You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			135 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			135 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
from _typeshed import Incomplete
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from numpy.