						|
 | 
						|
def _matrix_power_dispatcher(a, n):
 | 
						|
    return (a,)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_matrix_power_dispatcher)
 | 
						|
def matrix_power(a, n):
 | 
						|
    """
 | 
						|
    Raise a square matrix to the (integer) power `n`.
 | 
						|
 | 
						|
    For positive integers `n`, the power is computed by repeated matrix
 | 
						|
    squarings and matrix multiplications. If ``n == 0``, the identity matrix
 | 
						|
    of the same shape as M is returned. If ``n < 0``, the inverse
 | 
						|
    is computed and then raised to the ``abs(n)``.
 | 
						|
 | 
						|
    .. note:: Stacks of object matrices are not currently supported.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    a : (..., M, M) array_like
 | 
						|
        Matrix to be "powered".
 | 
						|
    n : int
 | 
						|
        The exponent can be any integer or long integer, positive,
 | 
						|
        negative, or zero.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    a**n : (..., M, M) ndarray or matrix object
 | 
						|
        The return value is the same shape and type as `M`;
 | 
						|
        if the exponent is positive or zero then the type of the
 | 
						|
        elements is the same as those of `M`. If the exponent is
 | 
						|
        negative the elements are floating-point.
 | 
						|
 | 
						|
    Raises
 | 
						|
    ------
 | 
						|
    LinAlgError
 | 
						|
        For matrices that are not square or that (for negative powers) cannot
 | 
						|
        be inverted numerically.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> from numpy.linalg import matrix_power
 | 
						|
    >>> i = np.array([[0, 1], [-1, 0]]) # matrix equiv. of the imaginary unit
 | 
						|
    >>> matrix_power(i, 3) # should = -i
 | 
						|
    array([[ 0, -1],
 | 
						|
           [ 1,  0]])
 | 
						|
    >>> matrix_power(i, 0)
 | 
						|
    array([[1, 0],
 | 
						|
           [0, 1]])
 | 
						|
    >>> matrix_power(i, -3) # should = 1/(-i) = i, but w/ f.p. elements
 | 
						|
    array([[ 0.,  1.],
 | 
						|
           [-1.,  0.]])
 | 
						|
 | 
						|
    Somewhat more sophisticated example
 | 
						|
 | 
						|
    >>> q = np.zeros((4, 4))
 | 
						|
    >>> q[0:2, 0:2] = -i
 | 
						|
    >>> q[2:4, 2:4] = i
 | 
						|
    >>> q # one of the three quaternion units not equal to 1
 | 
						|
    array([[ 0., -1.,  0.,  0.],
 | 
						|
           [ 1.,  0.,  0.,  0.],
 | 
						|
           [ 0.,  0.,  0.,  1.],
 | 
						|
           [ 0.,  0., -1.,  0.]])
 | 
						|
    >>> matrix_power(q, 2) # = -np.eye(4)
 | 
						|
    array([[-1.,  0.,  0.,  0.],
 | 
						|
           [ 0., -1.,  0.,  0.],
 | 
						|
           [ 0.,  0., -1.,  0.],
 | 
						|
           [ 0.,  0.,  0., -1.]])
 | 
						|
 | 
						|
    """
 | 
						|
    a = asanyarray(a)
 | 
						|
    _assert_stacked_square(a)
 | 
						|
 | 
						|
    try:
 | 
						|
        n = operator.index(n)
 | 
						|
    except TypeError as e:
 | 
						|
        raise TypeError("exponent must be an integer") from e
 | 
						|
 | 
						|
    # Fall back on dot for object arrays. Object arrays are not supported by
 | 
						|
    # the current implementation of matmul using einsum
 | 
						|
    if a.dtype != object:
 | 
						|
        fmatmul = matmul
 | 
						|
    elif a.ndim == 2:
 | 
						|
        fmatmul = dot
 | 
						|
    else:
 | 
						|
        raise NotImplementedError(
 | 
						|
            "matrix_power not supported for stacks of object arrays")
 | 
						|
 | 
						|
    if n == 0:
 | 
						|
        a = empty_like(a)
 | 
						|
        a[...] = eye(a.shape[-2], dtype=a.dtype)
 | 
						|
        return a
 | 
						|
 | 
						|
    elif n < 0:
 | 
						|
        a = inv(a)
 | 
						|
        n = abs(n)
 | 
						|
 | 
						|
    # short-cuts.
 | 
						|
    if n == 1:
 | 
						|
        return a
 | 
						|
 | 
						|
    elif n == 2:
 | 
						|
        return fmatmul(a, a)
 | 
						|
 | 
						|
    elif n == 3:
 | 
						|
        return fmatmul(fmatmul(a, a), a)
 | 
						|
 | 
						|
    # Use binary decomposition to reduce the number of matrix multiplications.
 | 
						|
    # Here, we iterate over the bits of n, from LSB to MSB, raise `a` to
 | 
						|
    # increasing powers of 2, and multiply into the result as needed.
 | 
						|
    z = result = None
 | 
						|
    while n > 0:
 | 
						|
        z = a if z is None else fmatmul(z, z)
 | 
						|
        n, bit = divmod(n, 2)
 | 
						|
        if bit:
 | 
						|
            result = z if result is None else fmatmul(result, z)
 | 
						|
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
# Cholesky decomposition
 | 
						|
 | 
						|
def _cholesky_dispatcher(a, /, *, upper=None):
 | 
						|
    return (a,)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_cholesky_dispatcher)
 | 
						|
def cholesky(a, /, *, upper=False):
 | 
						|
    """
 | 
						|
    Cholesky decomposition.
 | 
						|
 | 
						|
    Return the lower or upper Cholesky decomposition, ``L * L.H`` or
 | 
						|
    ``U.H * U``, of the square matrix ``a``, where ``L`` is lower-triangular,
 | 
						|
    ``U`` is upper-triangular, and ``.H`` is the conjugate transpose operator
 | 
						|
    (which is the ordinary transpose if ``a`` is real-valued). ``a`` must be
 | 
						|
    Hermitian (symmetric if real-valued) and positive-definite. No checking is
 | 
						|
    performed to verify whether ``a`` is Hermitian or not. In addition, only
 | 
						|
    the lower or upper-triangular and diagonal elements of ``a`` are used.
 | 
						|
    Only ``L`` or ``U`` is actually returned.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    a : (..., M, M) array_like
 | 
						|
        Hermitian (symmetric if all elements are real), positive-definite
 | 
						|
        input matrix.
 | 
						|
    upper : bool
 | 
						|
        If ``True``, the result must be the upper-triangular Cholesky factor.
 | 
						|
        If ``False``, the result must be the lower-triangular Cholesky factor.
 | 
						|
        Default: ``False``.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    L : (..., M, M) array_like
 | 
						|
        Lower or upper-triangular Cholesky factor of `a`. Returns a matrix
 | 
						|
        object if `a` is a matrix object.
 | 
						|
 | 
						|
    Raises
 | 
						|
    ------
 | 
						|
    LinAlgError
 | 
						|
       If the decomposition fails, for example, if `a` is not
 | 
						|
       positive-definite.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    scipy.linalg.cholesky : Similar function in SciPy.
 | 
						|
    scipy.linalg.cholesky_banded : Cholesky decompose a banded Hermitian
 | 
						|
                                   positive-definite matrix.
 | 
						|
    scipy.linalg.cho_factor : Cholesky decomposition of a matrix, to use in
 | 
						|
                              `scipy.linalg.cho_solve`.
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    Broadcasting rules apply, see the `numpy.linalg` documentation for
 | 
						|
    details.
 | 
						|
 | 
						|
    The Cholesky decomposition is often used as a fast way of solving
 | 
						|
 | 
						|
    .. math:: A \\mathbf{x} = \\mathbf{b}
 | 
						|
 | 
						|
    (when `A` is both Hermitian/symmetric and positive-definite).
 | 
						|
 | 
						|
    First, we solve for :math:`\\mathbf{y}` in
 | 
						|
 | 
						|
    .. math:: L \\mathbf{y} = \\mathbf{b},
 | 
						|
 | 
						|
    and then for :math:`\\mathbf{x}` in
 | 
						|
 | 
						|
    .. math:: L^{H} \\mathbf{x} = \\mathbf{y}.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> A = np.array([[1,-2j],[2j,5]])
 | 
						|
    >>> A
 | 
						|
    array([[ 1.+0.j, -0.-2.j],
 | 
						|
           [ 0.+2.j,  5.+0.j]])
 | 
						|
    >>> L = np.linalg.cholesky(A)
 | 
						|
    >>> L
 | 
						|
    array([[1.+0.j, 0.+0.j],
 | 
						|
           [0.+2.j, 1.+0.j]])
 | 
						|
    >>> np.dot(L, L.T.conj()) # verify that L * L.H = A
 | 
						|
    array([[1.+0.j, 0.-2.j],
 | 
						|
           [0.+2.j, 5.+0.j]])
 | 
						|
    >>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like?
 | 
						|
    >>> np.linalg.cholesky(A) # an ndarray object is returned
 | 
						|
    array([[1.+0.j, 0.+0.j],
 | 
						|
           [0.+2.j, 1.+0.j]])
 | 
						|
    >>> # But a matrix object is returned if A is a matrix object
 | 
						|
    >>> np.linalg.cholesky(np.matrix(A))
 | 
						|
    matrix([[ 1.+0.j,  0.+0.j],
 | 
						|
            [ 0.+2.j,  1.+0.j]])
 | 
						|
    >>> # The upper-triangular Cholesky factor can also be obtained.
 | 
						|
    >>> np.linalg.cholesky(A, upper=True)
 | 
						|
    array([[1.-0.j, 0.-2.j],
 | 
						|
           [0.-0.j, 1.-0.j]])
 | 
						|
 | 
						|
    """
 | 
						|
    gufunc = _umath_linalg.cholesky_up if upper else _umath_linalg.cholesky_lo
 | 
						|
    a, wrap = _makearray(a)
 | 
						|
    _assert_stacked_square(a)
 | 
						|
    t, result_t = _commonType(a)
 | 
						|
    signature = 'D->D' if isComplexType(t) else 'd->d'
 | 
						|
    with errstate(call=_raise_linalgerror_nonposdef, invalid='call',
 | 
						|
                  over='ignore', divide='ignore', under='ignore'):
 | 
						|
        r = gufunc(a, signature=signature)
 | 
						|
    return wrap(r.astype(result_t, copy=False))
 | 
						|
 | 
						|
 | 
						|
# outer product
 | 
						|
 | 
						|
 | 
						|
def _outer_dispatcher(x1, x2):
 | 
						|
    return (x1, x2)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_outer_dispatcher)
 | 
						|
def outer(x1, x2, /):
 | 
						|
    """
 | 
						|
    Compute the outer product of two vectors.
 | 
						|
 | 
						|
    This function is Array API compatible. Compared to ``np.outer``
 | 
						|
    it accepts 1-dimensional inputs only.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    x1 : (M,) array_like
 | 
						|
        One-dimensional input array of size ``N``.
 | 
						|
        Must have a numeric data type.
 | 
						|
    x2 : (N,) array_like
 | 
						|
        One-dimensional input array of size ``M``.
 | 
						|
        Must have a numeric data type.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    out : (M, N) ndarray
 | 
						|
        ``out[i, j] = a[i] * b[j]``
 | 
						|
 | 
						|
    See also
 | 
						|
    --------
 | 
						|
    outer
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    Make a (*very* coarse) grid for computing a Mandelbrot set:
 | 
						|
 | 
						|
    >>> rl = np.linalg.outer(np.ones((5,)), np.linspace(-2, 2, 5))
 | 
						|
    >>> rl
 | 
						|
    array([[-2., -1.,  0.,  1.,  2.],
 | 
						|
           [-2., -1.,  0.,  1.,  2.],
 | 
						|
           [-2., -1.,  0.,  1.,  2.],
 | 
						|
           [-2., -1.,  0.,  1.,  2.],
 | 
						|
           [-2., -1.,  0.,  1.,  2.]])
 | 
						|
    >>> im = np.linalg.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
 | 
						|
    >>> im
 | 
						|
    array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],
 | 
						|
           [0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
 | 
						|
           [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
 | 
						|
           [0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
 | 
						|
           [0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])
 | 
						|
    >>> grid = rl + im
 | 
						|
    >>> grid
 | 
						|
    array([[-2.+2.j, -1.+2.j,  0.+2.j,  1.+2.j,  2.+2.j],
 | 
						|
           [-2.+1.j, -1.+1.j,  0.+1.j,  1.+1.j,  2.+1.j],
 | 
						|
           [-2.+0.j, -1.+0.j,  0.+0.j,  1.+0.j,  2.+0.j],
 | 
						|
           [-2.-1.j, -1.-1.j,  0.-1.j,  1.-1.j,  2.-1.j],
 | 
						|
           [-2.-2.j, -1.-2.j,  0.-2.j,  1.-2.j,  2.-2.j]])
 | 
						|
 | 
						|
    An example using a "vector" of letters:
 | 
						|
 | 
						|
    >>> x = np.array(['a', 'b', 'c'], dtype=object)
 | 
						|
    >>> np.linalg.outer(x, [1, 2, 3])
 | 
						|
    array([['a', 'aa', 'aaa'],
 | 
						|
           ['b', 'bb', 'bbb'],
 | 
						|
           ['c', 'cc', 'ccc']], dtype=object)
 | 
						|
 | 
						|
    """
 | 
						|
    x1 = asanyarray(x1)
 | 
						|
    x2 = asanyarray(x2)
 | 
						|
    if x1.ndim != 1 or x2.ndim != 1:
 | 
						|
        raise ValueError(
 | 
						|
            "Input arrays must be one-dimensional, but they are "
 | 
						|
            f"{x1.ndim=} and {x2.ndim=}."
 | 
						|
        )
 | 
						|
    return _core_outer(x1, x2, out=None)
 | 
						|
 | 
						|
 | 
						|
# QR decomposition
 | 
						|
 | 
						|
 | 
						|
def _qr_dispatcher(a, mode=None):
 | 
						|
    return (a,)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_qr_dispatcher)
 | 
						|
def qr(a, mode='reduced'):
 | 
						|
    """
 | 
						|
    Compute the qr factorization of a matrix.
 | 
						|
 | 
						|
    Factor the matrix `a` as *qr*, where `q` is orthonormal and `r` is
 | 
						|
    upper-triangular.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    a : array_like, shape (..., M, N)
 | 
						|
        An array-like object with the dimensionality of at least 2.
 | 
						|
    mode : {'reduced', 'complete', 'r', 'raw'}, optional, default: 'reduced'
 | 
						|
        If K = min(M, N), then
 | 
						|
 | 
						|
        * 'reduced'  : returns Q, R with dimensions (..., M, K), (..., K, N)
 | 
						|
        * 'complete' : returns Q, R with dimensions (..., M, M), (..., M, N)
 | 
						|
        * 'r'        : returns R only with dimensions (..., K, N)
 | 
						|
        * 'raw'      : returns h, tau with dimensions (..., N, M), (..., K,)
 | 
						|
 | 
						|
        The options 'reduced', 'complete, and 'raw' are new in numpy 1.8,
 | 
						|
        see the notes for more information. The default is 'reduced', and to
 | 
						|
        maintain backward compatibility with earlier versions of numpy both
 | 
						|
        it and the old default 'full' can be omitted. Note that array h
 | 
						|
        returned in 'raw' mode is transposed for calling Fortran. The
 | 
						|
        'economic' mode is deprecated.  The modes 'full' and 'economic' may
 | 
						|
        be passed using only the first letter for backwards compatibility,
 | 
						|
        but all others must be spelled out. See the Notes for more
 | 
						|
        explanation.
 | 
						|
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    When mode is 'reduced' or 'complete', the result will be a namedtuple with
 | 
						|
    the attributes `Q` and `R`.
 | 
						|
 | 
						|
    Q : ndarray of float or complex, optional
 | 
						|
        A matrix with orthonormal columns. When mode = 'complete' the
 | 
						|
        result is an orthogonal/unitary matrix depending on whether or not
 | 
						|
        a is real/complex. The determinant may be either +/- 1 in that
 | 
						|
        case. In case the number of dimensions in the input array is
 | 
						|
        greater than 2 then a stack of the matrices with above properties
 | 
						|
        is returned.
 | 
						|
    R : ndarray of float or complex, optional
 | 
						|
        The upper-triangular matrix or a stack of upper-triangular
 | 
						|
        matrices if the number of dimensions in the input array is greater
 | 
						|
        than 2.
 | 
						|
    (h, tau) : ndarrays of np.double or np.cdouble, optional
 | 
						|
        The array h contains the Householder reflectors that generate q
 | 
						|
        along with r. The tau array contains scaling factors for the
 | 
						|
        reflectors. In the deprecated  'economic' mode only h is returned.
 | 
						|
 | 
						|
    Raises
 | 
						|
    ------
 | 
						|
    LinAlgError
 | 
						|
        If factoring fails.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    scipy.linalg.qr : Similar function in SciPy.
 | 
						|
    scipy.linalg.rq : Compute RQ decomposition of a matrix.
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    This is an interface to the LAPACK routines ``dgeqrf``, ``zgeqrf``,
 | 
						|
    ``dorgqr``, and ``zungqr``.
 | 
						|
 | 
						|
    For more information on the qr factorization, see for example:
 | 
						|
    https://en.wikipedia.org/wiki/QR_factorization
 | 
						|
 | 
						|
    Subclasses of `ndarray` are preserved except for the 'raw' mode. So if
 | 
						|
    `a` is of type `matrix`, all the return values will be matrices too.
 | 
						|
 | 
						|
    New 'reduced', 'complete', and 'raw' options for mode were added in
 | 
						|
    NumPy 1.8.0 and the old option 'full' was made an alias of 'reduced'.  In
 | 
						|
    addition the options 'full' and 'economic' were deprecated.  Because
 | 
						|
    'full' was the previous default and 'reduced' is the new default,
 | 
						|
    backward compatibility can be maintained by letting `mode` default.
 | 
						|
    The 'raw' option was added so that LAPACK routines that can multiply
 | 
						|
    arrays by q using the Householder reflectors can be used. Note that in
 | 
						|
    this case the returned arrays are of type np.double or np.cdouble and
 | 
						|
    the h array is transposed to be FORTRAN compatible.  No routines using
 | 
						|
    the 'raw' return are currently exposed by numpy, but some are available
 | 
						|
    in lapack_lite and just await the necessary work.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> rng = np.random.default_rng()
 | 
						|
    >>> a = rng.normal(size=(9, 6))
 | 
						|
    >>> Q, R = np.linalg.qr(a)
 | 
						|
    >>> np.allclose(a, np.dot(Q, R))  # a does equal QR
 | 
						|
    True
 | 
						|
    >>> R2 = np.linalg.qr(a, mode='r')
 | 
						|
    >>> np.allclose(R, R2)  # mode='r' returns the same R as mode='full'
 | 
						|
    True
 | 
						|
    >>> a = np.random.normal(size=(3, 2, 2)) # Stack of 2 x 2 matrices as input
 | 
						|
    >>> Q, R = np.linalg.qr(a)
 | 
						|
    >>> Q.shape
 | 
						|
    (3, 2, 2)
 | 
						|
    >>> R.shape
 | 
						|
    (3, 2, 2)
 | 
						|
    >>> np.allclose(a, np.matmul(Q, R))
 | 
						|
    True
 | 
						|
 | 
						|
    Example illustrating a common use of `qr`: solving of least squares
 | 
						|
    problems
 | 
						|
 | 
						|
    What are the least-squares-best `m` and `y0` in ``y = y0 + mx`` for
 | 
						|
    the following data: {(0,1), (1,0), (1,2), (2,1)}. (Graph the points
 | 
						|
    and you'll see that it should be y0 = 0, m = 1.)  The answer is provided
 | 
						|
    by solving the over-determined matrix equation ``Ax = b``, where::
 | 
						|
 | 
						|
      A = array([[0, 1], [1, 1], [1, 1], [2, 1]])
 | 
						|
      x = array([[y0], [m]])
 | 
						|
      b = array([[1], [0], [2], [1]])
 | 
						|
 | 
						|
    If A = QR such that Q is orthonormal (which is always possible via
 | 
						|
    Gram-Schmidt), then ``x = inv(R) * (Q.T) * b``.  (In numpy practice,
 | 
						|
    however, we simply use `lstsq`.)
 | 
						|
 | 
						|
    >>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]])
 | 
						|
    >>> A
 | 
						|
    array([[0, 1],
 | 
						|
           [1, 1],
 | 
						|
           [1, 1],
 | 
						|
           [2, 1]])
 | 
						|
    >>> b = np.array([1, 2, 2, 3])
 | 
						|
    >>> Q, R = np.linalg.qr(A)
 | 
						|
    >>> p = np.dot(Q.T, b)
 | 
						|
    >>> np.dot(np.linalg.inv(R), p)
 | 
						|
    array([  1.,   1.])
 | 
						|
 | 
						|
    """
 | 
						|
    if mode not in ('reduced', 'complete', 'r', 'raw'):
 | 
						|
        if mode in ('f', 'full'):
 | 
						|
            # 2013-04-01, 1.8
 | 
						|
            msg = (
 | 
						|
                "The 'full' option is deprecated in favor of 'reduced'.\n"
 | 
						|
                "For backward compatibility let mode default."
 | 
						|
            )
 | 
						|
            warnings.warn(msg, DeprecationWarning, stacklevel=2)
 | 
						|
            mode = 'reduced'
 | 
						|
        elif mode in ('e', 'economic'):
 | 
						|
            # 2013-04-01, 1.8
 | 
						|
            msg = "The 'economic' option is deprecated."
 | 
						|
            warnings.warn(msg, DeprecationWarning, stacklevel=2)
 | 
						|
            mode = 'economic'
 | 
						|
        else:
 | 
						|
            raise ValueError(f"Unrecognized mode '{mode}'")
 | 
						|
 | 
						|
    a, wrap = _makearray(a)
 | 
						|
    _assert_stacked_2d(a)
 | 
						|
    m, n = a.shape[-2:]
 | 
						|
    t, result_t = _commonType(a)
 | 
						|
    a = a.astype(t, copy=True)
 | 
						|
    a = _to_native_byte_order(a)
 | 
						|
    mn = min(m, n)
 | 
						|
 | 
						|
    signature = 'D->D' if isComplexType(t) else 'd->d'
 | 
						|
    with errstate(call=_raise_linalgerror_qr, invalid='call',
 | 
						|
                  over='ignore', divide='ignore', under='ignore'):
 | 
						|
        tau = _umath_linalg.qr_r_raw(a, signature=signature)
 | 
						|
 | 
						|
    # handle modes that don't return q
 | 
						|
    if mode == 'r':
 | 
						|
        r = triu(a[..., :mn, :])
 | 
						|
        r = r.astype(result_t, copy=False)
 | 
						|
        return wrap(r)
 | 
						|
 | 
						|
    if mode == 'raw':
 | 
						|
        q = transpose(a)
 | 
						|
        q = q.astype(result_t, copy=False)
 | 
						|
        tau = tau.astype(result_t, copy=False)
 | 
						|
        return wrap(q), tau
 | 
						|
 | 
						|
    if mode == 'economic':
 | 
						|
        a = a.astype(result_t, copy=False)
 | 
						|
        return wrap(a)
 | 
						|
 | 
						|
    # mc is the number of columns in the resulting q
 | 
						|
    # matrix. If the mode is complete then it is
 | 
						|
    # same as number of rows, and if the mode is reduced,
 | 
						|
    # then it is the minimum of number of rows and columns.
 | 
						|
    if mode == 'complete' and m > n:
 | 
						|
        mc = m
 | 
						|
        gufunc = _umath_linalg.qr_complete
 | 
						|
    else:
 | 
						|
        mc = mn
 | 
						|
        gufunc = _umath_linalg.qr_reduced
 | 
						|
 | 
						|
    signature = 'DD->D' if isComplexType(t) else 'dd->d'
 | 
						|
    with errstate(call=_raise_linalgerror_qr, invalid='call',
 | 
						|
                  over='ignore', divide='ignore', under='ignore'):
 | 
						|
        q = gufunc(a, tau, signature=signature)
 | 
						|
    r = triu(a[..., :mc, :])
 | 
						|
 | 
						|
    q = q.astype(result_t, copy=False)
 | 
						|
    r = r.astype(result_t, copy=False)
 | 
						|
 | 
						|
    return QRResult(wrap(q), wrap(r))
 | 
						|
 | 
						|
# Eigenvalues
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_unary_dispatcher)
 | 
						|
def eigvals(a):
 | 
						|
    """
 | 
						|
    Compute the eigenvalues of a general matrix.
 | 
						|
 | 
						|
    Main difference between `eigvals` and `eig`: the eigenvectors aren't
 | 
						|
    returned.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    a : (..., M, M) array_like
 | 
						|
        A complex- or real-valued matrix whose eigenvalues will be computed.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    w : (..., M,) ndarray
 | 
						|
        The eigenvalues, each repeated according to its multiplicity.
 | 
						|
        They are not necessarily ordered, nor are they necessarily
 | 
						|
        real for real matrices.
 | 
						|
 | 
						|
    Raises
 | 
						|
    ------
 | 
						|
    LinAlgError
 | 
						|
        If the eigenvalue computation does not converge.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    eig : eigenvalues and right eigenvectors of general arrays
 | 
						|
    eigvalsh : eigenvalues of real symmetric or complex Hermitian
 | 
						|
               (conjugate symmetric) arrays.
 | 
						|
    eigh : eigenvalues and eigenvectors of real symmetric or complex
 | 
						|
           Hermitian (conjugate symmetric) arrays.
 | 
						|
    scipy.linalg.eigvals : Similar function in SciPy.
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    Broadcasting rules apply, see the `numpy.linalg` documentation for
 | 
						|
    details.
 | 
						|
 | 
						|
    This is implemented using the ``_geev`` LAPACK routines which compute
 | 
						|
    the eigenvalues and eigenvectors of general square arrays.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    Illustration, using the fact that the eigenvalues of a diagonal matrix
 | 
						|
    are its diagonal elements, that multiplying a matrix on the left
 | 
						|
    by an orthogonal matrix, `Q`, and on the right by `Q.T` (the transpose
 | 
						|
    of `Q`), preserves the eigenvalues of the "middle" matrix. In other words,
 | 
						|
    if `Q` is orthogonal, then ``Q * A * Q.T`` has the same eigenvalues as
 | 
						|
    ``A``:
 | 
						|
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> from numpy import linalg as LA
 | 
						|
    >>> x = np.random.random()
 | 
						|
    >>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]])
 | 
						|
    >>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :])
 | 
						|
    (1.0, 1.0, 0.0)
 | 
						|
 | 
						|
    Now multiply a diagonal matrix by ``Q`` on one side and
 | 
						|
    by ``Q.T`` on the other:
 | 
						|
 | 
						|
    >>> D = np.diag((-1,1))
 | 
						|
    >>> LA.eigvals(D)
 | 
						|
    array([-1.,  1.])
 | 
						|
    >>> A = np.dot(Q, D)
 | 
						|
    >>> A = np.dot(A, Q.T)
 | 
						|
    >>> LA.eigvals(A)
 | 
						|
    array([ 1., -1.]) # random
 | 
						|
 | 
						|
    """
 | 
						|
    a, wrap = _makearray(a)
 | 
						|
    _assert_stacked_square(a)
 | 
						|
    _assert_finite(a)
 | 
						|
    t, result_t = _commonType(a)
 | 
						|
 | 
						|
    signature = 'D->D' if isComplexType(t) else 'd->D'
 | 
						|
    with errstate(call=_raise_linalgerror_eigenvalues_nonconvergence,
 | 
						|
                  invalid='call', over='ignore', divide='ignore',
 | 
						|
                  under='ignore'):
 | 
						|
        w = _umath_linalg.eigvals(a, signature=signature)
 | 
						|
 | 
						|
    if not isComplexType(t):
 | 
						|
        if all(w.imag == 0):
 | 
						|
            w = w.real
 | 
						|
            result_t = _realType(result_t)
 | 
						|
        else:
 | 
						|
            result_t = _complexType(result_t)
 | 
						|
 | 
						|
    return w.astype(result_t, copy=False)
 | 
						|
 | 
						|
 | 
						|
def _eigvalsh_dispatcher(a, UPLO=None):
 | 
						|
    return (a,)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_eigvalsh_dispatcher)
 | 
						|
def eigvalsh(a, UPLO='L'):
 | 
						|
    """
 | 
						|
    Compute the eigenvalues of a complex Hermitian or real symmetric matrix.
 | 
						|
 | 
						|
    Main difference from eigh: the eigenvectors are not computed.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    a : (..., M, M) array_like
 | 
						|
        A complex- or real-valued matrix whose eigenvalues are to be
 | 
						|
        computed.
 | 
						|
    UPLO : {'L', 'U'}, optional
 | 
						|
        Specifies whether the calculation is done with the lower triangular
 | 
						|
        part of `a` ('L', default) or the upper triangular part ('U').
 | 
						|
        Irrespective of this value only the real parts of the diagonal will
 | 
						|
        be considered in the computation to preserve the notion of a Hermitian
 | 
						|
        matrix. It therefore follows that the imaginary part of the diagonal
 | 
						|
        will always be treated as zero.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    w : (..., M,) ndarray
 | 
						|
        The eigenvalues in ascending order, each repeated according to
 | 
						|
        its multiplicity.
 | 
						|
 | 
						|
    Raises
 | 
						|
    ------
 | 
						|
    LinAlgError
 | 
						|
        If the eigenvalue computation does not converge.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    eigh : eigenvalues and eigenvectors of real symmetric or complex Hermitian
 | 
						|
           (conjugate symmetric) arrays.
 | 
						|
    eigvals : eigenvalues of general real or complex arrays.
 | 
						|
    eig : eigenvalues and right eigenvectors of general real or complex
 | 
						|
          arrays.
 | 
						|
    scipy.linalg.eigvalsh : Similar function in SciPy.
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    Broadcasting rules apply, see the `numpy.linalg` documentation for
 | 
						|
    details.
 | 
						|
 | 
						|
    The eigenvalues are computed using LAPACK routines ``_syevd``, ``_heevd``.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> from numpy import linalg as LA
 | 
						|
    >>> a = np.array([[1, -2j], [2j, 5]])
 | 
						|
    >>> LA.eigvalsh(a)
 | 
						|
    array([ 0.17157288,  5.82842712]) # may vary
 | 
						|
 | 
						|
    >>> # demonstrate the treatment of the imaginary part of the diagonal
 | 
						|
    >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]])
 | 
						|
    >>> a
 | 
						|
    array([[5.+2.j, 9.-2.j],
 | 
						|
           [0.+2.j, 2.-1.j]])
 | 
						|
    >>> # with UPLO='L' this is numerically equivalent to using LA.eigvals()
 | 
						|
    >>> # with:
 | 
						|
    >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]])
 | 
						|
    >>> b
 | 
						|
    array([[5.+0.j, 0.-2.j],
 | 
						|
           [0.+2.j, 2.+0.j]])
 | 
						|
    >>> wa = LA.eigvalsh(a)
 | 
						|
    >>> wb = LA.eigvals(b)
 | 
						|
    >>> wa
 | 
						|
    array([1., 6.])
 | 
						|
    >>> wb
 | 
						|
    array([6.+0.j, 1.+0.j])
 | 
						|
 | 
						|
    """
 | 
						|
    UPLO = UPLO.upper()
 | 
						|
    if UPLO not in ('L', 'U'):
 | 
						|
        raise ValueError("UPLO argument must be 'L' or 'U'")
 | 
						|
 | 
						|
    if UPLO == 'L':
 | 
						|
        gufunc = _umath_linalg.eigvalsh_lo
 | 
						|
    else:
 | 
						|
        gufunc = _umath_linalg.eigvalsh_up
 | 
						|
 | 
						|
    a, wrap = _makearray(a)
 | 
						|
    _assert_stacked_square(a)
 | 
						|
    t, result_t = _commonType(a)
 | 
						|
    signature = 'D->d' if isComplexType(t) else 'd->d'
 | 
						|
    with errstate(call=_raise_linalgerror_eigenvalues_nonconvergence,
 | 
						|
                  invalid='call', over='ignore', divide='ignore',
 | 
						|
                  under='ignore'):
 | 
						|
        w = gufunc(a, signature=signature)
 | 
						|
    return w.astype(_realType(result_t), copy=False)
 | 
						|
 | 
						|
 | 
						|
# Eigenvectors
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_unary_dispatcher)
 | 
						|
def eig(a):
 | 
						|
    """
 | 
						|
    Compute the eigenvalues and right eigenvectors of a square array.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    a : (..., M, M) array
 | 
						|
        Matrices for which the eigenvalues and right eigenvectors will
 | 
						|
        be computed
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    A namedtuple with the following attributes:
 | 
						|
 | 
						|
    eigenvalues : (..., M) array
 | 
						|
        The eigenvalues, each repeated according to its multiplicity.
 | 
						|
        The eigenvalues are not necessarily ordered. The resulting
 | 
						|
        array will be of complex type, unless the imaginary part is
 | 
						|
        zero in which case it will be cast to a real type. When `a`
 | 
						|
        is real the resulting eigenvalues will be real (0 imaginary
 | 
						|
        part) or occur in conjugate pairs
 | 
						|
 | 
						|
    eigenvectors : (..., M, M) array
 | 
						|
        The normalized (unit "length") eigenvectors, such that the
 | 
						|
        column ``eigenvectors[:,i]`` is the eigenvector corresponding to the
 | 
						|
        eigenvalue ``eigenvalues[i]``.
 | 
						|
 | 
						|
    Raises
 | 
						|
    ------
 | 
						|
    LinAlgError
 | 
						|
        If the eigenvalue computation does not converge.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    eigvals : eigenvalues of a non-symmetric array.
 | 
						|
    eigh : eigenvalues and eigenvectors of a real symmetric or complex
 | 
						|
           Hermitian (conjugate symmetric) array.
 | 
						|
    eigvalsh : eigenvalues of a real symmetric or complex Hermitian
 | 
						|
               (conjugate symmetric) array.
 | 
						|
    scipy.linalg.eig : Similar function in SciPy that also solves the
 | 
						|
                       generalized eigenvalue problem.
 | 
						|
    scipy.linalg.schur : Best choice for unitary and other non-Hermitian
 | 
						|
                         normal matrices.
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    Broadcasting rules apply, see the `numpy.linalg` documentation for
 | 
						|
    details.
 | 
						|
 | 
						|
    This is implemented using the ``_geev`` LAPACK routines which compute
 | 
						|
    the eigenvalues and eigenvectors of general square arrays.
 | 
						|
 | 
						|
    The number `w` is an eigenvalue of `a` if there exists a vector `v` such
 | 
						|
    that ``a @ v = w * v``. Thus, the arrays `a`, `eigenvalues`, and
 | 
						|
    `eigenvectors` satisfy the equations ``a @ eigenvectors[:,i] =
 | 
						|
    eigenvalues[i] * eigenvectors[:,i]`` for :math:`i \\in \\{0,...,M-1\\}`.
 | 
						|
 | 
						|
    The array `eigenvectors` may not be of maximum rank, that is, some of the
 | 
						|
    columns may be linearly dependent, although round-off error may obscure
 | 
						|
    that fact. If the eigenvalues are all different, then theoretically the
 | 
						|
    eigenvectors are linearly independent and `a` can be diagonalized by a
 | 
						|
    similarity transformation using `eigenvectors`, i.e, ``inv(eigenvectors) @
 | 
						|
    a @ eigenvectors`` is diagonal.
 | 
						|
 | 
						|
    For non-Hermitian normal matrices the SciPy function `scipy.linalg.schur`
 | 
						|
    is preferred because the matrix `eigenvectors` is guaranteed to be
 | 
						|
    unitary, which is not the case when using `eig`. The Schur factorization
 | 
						|
    produces an upper triangular matrix rather than a diagonal matrix, but for
 | 
						|
    normal matrices only the diagonal of the upper triangular matrix is
 | 
						|
    needed, the rest is roundoff error.
 | 
						|
 | 
						|
    Finally, it is emphasized that `eigenvectors` consists of the *right* (as
 | 
						|
    in right-hand side) eigenvectors of `a`. A vector `y` satisfying ``y.T @ a
 | 
						|
    = z * y.T`` for some number `z` is called a *left* eigenvector of `a`,
 | 
						|
    and, in general, the left and right eigenvectors of a matrix are not
 | 
						|
    necessarily the (perhaps conjugate) transposes of each other.
 | 
						|
 | 
						|
    References
 | 
						|
    ----------
 | 
						|
    G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL,
 | 
						|
    Academic Press, Inc., 1980, Various pp.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> from numpy import linalg as LA
 | 
						|
 | 
						|
    (Almost) trivial example with real eigenvalues and eigenvectors.
 | 
						|
 | 
						|
    >>> eigenvalues, eigenvectors = LA.eig(np.diag((1, 2, 3)))
 | 
						|
    >>> eigenvalues
 | 
						|
    array([1., 2., 3.])
 | 
						|
    >>> eigenvectors
 | 
						|
    array([[1., 0., 0.],
 | 
						|
           [0., 1., 0.],
 | 
						|
           [0., 0., 1.]])
 | 
						|
 | 
						|
    Real matrix possessing complex eigenvalues and eigenvectors;
 | 
						|
    note that the eigenvalues are complex conjugates of each other.
 | 
						|
 | 
						|
    >>> eigenvalues, eigenvectors = LA.eig(np.array([[1, -1], [1, 1]]))
 | 
						|
    >>> eigenvalues
 | 
						|
    array([1.+1.j, 1.-1.j])
 | 
						|
    >>> eigenvectors
 | 
						|
    array([[0.70710678+0.j        , 0.70710678-0.j        ],
 | 
						|
           [0.        -0.70710678j, 0.        +0.70710678j]])
 | 
						|
 | 
						|
    Complex-valued matrix with real eigenvalues (but complex-valued
 | 
						|
    eigenvectors); note that ``a.conj().T == a``, i.e., `a` is Hermitian.
 | 
						|
 | 
						|
    >>> a = np.array([[1, 1j], [-1j, 1]])
 | 
						|
    >>> eigenvalues, eigenvectors = LA.eig(a)
 | 
						|
    >>> eigenvalues
 | 
						|
    array([2.+0.j, 0.+0.j])
 | 
						|
    >>> eigenvectors
 | 
						|
    array([[ 0.        +0.70710678j,  0.70710678+0.j        ], # may vary
 | 
						|
           [ 0.70710678+0.j        , -0.        +0.70710678j]])
 | 
						|
 | 
						|
    Be careful about round-off error!
 | 
						|
 | 
						|
    >>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
 | 
						|
    >>> # Theor. eigenvalues are 1 +/- 1e-9
 | 
						|
    >>> eigenvalues, eigenvectors = LA.eig(a)
 | 
						|
    >>> eigenvalues
 | 
						|
    array([1., 1.])
 | 
						|
    >>> eigenvectors
 | 
						|
    array([[1., 0.],
 | 
						|
           [0., 1.]])
 | 
						|
 | 
						|
    """
 | 
						|
    a, wrap = _makearray(a)
 | 
						|
    _assert_stacked_square(a)
 | 
						|
    _assert_finite(a)
 | 
						|
    t, result_t = _commonType(a)
 | 
						|
 | 
						|
    signature = 'D->DD' if isComplexType(t) else 'd->DD'
 | 
						|
    with errstate(call=_raise_linalgerror_eigenvalues_nonconvergence,
 | 
						|
                  invalid='call', over='ignore', divide='ignore',
 | 
						|
                  under='ignore'):
 | 
						|
        w, vt = _umath_linalg.eig(a, signature=signature)
 | 
						|
 | 
						|
    if not isComplexType(t) and all(w.imag == 0.0):
 | 
						|
        w = w.real
 | 
						|
        vt = vt.real
 | 
						|
        result_t = _realType(result_t)
 | 
						|
    else:
 | 
						|
        result_t = _complexType(result_t)
 | 
						|
 | 
						|
    vt = vt.astype(result_t, copy=False)
 | 
						|
    return EigResult(w.astype(result_t, copy=False), wrap(vt))
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_eigvalsh_dispatcher)
 | 
						|
def eigh(a, UPLO='L'):
 | 
						|
    """
 | 
						|
    Return the eigenvalues and eigenvectors of a complex Hermitian
 | 
						|
    (conjugate symmetric) or a real symmetric matrix.
 | 
						|
 | 
						|
    Returns two objects, a 1-D array containing the eigenvalues of `a`, and
 | 
						|
    a 2-D square array or matrix (depending on the input type) of the
 | 
						|
    corresponding eigenvectors (in columns).
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    a : (..., M, M) array
 | 
						|
        Hermitian or real symmetric matrices whose eigenvalues and
 | 
						|
        eigenvectors are to be computed.
 | 
						|
    UPLO : {'L', 'U'}, optional
 | 
						|
        Specifies whether the calculation is done with the lower triangular
 | 
						|
        part of `a` ('L', default) or the upper triangular part ('U').
 | 
						|
        Irrespective of this value only the real parts of the diagonal will
 | 
						|
        be considered in the computation to preserve the notion of a Hermitian
 | 
						|
        matrix. It therefore follows that the imaginary part of the diagonal
 | 
						|
        will always be treated as zero.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    A namedtuple with the following attributes:
 | 
						|
 | 
						|
    eigenvalues : (..., M) ndarray
 | 
						|
        The eigenvalues in ascending order, each repeated according to
 | 
						|
        its multiplicity.
 | 
						|
    eigenvectors : {(..., M, M) ndarray, (..., M, M) matrix}
 | 
						|
        The column ``eigenvectors[:, i]`` is the normalized eigenvector
 | 
						|
        corresponding to the eigenvalue ``eigenvalues[i]``.  Will return a
 | 
						|
        matrix object if `a` is a matrix object.
 | 
						|
 | 
						|
    Raises
 | 
						|
    ------
 | 
						|
    LinAlgError
 | 
						|
        If the eigenvalue computation does not converge.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    eigvalsh : eigenvalues of real symmetric or complex Hermitian
 | 
						|
               (conjugate symmetric) arrays.
 | 
						|
    eig : eigenvalues and right eigenvectors for non-symmetric arrays.
 | 
						|
    eigvals : eigenvalues of non-symmetric arrays.
 | 
						|
    scipy.linalg.eigh : Similar function in SciPy (but also solves the
 | 
						|
                        generalized eigenvalue problem).
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    Broadcasting rules apply, see the `numpy.linalg` documentation for
 | 
						|
    details.
 | 
						|
 | 
						|
    The eigenvalues/eigenvectors are computed using LAPACK routines ``_syevd``,
 | 
						|
    ``_heevd``.
 | 
						|
 | 
						|
    The eigenvalues of real symmetric or complex Hermitian matrices are always
 | 
						|
    real. [1]_ The array `eigenvalues` of (column) eigenvectors is unitary and
 | 
						|
    `a`, `eigenvalues`, and `eigenvectors` satisfy the equations ``dot(a,
 | 
						|
    eigenvectors[:, i]) = eigenvalues[i] * eigenvectors[:, i]``.
 | 
						|
 | 
						|
    References
 | 
						|
    ----------
 | 
						|
    .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
 | 
						|
           FL, Academic Press, Inc., 1980, pg. 222.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> from numpy import linalg as LA
 | 
						|
    >>> a = np.array([[1, -2j], [2j, 5]])
 | 
						|
    >>> a
 | 
						|
    array([[ 1.+0.j, -0.-2.j],
 | 
						|
           [ 0.+2.j,  5.+0.j]])
 | 
						|
    >>> eigenvalues, eigenvectors = LA.eigh(a)
 | 
						|
    >>> eigenvalues
 | 
						|
    array([0.17157288, 5.82842712])
 | 
						|
    >>> eigenvectors
 | 
						|
    array([[-0.92387953+0.j        , -0.38268343+0.j        ], # may vary
 | 
						|
           [ 0.        +0.38268343j,  0.        -0.92387953j]])
 | 
						|
 | 
						|
    >>> (np.dot(a, eigenvectors[:, 0]) -
 | 
						|
    ... eigenvalues[0] * eigenvectors[:, 0])  # verify 1st eigenval/vec pair
 | 
						|
    array([5.55111512e-17+0.0000000e+00j, 0.00000000e+00+1.2490009e-16j])
 | 
						|
    >>> (np.dot(a, eigenvectors[:, 1]) -
 | 
						|
    ... eigenvalues[1] * eigenvectors[:, 1])  # verify 2nd eigenval/vec pair
 | 
						|
    array([0.+0.j, 0.+0.j])
 | 
						|
 | 
						|
    >>> A = np.matrix(a) # what happens if input is a matrix object
 | 
						|
    >>> A
 | 
						|
    matrix([[ 1.+0.j, -0.-2.j],
 | 
						|
            [ 0.+2.j,  5.+0.j]])
 | 
						|
    >>> eigenvalues, eigenvectors = LA.eigh(A)
 | 
						|
    >>> eigenvalues
 | 
						|
    array([0.17157288, 5.82842712])
 | 
						|
    >>> eigenvectors
 | 
						|
    matrix([[-0.92387953+0.j        , -0.38268343+0.j        ], # may vary
 | 
						|
            [ 0.        +0.38268343j,  0.        -0.92387953j]])
 | 
						|
 | 
						|
    >>> # demonstrate the treatment of the imaginary part of the diagonal
 | 
						|
    >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]])
 | 
						|
    >>> a
 | 
						|
    array([[5.+2.j, 9.-2.j],
 | 
						|
           [0.+2.j, 2.-1.j]])
 | 
						|
    >>> # with UPLO='L' this is numerically equivalent to using LA.eig() with:
 | 
						|
    >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]])
 | 
						|
    >>> b
 | 
						|
    array([[5.+0.j, 0.-2.j],
 | 
						|
           [0.+2.j, 2.+0.j]])
 | 
						|
    >>> wa, va = LA.eigh(a)
 | 
						|
    >>> wb, vb = LA.eig(b)
 | 
						|
    >>> wa
 | 
						|
    array([1., 6.])
 | 
						|
    >>> wb
 | 
						|
    array([6.+0.j, 1.+0.j])
 | 
						|
    >>> va
 | 
						|
    array([[-0.4472136 +0.j        , -0.89442719+0.j        ], # may vary
 | 
						|
           [ 0.        +0.89442719j,  0.        -0.4472136j ]])
 | 
						|
    >>> vb
 | 
						|
    array([[ 0.89442719+0.j       , -0.        +0.4472136j],
 | 
						|
           [-0.        +0.4472136j,  0.89442719+0.j       ]])
 | 
						|
 | 
						|
    """
 | 
						|
    UPLO = UPLO.upper()
 | 
						|
    if UPLO not in ('L', 'U'):
 | 
						|
        raise ValueError("UPLO argument must be 'L' or 'U'")
 | 
						|
 | 
						|
    a, wrap = _makearray(a)
 | 
						|
    _assert_stacked_square(a)
 | 
						|
    t, result_t = _commonType(a)
 | 
						|
 | 
						|
    if UPLO == 'L':
 | 
						|
        gufunc = _umath_linalg.eigh_lo
 | 
						|
    else:
 | 
						|
        gufunc = _umath_linalg.eigh_up
 | 
						|
 | 
						|
    signature = 'D->dD' if isComplexType(t) else 'd->dd'
 | 
						|
    with errstate(call=_raise_linalgerror_eigenvalues_nonconvergence,
 | 
						|
                  invalid='call', over='ignore', divide='ignore',
 | 
						|
                  under='ignore'):
 | 
						|
        w, vt = gufunc(a, signature=signature)
 | 
						|
    w = w.astype(_realType(result_t), copy=False)
 | 
						|
    vt = vt.astype(result_t, copy=False)
 | 
						|
    return EighResult(w, wrap(vt))
 | 
						|
 | 
						|
 | 
						|
# Singular value decomposition
 | 
						|
 | 
						|
def _svd_dispatcher(a, full_matrices=None, compute_uv=None, hermitian=None):
 | 
						|
    return (a,)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_svd_dispatcher)
 | 
						|
def svd(a, full_matrices=True, compute_uv=True, hermitian=False):
 | 
						|
    """
 | 
						|
    Singular Value Decomposition.
 | 
						|
 | 
						|
    When `a` is a 2D array, and ``full_matrices=False``, then it is
 | 
						|
    factorized as ``u @ np.diag(s) @ vh = (u * s) @ vh``, where
 | 
						|
    `u` and the Hermitian transpose of `vh` are 2D arrays with
 | 
						|
    orthonormal columns and `s` is a 1D array of `a`'s singular
 | 
						|
    values. When `a` is higher-dimensional, SVD is applied in
 | 
						|
    stacked mode as explained below.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    a : (..., M, N) array_like
 | 
						|
        A real or complex array with ``a.ndim >= 2``.
 | 
						|
    full_matrices : bool, optional
 | 
						|
        If True (default), `u` and `vh` have the shapes ``(..., M, M)`` and
 | 
						|
        ``(..., N, N)``, respectively.  Otherwise, the shapes are
 | 
						|
        ``(..., M, K)`` and ``(..., K, N)``, respectively, where
 | 
						|
        ``K = min(M, N)``.
 | 
						|
    compute_uv : bool, optional
 | 
						|
        Whether or not to compute `u` and `vh` in addition to `s`.  True
 | 
						|
        by default.
 | 
						|
    hermitian : bool, optional
 | 
						|
        If True, `a` is assumed to be Hermitian (symmetric if real-valued),
 | 
						|
        enabling a more efficient method for finding singular values.
 | 
						|
        Defaults to False.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    When `compute_uv` is True, the result is a namedtuple with the following
 | 
						|
    attribute names:
 | 
						|
 | 
						|
    U : { (..., M, M), (..., M, K) } array
 | 
						|
        Unitary array(s). The first ``a.ndim - 2`` dimensions have the same
 | 
						|
        size as those of the input `a`. The size of the last two dimensions
 | 
						|
        depends on the value of `full_matrices`. Only returned when
 | 
						|
        `compute_uv` is True.
 | 
						|
    S : (..., K) array
 | 
						|
        Vector(s) with the singular values, within each vector sorted in
 | 
						|
        descending order. The first ``a.ndim - 2`` dimensions have the same
 | 
						|
        size as those of the input `a`.
 | 
						|
    Vh : { (..., N, N), (..., K, N) } array
 | 
						|
        Unitary array(s). The first ``a.ndim - 2`` dimensions have the same
 | 
						|
        size as those of the input `a`. The size of the last two dimensions
 | 
						|
        depends on the value of `full_matrices`. Only returned when
 | 
						|
        `compute_uv` is True.
 | 
						|
 | 
						|
    Raises
 | 
						|
    ------
 | 
						|
    LinAlgError
 | 
						|
        If SVD computation does not converge.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    scipy.linalg.svd : Similar function in SciPy.
 | 
						|
    scipy.linalg.svdvals : Compute singular values of a matrix.
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    The decomposition is performed using LAPACK routine ``_gesdd``.
 | 
						|
 | 
						|
    SVD is usually described for the factorization of a 2D matrix :math:`A`.
 | 
						|
    The higher-dimensional case will be discussed below. In the 2D case, SVD is
 | 
						|
    written as :math:`A = U S V^H`, where :math:`A = a`, :math:`U= u`,
 | 
						|
    :math:`S= \\mathtt{np.diag}(s)` and :math:`V^H = vh`. The 1D array `s`
 | 
						|
    contains the singular values of `a` and `u` and `vh` are unitary. The rows
 | 
						|
    of `vh` are the eigenvectors of :math:`A^H A` and the columns of `u` are
 | 
						|
    the eigenvectors of :math:`A A^H`. In both cases the corresponding
 | 
						|
    (possibly non-zero) eigenvalues are given by ``s**2``.
 | 
						|
 | 
						|
    If `a` has more than two dimensions, then broadcasting rules apply, as
 | 
						|
    explained in :ref:`routines.linalg-broadcasting`. This means that SVD is
 | 
						|
    working in "stacked" mode: it iterates over all indices of the first
 | 
						|
    ``a.ndim - 2`` dimensions and for each combination SVD is applied to the
 | 
						|
    last two indices. The matrix `a` can be reconstructed from the
 | 
						|
    decomposition with either ``(u * s[..., None, :]) @ vh`` or
 | 
						|
    ``u @ (s[..., None] * vh)``. (The ``@`` operator can be replaced by the
 | 
						|
    function ``np.matmul`` for python versions below 3.5.)
 | 
						|
 | 
						|
    If `a` is a ``matrix`` object (as opposed to an ``ndarray``), then so are
 | 
						|
    all the return values.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> rng = np.random.default_rng()
 | 
						|
    >>> a = rng.normal(size=(9, 6)) + 1j*rng.normal(size=(9, 6))
 | 
						|
    >>> b = rng.normal(size=(2, 7, 8, 3)) + 1j*rng.normal(size=(2, 7, 8, 3))
 | 
						|
 | 
						|
 | 
						|
    Reconstruction based on full SVD, 2D case:
 | 
						|
 | 
						|
    >>> U, S, Vh = np.linalg.svd(a, full_matrices=True)
 | 
						|
    >>> U.shape, S.shape, Vh.shape
 | 
						|
    ((9, 9), (6,), (6, 6))
 | 
						|
    >>> np.allclose(a, np.dot(U[:, :6] * S, Vh))
 | 
						|
    True
 | 
						|
    >>> smat = np.zeros((9, 6), dtype=complex)
 | 
						|
    >>> smat[:6, :6] = np.diag(S)
 | 
						|
    >>> np.allclose(a, np.dot(U, np.dot(smat, Vh)))
 | 
						|
    True
 | 
						|
 | 
						|
    Reconstruction based on reduced SVD, 2D case:
 | 
						|
 | 
						|
    >>> U, S, Vh = np.linalg.svd(a, full_matrices=False)
 | 
						|
    >>> U.shape, S.shape, Vh.shape
 | 
						|
    ((9, 6), (6,), (6, 6))
 | 
						|
    >>> np.allclose(a, np.dot(U * S, Vh))
 | 
						|
    True
 | 
						|
    >>> smat = np.diag(S)
 | 
						|
    >>> np.allclose(a, np.dot(U, np.dot(smat, Vh)))
 | 
						|
    True
 | 
						|
 | 
						|
    Reconstruction based on full SVD, 4D case:
 | 
						|
 | 
						|
    >>> U, S, Vh = np.linalg.svd(b, full_matrices=True)
 | 
						|
    >>> U.shape, S.shape, Vh.shape
 | 
						|
    ((2, 7, 8, 8), (2, 7, 3), (2, 7, 3, 3))
 | 
						|
    >>> np.allclose(b, np.matmul(U[..., :3] * S[..., None, :], Vh))
 | 
						|
    True
 | 
						|
    >>> np.allclose(b, np.matmul(U[..., :3], S[..., None] * Vh))
 | 
						|
    True
 | 
						|
 | 
						|
    Reconstruction based on reduced SVD, 4D case:
 | 
						|
 | 
						|
    >>> U, S, Vh = np.linalg.svd(b, full_matrices=False)
 | 
						|
    >>> U.shape, S.shape, Vh.shape
 | 
						|
    ((2, 7, 8, 3), (2, 7, 3), (2, 7, 3, 3))
 | 
						|
    >>> np.allclose(b, np.matmul(U * S[..., None, :], Vh))
 | 
						|
    True
 | 
						|
    >>> np.allclose(b, np.matmul(U, S[..., None] * Vh))
 | 
						|
    True
 | 
						|
 | 
						|
    """
 | 
						|
    import numpy as np
 | 
						|
    a, wrap = _makearray(a)
 | 
						|
 | 
						|
    if hermitian:
 | 
						|
        # note: lapack svd returns eigenvalues with s ** 2 sorted descending,
 | 
						|
        # but eig returns s sorted ascending, so we re-order the eigenvalues
 | 
						|
        # and related arrays to have the correct order
 | 
						|
        if compute_uv:
 | 
						|
            s, u = eigh(a)
 | 
						|
            sgn = sign(s)
 | 
						|
            s = abs(s)
 | 
						|
            sidx = argsort(s)[..., ::-1]
 | 
						|
            sgn = np.take_along_axis(sgn, sidx, axis=-1)
 | 
						|
            s = np.take_along_axis(s, sidx, axis=-1)
 | 
						|
            u = np.take_along_axis(u, sidx[..., None, :], axis=-1)
 | 
						|
            # singular values are unsigned, move the sign into v
 | 
						|
            vt = transpose(u * sgn[..., None, :]).conjugate()
 | 
						|
            return SVDResult(wrap(u), s, wrap(vt))
 | 
						|
        else:
 | 
						|
            s = eigvalsh(a)
 | 
						|
            s = abs(s)
 | 
						|
            return sort(s)[..., ::-1]
 | 
						|
 | 
						|
    _assert_stacked_2d(a)
 | 
						|
    t, result_t = _commonType(a)
 | 
						|
 | 
						|
    m, n = a.shape[-2:]
 | 
						|
    if compute_uv:
 | 
						|
        if full_matrices:
 | 
						|
            gufunc = _umath_linalg.svd_f
 | 
						|
        else:
 | 
						|
            gufunc = _umath_linalg.svd_s
 | 
						|
 | 
						|
        signature = 'D->DdD' if isComplexType(t) else 'd->ddd'
 | 
						|
        with errstate(call=_raise_linalgerror_svd_nonconvergence,
 | 
						|
                      invalid='call', over='ignore', divide='ignore',
 | 
						|
                      under='ignore'):
 | 
						|
            u, s, vh = gufunc(a, signature=signature)
 | 
						|
        u = u.astype(result_t, copy=False)
 | 
						|
        s = s.astype(_realType(result_t), copy=False)
 | 
						|
        vh = vh.astype(result_t, copy=False)
 | 
						|
        return SVDResult(wrap(u), s, wrap(vh))
 | 
						|
    else:
 | 
						|
        signature = 'D->d' if isComplexType(t) else 'd->d'
 | 
						|
        with errstate(call=_raise_linalgerror_svd_nonconvergence,
 | 
						|
                      invalid='call', over='ignore', divide='ignore',
 | 
						|
                      under='ignore'):
 | 
						|
            s = _umath_linalg.svd(a, signature=signature)
 | 
						|
        s = s.astype(_realType(result_t), copy=False)
 | 
						|
        return s
 | 
						|
 | 
						|
 | 
						|
def _svdvals_dispatcher(x):
 | 
						|
    return (x,)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_svdvals_dispatcher)
 | 
						|
def svdvals(x, /):
 | 
						|
    """
 | 
						|
    Returns the singular values of a matrix (or a stack of matrices) ``x``.
 | 
						|
    When x is a stack of matrices, the function will compute the singular
 | 
						|
    values for each matrix in the stack.
 | 
						|
 | 
						|
    This function is Array API compatible.
 | 
						|
 | 
						|
    Calling ``np.svdvals(x)`` to get singular values is the same as
 | 
						|
    ``np.svd(x, compute_uv=False, hermitian=False)``.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    x : (..., M, N) array_like
 | 
						|
        Input array having shape (..., M, N) and whose last two
 | 
						|
        dimensions form matrices on which to perform singular value
 | 
						|
        decomposition. Should have a floating-point data type.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    out : ndarray
 | 
						|
        An array with shape (..., K) that contains the vector(s)
 | 
						|
        of singular values of length K, where K = min(M, N).
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    scipy.linalg.svdvals : Compute singular values of a matrix.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
 | 
						|
    >>> np.linalg.svdvals([[1, 2, 3, 4, 5],
 | 
						|
    ...                    [1, 4, 9, 16, 25],
 | 
						|
    ...                    [1, 8, 27, 64, 125]])
 | 
						|
    array([146.68862757,   5.57510612,   0.60393245])
 | 
						|
 | 
						|
    Determine the rank of a matrix using singular values:
 | 
						|
 | 
						|
    >>> s = np.linalg.svdvals([[1, 2, 3],
 | 
						|
    ...                        [2, 4, 6],
 | 
						|
    ...                        [-1, 1, -1]]); s
 | 
						|
    array([8.38434191e+00, 1.64402274e+00, 2.31534378e-16])
 | 
						|
    >>> np.count_nonzero(s > 1e-10)  # Matrix of rank 2
 | 
						|
    2
 | 
						|
 | 
						|
    """
 | 
						|
    return svd(x, compute_uv=False, hermitian=False)
 | 
						|
 | 
						|
 | 
						|
def _cond_dispatcher(x, p=None):
 | 
						|
    return (x,)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_cond_dispatcher)
 | 
						|
def cond(x, p=None):
 | 
						|
    """
 | 
						|
    Compute the condition number of a matrix.
 | 
						|
 | 
						|
    This function is capable of returning the condition number using
 | 
						|
    one of seven different norms, depending on the value of `p` (see
 | 
						|
    Parameters below).
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    x : (..., M, N) array_like
 | 
						|
        The matrix whose condition number is sought.
 | 
						|
    p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}, optional
 | 
						|
        Order of the norm used in the condition number computation:
 | 
						|
 | 
						|
        =====  ============================
 | 
						|
        p      norm for matrices
 | 
						|
        =====  ============================
 | 
						|
        None   2-norm, computed directly using the ``SVD``
 | 
						|
        'fro'  Frobenius norm
 | 
						|
        inf    max(sum(abs(x), axis=1))
 | 
						|
        -inf   min(sum(abs(x), axis=1))
 | 
						|
        1      max(sum(abs(x), axis=0))
 | 
						|
        -1     min(sum(abs(x), axis=0))
 | 
						|
        2      2-norm (largest sing. value)
 | 
						|
        -2     smallest singular value
 | 
						|
        =====  ============================
 | 
						|
 | 
						|
        inf means the `numpy.inf` object, and the Frobenius norm is
 | 
						|
        the root-of-sum-of-squares norm.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    c : {float, inf}
 | 
						|
        The condition number of the matrix. May be infinite.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    numpy.linalg.norm
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    The condition number of `x` is defined as the norm of `x` times the
 | 
						|
    norm of the inverse of `x` [1]_; the norm can be the usual L2-norm
 | 
						|
    (root-of-sum-of-squares) or one of a number of other matrix norms.
 | 
						|
 | 
						|
    References
 | 
						|
    ----------
 | 
						|
    .. [1] G. Strang, *Linear Algebra and Its Applications*, Orlando, FL,
 | 
						|
           Academic Press, Inc., 1980, pg. 285.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> from numpy import linalg as LA
 | 
						|
    >>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]])
 | 
						|
    >>> a
 | 
						|
    array([[ 1,  0, -1],
 | 
						|
           [ 0,  1,  0],
 | 
						|
           [ 1,  0,  1]])
 | 
						|
    >>> LA.cond(a)
 | 
						|
    1.4142135623730951
 | 
						|
    >>> LA.cond(a, 'fro')
 | 
						|
    3.1622776601683795
 | 
						|
    >>> LA.cond(a, np.inf)
 | 
						|
    2.0
 | 
						|
    >>> LA.cond(a, -np.inf)
 | 
						|
    1.0
 | 
						|
    >>> LA.cond(a, 1)
 | 
						|
    2.0
 | 
						|
    >>> LA.cond(a, -1)
 | 
						|
    1.0
 | 
						|
    >>> LA.cond(a, 2)
 | 
						|
    1.4142135623730951
 | 
						|
    >>> LA.cond(a, -2)
 | 
						|
    0.70710678118654746 # may vary
 | 
						|
    >>> (min(LA.svd(a, compute_uv=False)) *
 | 
						|
    ... min(LA.svd(LA.inv(a), compute_uv=False)))
 | 
						|
    0.70710678118654746 # may vary
 | 
						|
 | 
						|
    """
 | 
						|
    x = asarray(x)  # in case we have a matrix
 | 
						|
    if _is_empty_2d(x):
 | 
						|
        raise LinAlgError("cond is not defined on empty arrays")
 | 
						|
    if p is None or p in {2, -2}:
 | 
						|
        s = svd(x, compute_uv=False)
 | 
						|
        with errstate(all='ignore'):
 | 
						|
            if p == -2:
 | 
						|
                r = s[..., -1] / s[..., 0]
 | 
						|
            else:
 | 
						|
                r = s[..., 0] / s[..., -1]
 | 
						|
    else:
 | 
						|
        # Call inv(x) ignoring errors. The result array will
 | 
						|
        # contain nans in the entries where inversion failed.
 | 
						|
        _assert_stacked_square(x)
 | 
						|
        t, result_t = _commonType(x)
 | 
						|
        result_t = _realType(result_t)  # condition number is always real
 | 
						|
        signature = 'D->D' if isComplexType(t) else 'd->d'
 | 
						|
        with errstate(all='ignore'):
 | 
						|
            invx = _umath_linalg.inv(x, signature=signature)
 | 
						|
            r = norm(x, p, axis=(-2, -1)) * norm(invx, p, axis=(-2, -1))
 | 
						|
        r = r.astype(result_t, copy=False)
 | 
						|
 | 
						|
    # Convert nans to infs unless the original array had nan entries
 | 
						|
    r = asarray(r)
 | 
						|
    nan_mask = isnan(r)
 | 
						|
    if nan_mask.any():
 | 
						|
        nan_mask &= ~isnan(x).any(axis=(-2, -1))
 | 
						|
        if r.ndim > 0:
 | 
						|
            r[nan_mask] = inf
 | 
						|
        elif nan_mask:
 | 
						|
            r[()] = inf
 | 
						|
 | 
						|
    # Convention is to return scalars instead of 0d arrays
 | 
						|
    if r.ndim == 0:
 | 
						|
        r = r[()]
 | 
						|
 | 
						|
    return r
 | 
						|
 | 
						|
 | 
						|
def _matrix_rank_dispatcher(A, tol=None, hermitian=None, *, rtol=None):
 | 
						|
    return (A,)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_matrix_rank_dispatcher)
 | 
						|
def matrix_rank(A, tol=None, hermitian=False, *, rtol=None):
 | 
						|
    """
 | 
						|
    Return matrix rank of array using SVD method
 | 
						|
 | 
						|
    Rank of the array is the number of singular values of the array that are
 | 
						|
    greater than `tol`.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    A : {(M,), (..., M, N)} array_like
 | 
						|
        Input vector or stack of matrices.
 | 
						|
    tol : (...) array_like, float, optional
 | 
						|
        Threshold below which SVD values are considered zero. If `tol` is
 | 
						|
        None, and ``S`` is an array with singular values for `M`, and
 | 
						|
        ``eps`` is the epsilon value for datatype of ``S``, then `tol` is
 | 
						|
        set to ``S.max() * max(M, N) * eps``.
 | 
						|
    hermitian : bool, optional
 | 
						|
        If True, `A` is assumed to be Hermitian (symmetric if real-valued),
 | 
						|
        enabling a more efficient method for finding singular values.
 | 
						|
        Defaults to False.
 | 
						|
    rtol : (...) array_like, float, optional
 | 
						|
        Parameter for the relative tolerance component. Only ``tol`` or
 | 
						|
        ``rtol`` can be set at a time. Defaults to ``max(M, N) * eps``.
 | 
						|
 | 
						|
        .. versionadded:: 2.0.0
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    rank : (...) array_like
 | 
						|
        Rank of A.
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    The default threshold to detect rank deficiency is a test on the magnitude
 | 
						|
    of the singular values of `A`.  By default, we identify singular values
 | 
						|
    less than ``S.max() * max(M, N) * eps`` as indicating rank deficiency
 | 
						|
    (with the symbols defined above). This is the algorithm MATLAB uses [1].
 | 
						|
    It also appears in *Numerical recipes* in the discussion of SVD solutions
 | 
						|
    for linear least squares [2].
 | 
						|
 | 
						|
    This default threshold is designed to detect rank deficiency accounting
 | 
						|
    for the numerical errors of the SVD computation. Imagine that there
 | 
						|
    is a column in `A` that is an exact (in floating point) linear combination
 | 
						|
    of other columns in `A`. Computing the SVD on `A` will not produce
 | 
						|
    a singular value exactly equal to 0 in general: any difference of
 | 
						|
    the smallest SVD value from 0 will be caused by numerical imprecision
 | 
						|
    in the calculation of the SVD. Our threshold for small SVD values takes
 | 
						|
    this numerical imprecision into account, and the default threshold will
 | 
						|
    detect such numerical rank deficiency. The threshold may declare a matrix
 | 
						|
    `A` rank deficient even if the linear combination of some columns of `A`
 | 
						|
    is not exactly equal to another column of `A` but only numerically very
 | 
						|
    close to another column of `A`.
 | 
						|
 | 
						|
    We chose our default threshold because it is in wide use. Other thresholds
 | 
						|
    are possible.  For example, elsewhere in the 2007 edition of *Numerical
 | 
						|
    recipes* there is an alternative threshold of ``S.max() *
 | 
						|
    np.finfo(A.dtype).eps / 2. * np.sqrt(m + n + 1.)``. The authors describe
 | 
						|
    this threshold as being based on "expected roundoff error" (p 71).
 | 
						|
 | 
						|
    The thresholds above deal with floating point roundoff error in the
 | 
						|
    calculation of the SVD.  However, you may have more information about
 | 
						|
    the sources of error in `A` that would make you consider other tolerance
 | 
						|
    values to detect *effective* rank deficiency. The most useful measure
 | 
						|
    of the tolerance depends on the operations you intend to use on your
 | 
						|
    matrix. For example, if your data come from uncertain measurements with
 | 
						|
    uncertainties greater than floating point epsilon, choosing a tolerance
 | 
						|
    near that uncertainty may be preferable. The tolerance may be absolute
 | 
						|
    if the uncertainties are absolute rather than relative.
 | 
						|
 | 
						|
    References
 | 
						|
    ----------
 | 
						|
    .. [1] MATLAB reference documentation, "Rank"
 | 
						|
           https://www.mathworks.com/help/techdoc/ref/rank.html
 | 
						|
    .. [2] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery,
 | 
						|
           "Numerical Recipes (3rd edition)", Cambridge University Press, 2007,
 | 
						|
           page 795.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> from numpy.linalg import matrix_rank
 | 
						|
    >>> matrix_rank(np.eye(4)) # Full rank matrix
 | 
						|
    4
 | 
						|
    >>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix
 | 
						|
    >>> matrix_rank(I)
 | 
						|
    3
 | 
						|
    >>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0
 | 
						|
    1
 | 
						|
    >>> matrix_rank(np.zeros((4,)))
 | 
						|
    0
 | 
						|
    """
 | 
						|
    if rtol is not None and tol is not None:
 | 
						|
        raise ValueError("`tol` and `rtol` can't be both set.")
 | 
						|
 | 
						|
    A = asarray(A)
 | 
						|
    if A.ndim < 2:
 | 
						|
        return int(not all(A == 0))
 | 
						|
    S = svd(A, compute_uv=False, hermitian=hermitian)
 | 
						|
 | 
						|
    if tol is None:
 | 
						|
        if rtol is None:
 | 
						|
            rtol = max(A.shape[-2:]) * finfo(S.dtype).eps
 | 
						|
        else:
 | 
						|
            rtol = asarray(rtol)[..., newaxis]
 | 
						|
        tol = S.max(axis=-1, keepdims=True) * rtol
 | 
						|
    else:
 | 
						|
        tol = asarray(tol)[..., newaxis]
 | 
						|
 | 
						|
    return count_nonzero(S > tol, axis=-1)
 | 
						|
 | 
						|
 | 
						|
# Generalized inverse
 | 
						|
 | 
						|
def _pinv_dispatcher(a, rcond=None, hermitian=None, *, rtol=None):
 | 
						|
    return (a,)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_pinv_dispatcher)
 | 
						|
def pinv(a, rcond=None, hermitian=False, *, rtol=_NoValue):
 | 
						|
    """
 | 
						|
    Compute the (Moore-Penrose) pseudo-inverse of a matrix.
 | 
						|
 | 
						|
    Calculate the generalized inverse of a matrix using its
 | 
						|
    singular-value decomposition (SVD) and including all
 | 
						|
    *large* singular values.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    a : (..., M, N) array_like
 | 
						|
        Matrix or stack of matrices to be pseudo-inverted.
 | 
						|
    rcond : (...) array_like of float, optional
 | 
						|
        Cutoff for small singular values.
 | 
						|
        Singular values less than or equal to
 | 
						|
        ``rcond * largest_singular_value`` are set to zero.
 | 
						|
        Broadcasts against the stack of matrices. Default: ``1e-15``.
 | 
						|
    hermitian : bool, optional
 | 
						|
        If True, `a` is assumed to be Hermitian (symmetric if real-valued),
 | 
						|
        enabling a more efficient method for finding singular values.
 | 
						|
        Defaults to False.
 | 
						|
    rtol : (...) array_like of float, optional
 | 
						|
        Same as `rcond`, but it's an Array API compatible parameter name.
 | 
						|
        Only `rcond` or `rtol` can be set at a time. If none of them are
 | 
						|
        provided then NumPy's ``1e-15`` default is used. If ``rtol=None``
 | 
						|
        is passed then the API standard default is used.
 | 
						|
 | 
						|
        .. versionadded:: 2.0.0
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    B : (..., N, M) ndarray
 | 
						|
        The pseudo-inverse of `a`. If `a` is a `matrix` instance, then so
 | 
						|
        is `B`.
 | 
						|
 | 
						|
    Raises
 | 
						|
    ------
 | 
						|
    LinAlgError
 | 
						|
        If the SVD computation does not converge.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    scipy.linalg.pinv : Similar function in SciPy.
 | 
						|
    scipy.linalg.pinvh : Compute the (Moore-Penrose) pseudo-inverse of a
 | 
						|
                         Hermitian matrix.
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    The pseudo-inverse of a matrix A, denoted :math:`A^+`, is
 | 
						|
    defined as: "the matrix that 'solves' [the least-squares problem]
 | 
						|
    :math:`Ax = b`," i.e., if :math:`\\bar{x}` is said solution, then
 | 
						|
    :math:`A^+` is that matrix such that :math:`\\bar{x} = A^+b`.
 | 
						|
 | 
						|
    It can be shown that if :math:`Q_1 \\Sigma Q_2^T = A` is the singular
 | 
						|
    value decomposition of A, then
 | 
						|
    :math:`A^+ = Q_2 \\Sigma^+ Q_1^T`, where :math:`Q_{1,2}` are
 | 
						|
    orthogonal matrices, :math:`\\Sigma` is a diagonal matrix consisting
 | 
						|
    of A's so-called singular values, (followed, typically, by
 | 
						|
    zeros), and then :math:`\\Sigma^+` is simply the diagonal matrix
 | 
						|
    consisting of the reciprocals of A's singular values
 | 
						|
    (again, followed by zeros). [1]_
 | 
						|
 | 
						|
    References
 | 
						|
    ----------
 | 
						|
    .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
 | 
						|
           FL, Academic Press, Inc., 1980, pp. 139-142.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    The following example checks that ``a * a+ * a == a`` and
 | 
						|
    ``a+ * a * a+ == a+``:
 | 
						|
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> rng = np.random.default_rng()
 | 
						|
    >>> a = rng.normal(size=(9, 6))
 | 
						|
    >>> B = np.linalg.pinv(a)
 | 
						|
    >>> np.allclose(a, np.dot(a, np.dot(B, a)))
 | 
						|
    True
 | 
						|
    >>> np.allclose(B, np.dot(B, np.dot(a, B)))
 | 
						|
    True
 | 
						|
 | 
						|
    """
 | 
						|
    a, wrap = _makearray(a)
 | 
						|
    if rcond is None:
 | 
						|
        if rtol is _NoValue:
 | 
						|
            rcond = 1e-15
 | 
						|
        elif rtol is None:
 | 
						|
            rcond = max(a.shape[-2:]) * finfo(a.dtype).eps
 | 
						|
        else:
 | 
						|
            rcond = rtol
 | 
						|
    elif rtol is not _NoValue:
 | 
						|
        raise ValueError("`rtol` and `rcond` can't be both set.")
 | 
						|
    else:
 | 
						|
        # NOTE: Deprecate `rcond` in a few versions.
 | 
						|
        pass
 | 
						|
 | 
						|
    rcond = asarray(rcond)
 | 
						|
    if _is_empty_2d(a):
 | 
						|
        m, n = a.shape[-2:]
 | 
						|
        res = empty(a.shape[:-2] + (n, m), dtype=a.dtype)
 | 
						|
        return wrap(res)
 | 
						|
    a = a.conjugate()
 | 
						|
    u, s, vt = svd(a, full_matrices=False, hermitian=hermitian)
 | 
						|
 | 
						|
    # discard small singular values
 | 
						|
    cutoff = rcond[..., newaxis] * amax(s, axis=-1, keepdims=True)
 | 
						|
    large = s > cutoff
 | 
						|
    s = divide(1, s, where=large, out=s)
 | 
						|
    s[~large] = 0
 | 
						|
 | 
						|
    res = matmul(transpose(vt), multiply(s[..., newaxis], transpose(u)))
 | 
						|
    return wrap(res)
 | 
						|
 | 
						|
 | 
						|
# Determinant
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_unary_dispatcher)
 | 
						|
def slogdet(a):
 | 
						|
    """
 | 
						|
    Compute the sign and (natural) logarithm of the determinant of an array.
 | 
						|
 | 
						|
    If an array has a very small or very large determinant, then a call to
 | 
						|
    `det` may overflow or underflow. This routine is more robust against such
 | 
						|
    issues, because it computes the logarithm of the determinant rather than
 | 
						|
    the determinant itself.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    a : (..., M, M) array_like
 | 
						|
        Input array, has to be a square 2-D array.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    A namedtuple with the following attributes:
 | 
						|
 | 
						|
    sign : (...) array_like
 | 
						|
        A number representing the sign of the determinant. For a real matrix,
 | 
						|
        this is 1, 0, or -1. For a complex matrix, this is a complex number
 | 
						|
        with absolute value 1 (i.e., it is on the unit circle), or else 0.
 | 
						|
    logabsdet : (...) array_like
 | 
						|
        The natural log of the absolute value of the determinant.
 | 
						|
 | 
						|
    If the determinant is zero, then `sign` will be 0 and `logabsdet`
 | 
						|
    will be -inf. In all cases, the determinant is equal to
 | 
						|
    ``sign * np.exp(logabsdet)``.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    det
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    Broadcasting rules apply, see the `numpy.linalg` documentation for
 | 
						|
    details.
 | 
						|
 | 
						|
    The determinant is computed via LU factorization using the LAPACK
 | 
						|
    routine ``z/dgetrf``.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    The determinant of a 2-D array ``[[a, b], [c, d]]`` is ``ad - bc``:
 | 
						|
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> a = np.array([[1, 2], [3, 4]])
 | 
						|
    >>> (sign, logabsdet) = np.linalg.slogdet(a)
 | 
						|
    >>> (sign, logabsdet)
 | 
						|
    (-1, 0.69314718055994529) # may vary
 | 
						|
    >>> sign * np.exp(logabsdet)
 | 
						|
    -2.0
 | 
						|
 | 
						|
    Computing log-determinants for a stack of matrices:
 | 
						|
 | 
						|
    >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
 | 
						|
    >>> a.shape
 | 
						|
    (3, 2, 2)
 | 
						|
    >>> sign, logabsdet = np.linalg.slogdet(a)
 | 
						|
    >>> (sign, logabsdet)
 | 
						|
    (array([-1., -1., -1.]), array([ 0.69314718,  1.09861229,  2.07944154]))
 | 
						|
    >>> sign * np.exp(logabsdet)
 | 
						|
    array([-2., -3., -8.])
 | 
						|
 | 
						|
    This routine succeeds where ordinary `det` does not:
 | 
						|
 | 
						|
    >>> np.linalg.det(np.eye(500) * 0.1)
 | 
						|
    0.0
 | 
						|
    >>> np.linalg.slogdet(np.eye(500) * 0.1)
 | 
						|
    (1, -1151.2925464970228)
 | 
						|
 | 
						|
    """
 | 
						|
    a = asarray(a)
 | 
						|
    _assert_stacked_square(a)
 | 
						|
    t, result_t = _commonType(a)
 | 
						|
    real_t = _realType(result_t)
 | 
						|
    signature = 'D->Dd' if isComplexType(t) else 'd->dd'
 | 
						|
    sign, logdet = _umath_linalg.slogdet(a, signature=signature)
 | 
						|
    sign = sign.astype(result_t, copy=False)
 | 
						|
    logdet = logdet.astype(real_t, copy=False)
 | 
						|
    return SlogdetResult(sign, logdet)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_unary_dispatcher)
 | 
						|
def det(a):
 | 
						|
    """
 | 
						|
    Compute the determinant of an array.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    a : (..., M, M) array_like
 | 
						|
        Input array to compute determinants for.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    det : (...) array_like
 | 
						|
        Determinant of `a`.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    slogdet : Another way to represent the determinant, more suitable
 | 
						|
      for large matrices where underflow/overflow may occur.
 | 
						|
    scipy.linalg.det : Similar function in SciPy.
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    Broadcasting rules apply, see the `numpy.linalg` documentation for
 | 
						|
    details.
 | 
						|
 | 
						|
    The determinant is computed via LU factorization using the LAPACK
 | 
						|
    routine ``z/dgetrf``.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:
 | 
						|
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> a = np.array([[1, 2], [3, 4]])
 | 
						|
    >>> np.linalg.det(a)
 | 
						|
    -2.0 # may vary
 | 
						|
 | 
						|
    Computing determinants for a stack of matrices:
 | 
						|
 | 
						|
    >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
 | 
						|
    >>> a.shape
 | 
						|
    (3, 2, 2)
 | 
						|
    >>> np.linalg.det(a)
 | 
						|
    array([-2., -3., -8.])
 | 
						|
 | 
						|
    """
 | 
						|
    a = asarray(a)
 | 
						|
    _assert_stacked_square(a)
 | 
						|
    t, result_t = _commonType(a)
 | 
						|
    signature = 'D->D' if isComplexType(t) else 'd->d'
 | 
						|
    r = _umath_linalg.det(a, signature=signature)
 | 
						|
    r = r.astype(result_t, copy=False)
 | 
						|
    return r
 | 
						|
 | 
						|
 | 
						|
# Linear Least Squares
 | 
						|
 | 
						|
def _lstsq_dispatcher(a, b, rcond=None):
 | 
						|
    return (a, b)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_lstsq_dispatcher)
 | 
						|
def lstsq(a, b, rcond=None):
 | 
						|
    r"""
 | 
						|
    Return the least-squares solution to a linear matrix equation.
 | 
						|
 | 
						|
    Computes the vector `x` that approximately solves the equation
 | 
						|
    ``a @ x = b``. The equation may be under-, well-, or over-determined
 | 
						|
    (i.e., the number of linearly independent rows of `a` can be less than,
 | 
						|
    equal to, or greater than its number of linearly independent columns).
 | 
						|
    If `a` is square and of full rank, then `x` (but for round-off error)
 | 
						|
    is the "exact" solution of the equation. Else, `x` minimizes the
 | 
						|
    Euclidean 2-norm :math:`||b - ax||`. If there are multiple minimizing
 | 
						|
    solutions, the one with the smallest 2-norm :math:`||x||` is returned.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    a : (M, N) array_like
 | 
						|
        "Coefficient" matrix.
 | 
						|
    b : {(M,), (M, K)} array_like
 | 
						|
        Ordinate or "dependent variable" values. If `b` is two-dimensional,
 | 
						|
        the least-squares solution is calculated for each of the `K` columns
 | 
						|
        of `b`.
 | 
						|
    rcond : float, optional
 | 
						|
        Cut-off ratio for small singular values of `a`.
 | 
						|
        For the purposes of rank determination, singular values are treated
 | 
						|
        as zero if they are smaller than `rcond` times the largest singular
 | 
						|
        value of `a`.
 | 
						|
        The default uses the machine precision times ``max(M, N)``.  Passing
 | 
						|
        ``-1`` will use machine precision.
 | 
						|
 | 
						|
        .. versionchanged:: 2.0
 | 
						|
            Previously, the default was ``-1``, but a warning was given that
 | 
						|
            this would change.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    x : {(N,), (N, K)} ndarray
 | 
						|
        Least-squares solution. If `b` is two-dimensional,
 | 
						|
        the solutions are in the `K` columns of `x`.
 | 
						|
    residuals : {(1,), (K,), (0,)} ndarray
 | 
						|
        Sums of squared residuals: Squared Euclidean 2-norm for each column in
 | 
						|
        ``b - a @ x``.
 | 
						|
        If the rank of `a` is < N or M <= N, this is an empty array.
 | 
						|
        If `b` is 1-dimensional, this is a (1,) shape array.
 | 
						|
        Otherwise the shape is (K,).
 | 
						|
    rank : int
 | 
						|
        Rank of matrix `a`.
 | 
						|
    s : (min(M, N),) ndarray
 | 
						|
        Singular values of `a`.
 | 
						|
 | 
						|
    Raises
 | 
						|
    ------
 | 
						|
    LinAlgError
 | 
						|
        If computation does not converge.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    scipy.linalg.lstsq : Similar function in SciPy.
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    If `b` is a matrix, then all array results are returned as matrices.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    Fit a line, ``y = mx + c``, through some noisy data-points:
 | 
						|
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> x = np.array([0, 1, 2, 3])
 | 
						|
    >>> y = np.array([-1, 0.2, 0.9, 2.1])
 | 
						|
 | 
						|
    By examining the coefficients, we see that the line should have a
 | 
						|
    gradient of roughly 1 and cut the y-axis at, more or less, -1.
 | 
						|
 | 
						|
    We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]``
 | 
						|
    and ``p = [[m], [c]]``.  Now use `lstsq` to solve for `p`:
 | 
						|
 | 
						|
    >>> A = np.vstack([x, np.ones(len(x))]).T
 | 
						|
    >>> A
 | 
						|
    array([[ 0.,  1.],
 | 
						|
           [ 1.,  1.],
 | 
						|
           [ 2.,  1.],
 | 
						|
           [ 3.,  1.]])
 | 
						|
 | 
						|
    >>> m, c = np.linalg.lstsq(A, y)[0]
 | 
						|
    >>> m, c
 | 
						|
    (1.0 -0.95) # may vary
 | 
						|
 | 
						|
    Plot the data along with the fitted line:
 | 
						|
 | 
						|
    >>> import matplotlib.pyplot as plt
 | 
						|
    >>> _ = plt.plot(x, y, 'o', label='Original data', markersize=10)
 | 
						|
    >>> _ = plt.plot(x, m*x + c, 'r', label='Fitted line')
 | 
						|
    >>> _ = plt.legend()
 | 
						|
    >>> plt.show()
 | 
						|
 | 
						|
    """
 | 
						|
    a, _ = _makearray(a)
 | 
						|
    b, wrap = _makearray(b)
 | 
						|
    is_1d = b.ndim == 1
 | 
						|
    if is_1d:
 | 
						|
        b = b[:, newaxis]
 | 
						|
    _assert_2d(a, b)
 | 
						|
    m, n = a.shape[-2:]
 | 
						|
    m2, n_rhs = b.shape[-2:]
 | 
						|
    if m != m2:
 | 
						|
        raise LinAlgError('Incompatible dimensions')
 | 
						|
 | 
						|
    t, result_t = _commonType(a, b)
 | 
						|
    result_real_t = _realType(result_t)
 | 
						|
 | 
						|
    if rcond is None:
 | 
						|
        rcond = finfo(t).eps * max(n, m)
 | 
						|
 | 
						|
    signature = 'DDd->Ddid' if isComplexType(t) else 'ddd->ddid'
 | 
						|
    if n_rhs == 0:
 | 
						|
        # lapack can't handle n_rhs = 0 - so allocate
 | 
						|
        # the array one larger in that axis
 | 
						|
        b = zeros(b.shape[:-2] + (m, n_rhs + 1), dtype=b.dtype)
 | 
						|
 | 
						|
    with errstate(call=_raise_linalgerror_lstsq, invalid='call',
 | 
						|
                  over='ignore', divide='ignore', under='ignore'):
 | 
						|
        x, resids, rank, s = _umath_linalg.lstsq(a, b, rcond,
 | 
						|
                                                 signature=signature)
 | 
						|
    if m == 0:
 | 
						|
        x[...] = 0
 | 
						|
    if n_rhs == 0:
 | 
						|
        # remove the item we added
 | 
						|
        x = x[..., :n_rhs]
 | 
						|
        resids = resids[..., :n_rhs]
 | 
						|
 | 
						|
    # remove the axis we added
 | 
						|
    if is_1d:
 | 
						|
        x = x.squeeze(axis=-1)
 | 
						|
        # we probably should squeeze resids too, but we can't
 | 
						|
        # without breaking compatibility.
 | 
						|
 | 
						|
    # as documented
 | 
						|
    if rank != n or m <= n:
 | 
						|
        resids = array([], result_real_t)
 | 
						|
 | 
						|
    # coerce output arrays
 | 
						|
    s = s.astype(result_real_t, copy=False)
 | 
						|
    resids = resids.astype(result_real_t, copy=False)
 | 
						|
    # Copying lets the memory in r_parts be freed
 | 
						|
    x = x.astype(result_t, copy=True)
 | 
						|
    return wrap(x), wrap(resids), rank, s
 | 
						|
 | 
						|
 | 
						|
def _multi_svd_norm(x, row_axis, col_axis, op, initial=None):
 | 
						|
    """Compute a function of the singular values of the 2-D matrices in `x`.
 | 
						|
 | 
						|
    This is a private utility function used by `numpy.linalg.norm()`.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    x : ndarray
 | 
						|
    row_axis, col_axis : int
 | 
						|
        The axes of `x` that hold the 2-D matrices.
 | 
						|
    op : callable
 | 
						|
        This should be either numpy.amin or `numpy.amax` or `numpy.sum`.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    result : float or ndarray
 | 
						|
        If `x` is 2-D, the return values is a float.
 | 
						|
        Otherwise, it is an array with ``x.ndim - 2`` dimensions.
 | 
						|
        The return values are either the minimum or maximum or sum of the
 | 
						|
        singular values of the matrices, depending on whether `op`
 | 
						|
        is `numpy.amin` or `numpy.amax` or `numpy.sum`.
 | 
						|
 | 
						|
    """
 | 
						|
    y = moveaxis(x, (row_axis, col_axis), (-2, -1))
 | 
						|
    result = op(svd(y, compute_uv=False), axis=-1, initial=initial)
 | 
						|
    return result
 | 
						|
 | 
						|
 | 
						|
def _norm_dispatcher(x, ord=None, axis=None, keepdims=None):
 | 
						|
    return (x,)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_norm_dispatcher)
 | 
						|
def norm(x, ord=None, axis=None, keepdims=False):
 | 
						|
    """
 | 
						|
    Matrix or vector norm.
 | 
						|
 | 
						|
    This function is able to return one of eight different matrix norms,
 | 
						|
    or one of an infinite number of vector norms (described below), depending
 | 
						|
    on the value of the ``ord`` parameter.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    x : array_like
 | 
						|
        Input array.  If `axis` is None, `x` must be 1-D or 2-D, unless `ord`
 | 
						|
        is None. If both `axis` and `ord` are None, the 2-norm of
 | 
						|
        ``x.ravel`` will be returned.
 | 
						|
    ord : {int, float, inf, -inf, 'fro', 'nuc'}, optional
 | 
						|
        Order of the norm (see table under ``Notes`` for what values are
 | 
						|
        supported for matrices and vectors respectively). inf means numpy's
 | 
						|
        `inf` object. The default is None.
 | 
						|
    axis : {None, int, 2-tuple of ints}, optional.
 | 
						|
        If `axis` is an integer, it specifies the axis of `x` along which to
 | 
						|
        compute the vector norms.  If `axis` is a 2-tuple, it specifies the
 | 
						|
        axes that hold 2-D matrices, and the matrix norms of these matrices
 | 
						|
        are computed.  If `axis` is None then either a vector norm (when `x`
 | 
						|
        is 1-D) or a matrix norm (when `x` is 2-D) is returned. The default
 | 
						|
        is None.
 | 
						|
 | 
						|
    keepdims : bool, optional
 | 
						|
        If this is set to True, the axes which are normed over are left in the
 | 
						|
        result as dimensions with size one.  With this option the result will
 | 
						|
        broadcast correctly against the original `x`.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    n : float or ndarray
 | 
						|
        Norm of the matrix or vector(s).
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    scipy.linalg.norm : Similar function in SciPy.
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    For values of ``ord < 1``, the result is, strictly speaking, not a
 | 
						|
    mathematical 'norm', but it may still be useful for various numerical
 | 
						|
    purposes.
 | 
						|
 | 
						|
    The following norms can be calculated:
 | 
						|
 | 
						|
    =====  ============================  ==========================
 | 
						|
    ord    norm for matrices             norm for vectors
 | 
						|
    =====  ============================  ==========================
 | 
						|
    None   Frobenius norm                2-norm
 | 
						|
    'fro'  Frobenius norm                --
 | 
						|
    'nuc'  nuclear norm                  --
 | 
						|
    inf    max(sum(abs(x), axis=1))      max(abs(x))
 | 
						|
    -inf   min(sum(abs(x), axis=1))      min(abs(x))
 | 
						|
    0      --                            sum(x != 0)
 | 
						|
    1      max(sum(abs(x), axis=0))      as below
 | 
						|
    -1     min(sum(abs(x), axis=0))      as below
 | 
						|
    2      2-norm (largest sing. value)  as below
 | 
						|
    -2     smallest singular value       as below
 | 
						|
    other  --                            sum(abs(x)**ord)**(1./ord)
 | 
						|
    =====  ============================  ==========================
 | 
						|
 | 
						|
    The Frobenius norm is given by [1]_:
 | 
						|
 | 
						|
    :math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}`
 | 
						|
 | 
						|
    The nuclear norm is the sum of the singular values.
 | 
						|
 | 
						|
    Both the Frobenius and nuclear norm orders are only defined for
 | 
						|
    matrices and raise a ValueError when ``x.ndim != 2``.
 | 
						|
 | 
						|
    References
 | 
						|
    ----------
 | 
						|
    .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*,
 | 
						|
           Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> from numpy import linalg as LA
 | 
						|
    >>> a = np.arange(9) - 4
 | 
						|
    >>> a
 | 
						|
    array([-4, -3, -2, ...,  2,  3,  4])
 | 
						|
    >>> b = a.reshape((3, 3))
 | 
						|
    >>> b
 | 
						|
    array([[-4, -3, -2],
 | 
						|
           [-1,  0,  1],
 | 
						|
           [ 2,  3,  4]])
 | 
						|
 | 
						|
    >>> LA.norm(a)
 | 
						|
    7.745966692414834
 | 
						|
    >>> LA.norm(b)
 | 
						|
    7.745966692414834
 | 
						|
    >>> LA.norm(b, 'fro')
 | 
						|
    7.745966692414834
 | 
						|
    >>> LA.norm(a, np.inf)
 | 
						|
    4.0
 | 
						|
    >>> LA.norm(b, np.inf)
 | 
						|
    9.0
 | 
						|
    >>> LA.norm(a, -np.inf)
 | 
						|
    0.0
 | 
						|
    >>> LA.norm(b, -np.inf)
 | 
						|
    2.0
 | 
						|
 | 
						|
    >>> LA.norm(a, 1)
 | 
						|
    20.0
 | 
						|
    >>> LA.norm(b, 1)
 | 
						|
    7.0
 | 
						|
    >>> LA.norm(a, -1)
 | 
						|
    -4.6566128774142013e-010
 | 
						|
    >>> LA.norm(b, -1)
 | 
						|
    6.0
 | 
						|
    >>> LA.norm(a, 2)
 | 
						|
    7.745966692414834
 | 
						|
    >>> LA.norm(b, 2)
 | 
						|
    7.3484692283495345
 | 
						|
 | 
						|
    >>> LA.norm(a, -2)
 | 
						|
    0.0
 | 
						|
    >>> LA.norm(b, -2)
 | 
						|
    1.8570331885190563e-016 # may vary
 | 
						|
    >>> LA.norm(a, 3)
 | 
						|
    5.8480354764257312 # may vary
 | 
						|
    >>> LA.norm(a, -3)
 | 
						|
    0.0
 | 
						|
 | 
						|
    Using the `axis` argument to compute vector norms:
 | 
						|
 | 
						|
    >>> c = np.array([[ 1, 2, 3],
 | 
						|
    ...               [-1, 1, 4]])
 | 
						|
    >>> LA.norm(c, axis=0)
 | 
						|
    array([ 1.41421356,  2.23606798,  5.        ])
 | 
						|
    >>> LA.norm(c, axis=1)
 | 
						|
    array([ 3.74165739,  4.24264069])
 | 
						|
    >>> LA.norm(c, ord=1, axis=1)
 | 
						|
    array([ 6.,  6.])
 | 
						|
 | 
						|
    Using the `axis` argument to compute matrix norms:
 | 
						|
 | 
						|
    >>> m = np.arange(8).reshape(2,2,2)
 | 
						|
    >>> LA.norm(m, axis=(1,2))
 | 
						|
    array([  3.74165739,  11.22497216])
 | 
						|
    >>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :])
 | 
						|
    (3.7416573867739413, 11.224972160321824)
 | 
						|
 | 
						|
    """
 | 
						|
    x = asarray(x)
 | 
						|
 | 
						|
    if not issubclass(x.dtype.type, (inexact, object_)):
 | 
						|
        x = x.astype(float)
 | 
						|
 | 
						|
    # Immediately handle some default, simple, fast, and common cases.
 | 
						|
    if axis is None:
 | 
						|
        ndim = x.ndim
 | 
						|
        if (
 | 
						|
            (ord is None) or
 | 
						|
            (ord in ('f', 'fro') and ndim == 2) or
 | 
						|
            (ord == 2 and ndim == 1)
 | 
						|
        ):
 | 
						|
            x = x.ravel(order='K')
 | 
						|
            if isComplexType(x.dtype.type):
 | 
						|
                x_real = x.real
 | 
						|
                x_imag = x.imag
 | 
						|
                sqnorm = x_real.dot(x_real) + x_imag.dot(x_imag)
 | 
						|
            else:
 | 
						|
                sqnorm = x.dot(x)
 | 
						|
            ret = sqrt(sqnorm)
 | 
						|
            if keepdims:
 | 
						|
                ret = ret.reshape(ndim * [1])
 | 
						|
            return ret
 | 
						|
 | 
						|
    # Normalize the `axis` argument to a tuple.
 | 
						|
    nd = x.ndim
 | 
						|
    if axis is None:
 | 
						|
        axis = tuple(range(nd))
 | 
						|
    elif not isinstance(axis, tuple):
 | 
						|
        try:
 | 
						|
            axis = int(axis)
 | 
						|
        except Exception as e:
 | 
						|
            raise TypeError(
 | 
						|
                "'axis' must be None, an integer or a tuple of integers"
 | 
						|
            ) from e
 | 
						|
        axis = (axis,)
 | 
						|
 | 
						|
    if len(axis) == 1:
 | 
						|
        if ord == inf:
 | 
						|
            return abs(x).max(axis=axis, keepdims=keepdims, initial=0)
 | 
						|
        elif ord == -inf:
 | 
						|
            return abs(x).min(axis=axis, keepdims=keepdims)
 | 
						|
        elif ord == 0:
 | 
						|
            # Zero norm
 | 
						|
            return (
 | 
						|
                (x != 0)
 | 
						|
                .astype(x.real.dtype)
 | 
						|
                .sum(axis=axis, keepdims=keepdims)
 | 
						|
            )
 | 
						|
        elif ord == 1:
 | 
						|
            # special case for speedup
 | 
						|
            return add.reduce(abs(x), axis=axis, keepdims=keepdims)
 | 
						|
        elif ord is None or ord == 2:
 | 
						|
            # special case for speedup
 | 
						|
            s = (x.conj() * x).real
 | 
						|
            return sqrt(add.reduce(s, axis=axis, keepdims=keepdims))
 | 
						|
        # None of the str-type keywords for ord ('fro', 'nuc')
 | 
						|
        # are valid for vectors
 | 
						|
        elif isinstance(ord, str):
 | 
						|
            raise ValueError(f"Invalid norm order '{ord}' for vectors")
 | 
						|
        else:
 | 
						|
            absx = abs(x)
 | 
						|
            absx **= ord
 | 
						|
            ret = add.reduce(absx, axis=axis, keepdims=keepdims)
 | 
						|
            ret **= reciprocal(ord, dtype=ret.dtype)
 | 
						|
            return ret
 | 
						|
    elif len(axis) == 2:
 | 
						|
        row_axis, col_axis = axis
 | 
						|
        row_axis = normalize_axis_index(row_axis, nd)
 | 
						|
        col_axis = normalize_axis_index(col_axis, nd)
 | 
						|
        if row_axis == col_axis:
 | 
						|
            raise ValueError('Duplicate axes given.')
 | 
						|
        if ord == 2:
 | 
						|
            ret = _multi_svd_norm(x, row_axis, col_axis, amax, 0)
 | 
						|
        elif ord == -2:
 | 
						|
            ret = _multi_svd_norm(x, row_axis, col_axis, amin)
 | 
						|
        elif ord == 1:
 | 
						|
            if col_axis > row_axis:
 | 
						|
                col_axis -= 1
 | 
						|
            ret = add.reduce(abs(x), axis=row_axis).max(axis=col_axis, initial=0)
 | 
						|
        elif ord == inf:
 | 
						|
            if row_axis > col_axis:
 | 
						|
                row_axis -= 1
 | 
						|
            ret = add.reduce(abs(x), axis=col_axis).max(axis=row_axis, initial=0)
 | 
						|
        elif ord == -1:
 | 
						|
            if col_axis > row_axis:
 | 
						|
                col_axis -= 1
 | 
						|
            ret = add.reduce(abs(x), axis=row_axis).min(axis=col_axis)
 | 
						|
        elif ord == -inf:
 | 
						|
            if row_axis > col_axis:
 | 
						|
                row_axis -= 1
 | 
						|
            ret = add.reduce(abs(x), axis=col_axis).min(axis=row_axis)
 | 
						|
        elif ord in [None, 'fro', 'f']:
 | 
						|
            ret = sqrt(add.reduce((x.conj() * x).real, axis=axis))
 | 
						|
        elif ord == 'nuc':
 | 
						|
            ret = _multi_svd_norm(x, row_axis, col_axis, sum, 0)
 | 
						|
        else:
 | 
						|
            raise ValueError("Invalid norm order for matrices.")
 | 
						|
        if keepdims:
 | 
						|
            ret_shape = list(x.shape)
 | 
						|
            ret_shape[axis[0]] = 1
 | 
						|
            ret_shape[axis[1]] = 1
 | 
						|
            ret = ret.reshape(ret_shape)
 | 
						|
        return ret
 | 
						|
    else:
 | 
						|
        raise ValueError("Improper number of dimensions to norm.")
 | 
						|
 | 
						|
 | 
						|
# multi_dot
 | 
						|
 | 
						|
def _multidot_dispatcher(arrays, *, out=None):
 | 
						|
    yield from arrays
 | 
						|
    yield out
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_multidot_dispatcher)
 | 
						|
def multi_dot(arrays, *, out=None):
 | 
						|
    """
 | 
						|
    Compute the dot product of two or more arrays in a single function call,
 | 
						|
    while automatically selecting the fastest evaluation order.
 | 
						|
 | 
						|
    `multi_dot` chains `numpy.dot` and uses optimal parenthesization
 | 
						|
    of the matrices [1]_ [2]_. Depending on the shapes of the matrices,
 | 
						|
    this can speed up the multiplication a lot.
 | 
						|
 | 
						|
    If the first argument is 1-D it is treated as a row vector.
 | 
						|
    If the last argument is 1-D it is treated as a column vector.
 | 
						|
    The other arguments must be 2-D.
 | 
						|
 | 
						|
    Think of `multi_dot` as::
 | 
						|
 | 
						|
        def multi_dot(arrays): return functools.reduce(np.dot, arrays)
 | 
						|
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    arrays : sequence of array_like
 | 
						|
        If the first argument is 1-D it is treated as row vector.
 | 
						|
        If the last argument is 1-D it is treated as column vector.
 | 
						|
        The other arguments must be 2-D.
 | 
						|
    out : ndarray, optional
 | 
						|
        Output argument. This must have the exact kind that would be returned
 | 
						|
        if it was not used. In particular, it must have the right type, must be
 | 
						|
        C-contiguous, and its dtype must be the dtype that would be returned
 | 
						|
        for `dot(a, b)`. This is a performance feature. Therefore, if these
 | 
						|
        conditions are not met, an exception is raised, instead of attempting
 | 
						|
        to be flexible.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    output : ndarray
 | 
						|
        Returns the dot product of the supplied arrays.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    numpy.dot : dot multiplication with two arguments.
 | 
						|
 | 
						|
    References
 | 
						|
    ----------
 | 
						|
 | 
						|
    .. [1] Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378
 | 
						|
    .. [2] https://en.wikipedia.org/wiki/Matrix_chain_multiplication
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    `multi_dot` allows you to write::
 | 
						|
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> from numpy.linalg import multi_dot
 | 
						|
    >>> # Prepare some data
 | 
						|
    >>> A = np.random.random((10000, 100))
 | 
						|
    >>> B = np.random.random((100, 1000))
 | 
						|
    >>> C = np.random.random((1000, 5))
 | 
						|
    >>> D = np.random.random((5, 333))
 | 
						|
    >>> # the actual dot multiplication
 | 
						|
    >>> _ = multi_dot([A, B, C, D])
 | 
						|
 | 
						|
    instead of::
 | 
						|
 | 
						|
    >>> _ = np.dot(np.dot(np.dot(A, B), C), D)
 | 
						|
    >>> # or
 | 
						|
    >>> _ = A.dot(B).dot(C).dot(D)
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    The cost for a matrix multiplication can be calculated with the
 | 
						|
    following function::
 | 
						|
 | 
						|
        def cost(A, B):
 | 
						|
            return A.shape[0] * A.shape[1] * B.shape[1]
 | 
						|
 | 
						|
    Assume we have three matrices
 | 
						|
    :math:`A_{10 \times 100}, B_{100 \times 5}, C_{5 \times 50}`.
 | 
						|
 | 
						|
    The costs for the two different parenthesizations are as follows::
 | 
						|
 | 
						|
        cost((AB)C) = 10*100*5 + 10*5*50   = 5000 + 2500   = 7500
 | 
						|
        cost(A(BC)) = 10*100*50 + 100*5*50 = 50000 + 25000 = 75000
 | 
						|
 | 
						|
    """
 | 
						|
    n = len(arrays)
 | 
						|
    # optimization only makes sense for len(arrays) > 2
 | 
						|
    if n < 2:
 | 
						|
        raise ValueError("Expecting at least two arrays.")
 | 
						|
    elif n == 2:
 | 
						|
        return dot(arrays[0], arrays[1], out=out)
 | 
						|
 | 
						|
    arrays = [asanyarray(a) for a in arrays]
 | 
						|
 | 
						|
    # save original ndim to reshape the result array into the proper form later
 | 
						|
    ndim_first, ndim_last = arrays[0].ndim, arrays[-1].ndim
 | 
						|
    # Explicitly convert vectors to 2D arrays to keep the logic of the internal
 | 
						|
    # _multi_dot_* functions as simple as possible.
 | 
						|
    if arrays[0].ndim == 1:
 | 
						|
        arrays[0] = atleast_2d(arrays[0])
 | 
						|
    if arrays[-1].ndim == 1:
 | 
						|
        arrays[-1] = atleast_2d(arrays[-1]).T
 | 
						|
    _assert_2d(*arrays)
 | 
						|
 | 
						|
    # _multi_dot_three is much faster than _multi_dot_matrix_chain_order
 | 
						|
    if n == 3:
 | 
						|
        result = _multi_dot_three(arrays[0], arrays[1], arrays[2], out=out)
 | 
						|
    else:
 | 
						|
        order = _multi_dot_matrix_chain_order(arrays)
 | 
						|
        result = _multi_dot(arrays, order, 0, n - 1, out=out)
 | 
						|
 | 
						|
    # return proper shape
 | 
						|
    if ndim_first == 1 and ndim_last == 1:
 | 
						|
        return result[0, 0]  # scalar
 | 
						|
    elif ndim_first == 1 or ndim_last == 1:
 | 
						|
        return result.ravel()  # 1-D
 | 
						|
    else:
 | 
						|
        return result
 | 
						|
 | 
						|
 | 
						|
def _multi_dot_three(A, B, C, out=None):
 | 
						|
    """
 | 
						|
    Find the best order for three arrays and do the multiplication.
 | 
						|
 | 
						|
    For three arguments `_multi_dot_three` is approximately 15 times faster
 | 
						|
    than `_multi_dot_matrix_chain_order`
 | 
						|
 | 
						|
    """
 | 
						|
    a0, a1b0 = A.shape
 | 
						|
    b1c0, c1 = C.shape
 | 
						|
    # cost1 = cost((AB)C) = a0*a1b0*b1c0 + a0*b1c0*c1
 | 
						|
    cost1 = a0 * b1c0 * (a1b0 + c1)
 | 
						|
    # cost2 = cost(A(BC)) = a1b0*b1c0*c1 + a0*a1b0*c1
 | 
						|
    cost2 = a1b0 * c1 * (a0 + b1c0)
 | 
						|
 | 
						|
    if cost1 < cost2:
 | 
						|
        return dot(dot(A, B), C, out=out)
 | 
						|
    else:
 | 
						|
        return dot(A, dot(B, C), out=out)
 | 
						|
 | 
						|
 | 
						|
def _multi_dot_matrix_chain_order(arrays, return_costs=False):
 | 
						|
    """
 | 
						|
    Return a np.array that encodes the optimal order of multiplications.
 | 
						|
 | 
						|
    The optimal order array is then used by `_multi_dot()` to do the
 | 
						|
    multiplication.
 | 
						|
 | 
						|
    Also return the cost matrix if `return_costs` is `True`
 | 
						|
 | 
						|
    The implementation CLOSELY follows Cormen, "Introduction to Algorithms",
 | 
						|
    Chapter 15.2, p. 370-378.  Note that Cormen uses 1-based indices.
 | 
						|
 | 
						|
        cost[i, j] = min([
 | 
						|
            cost[prefix] + cost[suffix] + cost_mult(prefix, suffix)
 | 
						|
            for k in range(i, j)])
 | 
						|
 | 
						|
    """
 | 
						|
    n = len(arrays)
 | 
						|
    # p stores the dimensions of the matrices
 | 
						|
    # Example for p: A_{10x100}, B_{100x5}, C_{5x50} --> p = [10, 100, 5, 50]
 | 
						|
    p = [a.shape[0] for a in arrays] + [arrays[-1].shape[1]]
 | 
						|
    # m is a matrix of costs of the subproblems
 | 
						|
    # m[i,j]: min number of scalar multiplications needed to compute A_{i..j}
 | 
						|
    m = zeros((n, n), dtype=double)
 | 
						|
    # s is the actual ordering
 | 
						|
    # s[i, j] is the value of k at which we split the product A_i..A_j
 | 
						|
    s = empty((n, n), dtype=intp)
 | 
						|
 | 
						|
    for l in range(1, n):
 | 
						|
        for i in range(n - l):
 | 
						|
            j = i + l
 | 
						|
            m[i, j] = inf
 | 
						|
            for k in range(i, j):
 | 
						|
                q = m[i, k] + m[k + 1, j] + p[i] * p[k + 1] * p[j + 1]
 | 
						|
                if q < m[i, j]:
 | 
						|
                    m[i, j] = q
 | 
						|
                    s[i, j] = k  # Note that Cormen uses 1-based index
 | 
						|
 | 
						|
    return (s, m) if return_costs else s
 | 
						|
 | 
						|
 | 
						|
def _multi_dot(arrays, order, i, j, out=None):
 | 
						|
    """Actually do the multiplication with the given order."""
 | 
						|
    if i == j:
 | 
						|
        # the initial call with non-None out should never get here
 | 
						|
        assert out is None
 | 
						|
 | 
						|
        return arrays[i]
 | 
						|
    else:
 | 
						|
        return dot(_multi_dot(arrays, order, i, order[i, j]),
 | 
						|
                   _multi_dot(arrays, order, order[i, j] + 1, j),
 | 
						|
                   out=out)
 | 
						|
 | 
						|
 | 
						|
# diagonal
 | 
						|
 | 
						|
def _diagonal_dispatcher(x, /, *, offset=None):
 | 
						|
    return (x,)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_diagonal_dispatcher)
 | 
						|
def diagonal(x, /, *, offset=0):
 | 
						|
    """
 | 
						|
    Returns specified diagonals of a matrix (or a stack of matrices) ``x``.
 | 
						|
 | 
						|
    This function is Array API compatible, contrary to
 | 
						|
    :py:func:`numpy.diagonal`, the matrix is assumed
 | 
						|
    to be defined by the last two dimensions.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    x : (...,M,N) array_like
 | 
						|
        Input array having shape (..., M, N) and whose innermost two
 | 
						|
        dimensions form MxN matrices.
 | 
						|
    offset : int, optional
 | 
						|
        Offset specifying the off-diagonal relative to the main diagonal,
 | 
						|
        where::
 | 
						|
 | 
						|
            * offset = 0: the main diagonal.
 | 
						|
            * offset > 0: off-diagonal above the main diagonal.
 | 
						|
            * offset < 0: off-diagonal below the main diagonal.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    out : (...,min(N,M)) ndarray
 | 
						|
        An array containing the diagonals and whose shape is determined by
 | 
						|
        removing the last two dimensions and appending a dimension equal to
 | 
						|
        the size of the resulting diagonals. The returned array must have
 | 
						|
        the same data type as ``x``.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    numpy.diagonal
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> a = np.arange(4).reshape(2, 2); a
 | 
						|
    array([[0, 1],
 | 
						|
           [2, 3]])
 | 
						|
    >>> np.linalg.diagonal(a)
 | 
						|
    array([0, 3])
 | 
						|
 | 
						|
    A 3-D example:
 | 
						|
 | 
						|
    >>> a = np.arange(8).reshape(2, 2, 2); a
 | 
						|
    array([[[0, 1],
 | 
						|
            [2, 3]],
 | 
						|
           [[4, 5],
 | 
						|
            [6, 7]]])
 | 
						|
    >>> np.linalg.diagonal(a)
 | 
						|
    array([[0, 3],
 | 
						|
           [4, 7]])
 | 
						|
 | 
						|
    Diagonals adjacent to the main diagonal can be obtained by using the
 | 
						|
    `offset` argument:
 | 
						|
 | 
						|
    >>> a = np.arange(9).reshape(3, 3)
 | 
						|
    >>> a
 | 
						|
    array([[0, 1, 2],
 | 
						|
           [3, 4, 5],
 | 
						|
           [6, 7, 8]])
 | 
						|
    >>> np.linalg.diagonal(a, offset=1)  # First superdiagonal
 | 
						|
    array([1, 5])
 | 
						|
    >>> np.linalg.diagonal(a, offset=2)  # Second superdiagonal
 | 
						|
    array([2])
 | 
						|
    >>> np.linalg.diagonal(a, offset=-1)  # First subdiagonal
 | 
						|
    array([3, 7])
 | 
						|
    >>> np.linalg.diagonal(a, offset=-2)  # Second subdiagonal
 | 
						|
    array([6])
 | 
						|
 | 
						|
    The anti-diagonal can be obtained by reversing the order of elements
 | 
						|
    using either `numpy.flipud` or `numpy.fliplr`.
 | 
						|
 | 
						|
    >>> a = np.arange(9).reshape(3, 3)
 | 
						|
    >>> a
 | 
						|
    array([[0, 1, 2],
 | 
						|
           [3, 4, 5],
 | 
						|
           [6, 7, 8]])
 | 
						|
    >>> np.linalg.diagonal(np.fliplr(a))  # Horizontal flip
 | 
						|
    array([2, 4, 6])
 | 
						|
    >>> np.linalg.diagonal(np.flipud(a))  # Vertical flip
 | 
						|
    array([6, 4, 2])
 | 
						|
 | 
						|
    Note that the order in which the diagonal is retrieved varies depending
 | 
						|
    on the flip function.
 | 
						|
 | 
						|
    """
 | 
						|
    return _core_diagonal(x, offset, axis1=-2, axis2=-1)
 | 
						|
 | 
						|
 | 
						|
# trace
 | 
						|
 | 
						|
def _trace_dispatcher(x, /, *, offset=None, dtype=None):
 | 
						|
    return (x,)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_trace_dispatcher)
 | 
						|
def trace(x, /, *, offset=0, dtype=None):
 | 
						|
    """
 | 
						|
    Returns the sum along the specified diagonals of a matrix
 | 
						|
    (or a stack of matrices) ``x``.
 | 
						|
 | 
						|
    This function is Array API compatible, contrary to
 | 
						|
    :py:func:`numpy.trace`.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    x : (...,M,N) array_like
 | 
						|
        Input array having shape (..., M, N) and whose innermost two
 | 
						|
        dimensions form MxN matrices.
 | 
						|
    offset : int, optional
 | 
						|
        Offset specifying the off-diagonal relative to the main diagonal,
 | 
						|
        where::
 | 
						|
 | 
						|
            * offset = 0: the main diagonal.
 | 
						|
            * offset > 0: off-diagonal above the main diagonal.
 | 
						|
            * offset < 0: off-diagonal below the main diagonal.
 | 
						|
 | 
						|
    dtype : dtype, optional
 | 
						|
        Data type of the returned array.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    out : ndarray
 | 
						|
        An array containing the traces and whose shape is determined by
 | 
						|
        removing the last two dimensions and storing the traces in the last
 | 
						|
        array dimension. For example, if x has rank k and shape:
 | 
						|
        (I, J, K, ..., L, M, N), then an output array has rank k-2 and shape:
 | 
						|
        (I, J, K, ..., L) where::
 | 
						|
 | 
						|
            out[i, j, k, ..., l] = trace(a[i, j, k, ..., l, :, :])
 | 
						|
 | 
						|
        The returned array must have a data type as described by the dtype
 | 
						|
        parameter above.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    numpy.trace
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> np.linalg.trace(np.eye(3))
 | 
						|
    3.0
 | 
						|
    >>> a = np.arange(8).reshape((2, 2, 2))
 | 
						|
    >>> np.linalg.trace(a)
 | 
						|
    array([3, 11])
 | 
						|
 | 
						|
    Trace is computed with the last two axes as the 2-d sub-arrays.
 | 
						|
    This behavior differs from :py:func:`numpy.trace` which uses the first two
 | 
						|
    axes by default.
 | 
						|
 | 
						|
    >>> a = np.arange(24).reshape((3, 2, 2, 2))
 | 
						|
    >>> np.linalg.trace(a).shape
 | 
						|
    (3, 2)
 | 
						|
 | 
						|
    Traces adjacent to the main diagonal can be obtained by using the
 | 
						|
    `offset` argument:
 | 
						|
 | 
						|
    >>> a = np.arange(9).reshape((3, 3)); a
 | 
						|
    array([[0, 1, 2],
 | 
						|
           [3, 4, 5],
 | 
						|
           [6, 7, 8]])
 | 
						|
    >>> np.linalg.trace(a, offset=1)  # First superdiagonal
 | 
						|
    6
 | 
						|
    >>> np.linalg.trace(a, offset=2)  # Second superdiagonal
 | 
						|
    2
 | 
						|
    >>> np.linalg.trace(a, offset=-1)  # First subdiagonal
 | 
						|
    10
 | 
						|
    >>> np.linalg.trace(a, offset=-2)  # Second subdiagonal
 | 
						|
    6
 | 
						|
 | 
						|
    """
 | 
						|
    return _core_trace(x, offset, axis1=-2, axis2=-1, dtype=dtype)
 | 
						|
 | 
						|
 | 
						|
# cross
 | 
						|
 | 
						|
def _cross_dispatcher(x1, x2, /, *, axis=None):
 | 
						|
    return (x1, x2,)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_cross_dispatcher)
 | 
						|
def cross(x1, x2, /, *, axis=-1):
 | 
						|
    """
 | 
						|
    Returns the cross product of 3-element vectors.
 | 
						|
 | 
						|
    If ``x1`` and/or ``x2`` are multi-dimensional arrays, then
 | 
						|
    the cross-product of each pair of corresponding 3-element vectors
 | 
						|
    is independently computed.
 | 
						|
 | 
						|
    This function is Array API compatible, contrary to
 | 
						|
    :func:`numpy.cross`.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    x1 : array_like
 | 
						|
        The first input array.
 | 
						|
    x2 : array_like
 | 
						|
        The second input array. Must be compatible with ``x1`` for all
 | 
						|
        non-compute axes. The size of the axis over which to compute
 | 
						|
        the cross-product must be the same size as the respective axis
 | 
						|
        in ``x1``.
 | 
						|
    axis : int, optional
 | 
						|
        The axis (dimension) of ``x1`` and ``x2`` containing the vectors for
 | 
						|
        which to compute the cross-product. Default: ``-1``.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    out : ndarray
 | 
						|
        An array containing the cross products.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    numpy.cross
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    Vector cross-product.
 | 
						|
 | 
						|
    >>> x = np.array([1, 2, 3])
 | 
						|
    >>> y = np.array([4, 5, 6])
 | 
						|
    >>> np.linalg.cross(x, y)
 | 
						|
    array([-3,  6, -3])
 | 
						|
 | 
						|
    Multiple vector cross-products. Note that the direction of the cross
 | 
						|
    product vector is defined by the *right-hand rule*.
 | 
						|
 | 
						|
    >>> x = np.array([[1,2,3], [4,5,6]])
 | 
						|
    >>> y = np.array([[4,5,6], [1,2,3]])
 | 
						|
    >>> np.linalg.cross(x, y)
 | 
						|
    array([[-3,  6, -3],
 | 
						|
           [ 3, -6,  3]])
 | 
						|
 | 
						|
    >>> x = np.array([[1, 2], [3, 4], [5, 6]])
 | 
						|
    >>> y = np.array([[4, 5], [6, 1], [2, 3]])
 | 
						|
    >>> np.linalg.cross(x, y, axis=0)
 | 
						|
    array([[-24,  6],
 | 
						|
           [ 18, 24],
 | 
						|
           [-6,  -18]])
 | 
						|
 | 
						|
    """
 | 
						|
    x1 = asanyarray(x1)
 | 
						|
    x2 = asanyarray(x2)
 | 
						|
 | 
						|
    if x1.shape[axis] != 3 or x2.shape[axis] != 3:
 | 
						|
        raise ValueError(
 | 
						|
            "Both input arrays must be (arrays of) 3-dimensional vectors, "
 | 
						|
            f"but they are {x1.shape[axis]} and {x2.shape[axis]} "
 | 
						|
            "dimensional instead."
 | 
						|
        )
 | 
						|
 | 
						|
    return _core_cross(x1, x2, axis=axis)
 | 
						|
 | 
						|
 | 
						|
# matmul
 | 
						|
 | 
						|
def _matmul_dispatcher(x1, x2, /):
 | 
						|
    return (x1, x2)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_matmul_dispatcher)
 | 
						|
def matmul(x1, x2, /):
 | 
						|
    """
 | 
						|
    Computes the matrix product.
 | 
						|
 | 
						|
    This function is Array API compatible, contrary to
 | 
						|
    :func:`numpy.matmul`.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    x1 : array_like
 | 
						|
        The first input array.
 | 
						|
    x2 : array_like
 | 
						|
        The second input array.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    out : ndarray
 | 
						|
        The matrix product of the inputs.
 | 
						|
        This is a scalar only when both ``x1``, ``x2`` are 1-d vectors.
 | 
						|
 | 
						|
    Raises
 | 
						|
    ------
 | 
						|
    ValueError
 | 
						|
        If the last dimension of ``x1`` is not the same size as
 | 
						|
        the second-to-last dimension of ``x2``.
 | 
						|
 | 
						|
        If a scalar value is passed in.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    numpy.matmul
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    For 2-D arrays it is the matrix product:
 | 
						|
 | 
						|
    >>> a = np.array([[1, 0],
 | 
						|
    ...               [0, 1]])
 | 
						|
    >>> b = np.array([[4, 1],
 | 
						|
    ...               [2, 2]])
 | 
						|
    >>> np.linalg.matmul(a, b)
 | 
						|
    array([[4, 1],
 | 
						|
           [2, 2]])
 | 
						|
 | 
						|
    For 2-D mixed with 1-D, the result is the usual.
 | 
						|
 | 
						|
    >>> a = np.array([[1, 0],
 | 
						|
    ...               [0, 1]])
 | 
						|
    >>> b = np.array([1, 2])
 | 
						|
    >>> np.linalg.matmul(a, b)
 | 
						|
    array([1, 2])
 | 
						|
    >>> np.linalg.matmul(b, a)
 | 
						|
    array([1, 2])
 | 
						|
 | 
						|
 | 
						|
    Broadcasting is conventional for stacks of arrays
 | 
						|
 | 
						|
    >>> a = np.arange(2 * 2 * 4).reshape((2, 2, 4))
 | 
						|
    >>> b = np.arange(2 * 2 * 4).reshape((2, 4, 2))
 | 
						|
    >>> np.linalg.matmul(a,b).shape
 | 
						|
    (2, 2, 2)
 | 
						|
    >>> np.linalg.matmul(a, b)[0, 1, 1]
 | 
						|
    98
 | 
						|
    >>> sum(a[0, 1, :] * b[0 , :, 1])
 | 
						|
    98
 | 
						|
 | 
						|
    Vector, vector returns the scalar inner product, but neither argument
 | 
						|
    is complex-conjugated:
 | 
						|
 | 
						|
    >>> np.linalg.matmul([2j, 3j], [2j, 3j])
 | 
						|
    (-13+0j)
 | 
						|
 | 
						|
    Scalar multiplication raises an error.
 | 
						|
 | 
						|
    >>> np.linalg.matmul([1,2], 3)
 | 
						|
    Traceback (most recent call last):
 | 
						|
    ...
 | 
						|
    ValueError: matmul: Input operand 1 does not have enough dimensions ...
 | 
						|
 | 
						|
    """
 | 
						|
    return _core_matmul(x1, x2)
 | 
						|
 | 
						|
 | 
						|
# tensordot
 | 
						|
 | 
						|
def _tensordot_dispatcher(x1, x2, /, *, axes=None):
 | 
						|
    return (x1, x2)
 | 
						|
 | 
						|
 | 
						|
@array_function_dispatch(_tensordot_dispatcher)
 | 
						|
def tensordot(x1, x2, /, *, axes=2):
 | 
						|
    return _core_tensordot(x1, x2, axes=axes)
 | 
						|
 | 
						|
 | 
						|
tensordot.__doc__ = _core_tensordot.__doc__
 | 
						|
 | 
						|
 | 
						|
# matrix_transpose
 | 
						|
 | 
						|
def _matrix_transpose_dispatcher(x):
 | 
						|
    return (x,)
 | 
						|
 | 
						|
@array_function_dispatch(_matrix_transpose_dispatcher)
 | 
						|
def matrix_transpose(x, /):
 | 
						|
    return _core_matrix_transpose(x)
 | 
						|
 | 
						|
 | 
						|
matrix_transpose.__doc__ = f"""{_core_matrix_transpose.__doc__}
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    This function is an alias of `numpy.matrix_transpose`.
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
# matrix_norm
 | 
						|
 | 
						|
def _matrix_norm_dispatcher(x, /, *, keepdims=None, ord=None):
 | 
						|
    return (x,)
 | 
						|
 | 
						|
@array_function_dispatch(_matrix_norm_dispatcher)
 | 
						|
def matrix_norm(x, /, *, keepdims=False, ord="fro"):
 | 
						|
    """
 | 
						|
    Computes the matrix norm of a matrix (or a stack of matrices) ``x``.
 | 
						|
 | 
						|
    This function is Array API compatible.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    x : array_like
 | 
						|
        Input array having shape (..., M, N) and whose two innermost
 | 
						|
        dimensions form ``MxN`` matrices.
 | 
						|
    keepdims : bool, optional
 | 
						|
        If this is set to True, the axes which are normed over are left in
 | 
						|
        the result as dimensions with size one. Default: False.
 | 
						|
    ord : {1, -1, 2, -2, inf, -inf, 'fro', 'nuc'}, optional
 | 
						|
        The order of the norm. For details see the table under ``Notes``
 | 
						|
        in `numpy.linalg.norm`.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    numpy.linalg.norm : Generic norm function
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> from numpy import linalg as LA
 | 
						|
    >>> a = np.arange(9) - 4
 | 
						|
    >>> a
 | 
						|
    array([-4, -3, -2, ...,  2,  3,  4])
 | 
						|
    >>> b = a.reshape((3, 3))
 | 
						|
    >>> b
 | 
						|
    array([[-4, -3, -2],
 | 
						|
           [-1,  0,  1],
 | 
						|
           [ 2,  3,  4]])
 | 
						|
 | 
						|
    >>> LA.matrix_norm(b)
 | 
						|
    7.745966692414834
 | 
						|
    >>> LA.matrix_norm(b, ord='fro')
 | 
						|
    7.745966692414834
 | 
						|
    >>> LA.matrix_norm(b, ord=np.inf)
 | 
						|
    9.0
 | 
						|
    >>> LA.matrix_norm(b, ord=-np.inf)
 | 
						|
    2.0
 | 
						|
 | 
						|
    >>> LA.matrix_norm(b, ord=1)
 | 
						|
    7.0
 | 
						|
    >>> LA.matrix_norm(b, ord=-1)
 | 
						|
    6.0
 | 
						|
    >>> LA.matrix_norm(b, ord=2)
 | 
						|
    7.3484692283495345
 | 
						|
    >>> LA.matrix_norm(b, ord=-2)
 | 
						|
    1.8570331885190563e-016 # may vary
 | 
						|
 | 
						|
    """
 | 
						|
    x = asanyarray(x)
 | 
						|
    return norm(x, axis=(-2, -1), keepdims=keepdims, ord=ord)
 | 
						|
 | 
						|
 | 
						|
# vector_norm
 | 
						|
 | 
						|
def _vector_norm_dispatcher(x, /, *, axis=None, keepdims=None, ord=None):
 | 
						|
    return (x,)
 | 
						|
 | 
						|
@array_function_dispatch(_vector_norm_dispatcher)
 | 
						|
def vector_norm(x, /, *, axis=None, keepdims=False, ord=2):
 | 
						|
    """
 | 
						|
    Computes the vector norm of a vector (or batch of vectors) ``x``.
 | 
						|
 | 
						|
    This function is Array API compatible.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    x : array_like
 | 
						|
        Input array.
 | 
						|
    axis : {None, int, 2-tuple of ints}, optional
 | 
						|
        If an integer, ``axis`` specifies the axis (dimension) along which
 | 
						|
        to compute vector norms. If an n-tuple, ``axis`` specifies the axes
 | 
						|
        (dimensions) along which to compute batched vector norms. If ``None``,
 | 
						|
        the vector norm must be computed over all array values (i.e.,
 | 
						|
        equivalent to computing the vector norm of a flattened array).
 | 
						|
        Default: ``None``.
 | 
						|
    keepdims : bool, optional
 | 
						|
        If this is set to True, the axes which are normed over are left in
 | 
						|
        the result as dimensions with size one. Default: False.
 | 
						|
    ord : {int, float, inf, -inf}, optional
 | 
						|
        The order of the norm. For details see the table under ``Notes``
 | 
						|
        in `numpy.linalg.norm`.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    numpy.linalg.norm : Generic norm function
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> from numpy import linalg as LA
 | 
						|
    >>> a = np.arange(9) + 1
 | 
						|
    >>> a
 | 
						|
    array([1, 2, 3, 4, 5, 6, 7, 8, 9])
 | 
						|
    >>> b = a.reshape((3, 3))
 | 
						|
    >>> b
 | 
						|
    array([[1, 2, 3],
 | 
						|
           [4, 5, 6],
 | 
						|
           [7, 8, 9]])
 | 
						|
 | 
						|
    >>> LA.vector_norm(b)
 | 
						|
    16.881943016134134
 | 
						|
    >>> LA.vector_norm(b, ord=np.inf)
 | 
						|
    9.0
 | 
						|
    >>> LA.vector_norm(b, ord=-np.inf)
 | 
						|
    1.0
 | 
						|
 | 
						|
    >>> LA.vector_norm(b, ord=0)
 | 
						|
    9.0
 | 
						|
    >>> LA.vector_norm(b, ord=1)
 | 
						|
    45.0
 | 
						|
    >>> LA.vector_norm(b, ord=-1)
 | 
						|
    0.3534857623790153
 | 
						|
    >>> LA.vector_norm(b, ord=2)
 | 
						|
    16.881943016134134
 | 
						|
    >>> LA.vector_norm(b, ord=-2)
 | 
						|
    0.8058837395885292
 | 
						|
 | 
						|
    """
 | 
						|
    x = asanyarray(x)
 | 
						|
    shape = list(x.shape)
 | 
						|
    if axis is None:
 | 
						|
        # Note: np.linalg.norm() doesn't handle 0-D arrays
 | 
						|
        x = x.ravel()
 | 
						|
        _axis = 0
 | 
						|
    elif isinstance(axis, tuple):
 | 
						|
        # Note: The axis argument supports any number of axes, whereas
 | 
						|
        # np.linalg.norm() only supports a single axis for vector norm.
 | 
						|
        normalized_axis = normalize_axis_tuple(axis, x.ndim)
 | 
						|
        rest = tuple(i for i in range(x.ndim) if i not in normalized_axis)
 | 
						|
        newshape = axis + rest
 | 
						|
        x = _core_transpose(x, newshape).reshape(
 | 
						|
            (
 | 
						|
                prod([x.shape[i] for i in axis], dtype=int),
 | 
						|
                *[x.shape[i] for i in rest]
 | 
						|
            )
 | 
						|
        )
 | 
						|
        _axis = 0
 | 
						|
    else:
 | 
						|
        _axis = axis
 | 
						|
 | 
						|
    res = norm(x, axis=_axis, ord=ord)
 | 
						|
 | 
						|
    if keepdims:
 | 
						|
        # We can't reuse np.linalg.norm(keepdims) because of the reshape hacks
 | 
						|
        # above to avoid matrix norm logic.
 | 
						|
        _axis = normalize_axis_tuple(
 | 
						|
            range(len(shape)) if axis is None else axis, len(shape)
 | 
						|
        )
 | 
						|
        for i in _axis:
 | 
						|
            shape[i] = 1
 | 
						|
        res = res.reshape(tuple(shape))
 | 
						|
 | 
						|
    return res
 | 
						|
 | 
						|
 | 
						|
# vecdot
 | 
						|
 | 
						|
def _vecdot_dispatcher(x1, x2, /, *, axis=None):
 | 
						|
    return (x1, x2)
 | 
						|
 | 
						|
@array_function_dispatch(_vecdot_dispatcher)
 | 
						|
def vecdot(x1, x2, /, *, axis=-1):
 | 
						|
    """
 | 
						|
    Computes the vector dot product.
 | 
						|
 | 
						|
    This function is restricted to arguments compatible with the Array API,
 | 
						|
    contrary to :func:`numpy.vecdot`.
 | 
						|
 | 
						|
    Let :math:`\\mathbf{a}` be a vector in ``x1`` and :math:`\\mathbf{b}` be
 | 
						|
    a corresponding vector in ``x2``. The dot product is defined as:
 | 
						|
 | 
						|
    .. math::
 | 
						|
       \\mathbf{a} \\cdot \\mathbf{b} = \\sum_{i=0}^{n-1} \\overline{a_i}b_i
 | 
						|
 | 
						|
    over the dimension specified by ``axis`` and where :math:`\\overline{a_i}`
 | 
						|
    denotes the complex conjugate if :math:`a_i` is complex and the identity
 | 
						|
    otherwise.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    x1 : array_like
 | 
						|
        First input array.
 | 
						|
    x2 : array_like
 | 
						|
        Second input array.
 | 
						|
    axis : int, optional
 | 
						|
        Axis over which to compute the dot product. Default: ``-1``.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    output : ndarray
 | 
						|
        The vector dot product of the input.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    numpy.vecdot
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    Get the projected size along a given normal for an array of vectors.
 | 
						|
 | 
						|
    >>> v = np.array([[0., 5., 0.], [0., 0., 10.], [0., 6., 8.]])
 | 
						|
    >>> n = np.array([0., 0.6, 0.8])
 | 
						|
    >>> np.linalg.vecdot(v, n)
 | 
						|
    array([ 3.,  8., 10.])
 | 
						|
 | 
						|
    """
 | 
						|
    return _core_vecdot(x1, x2, axis=axis)
 |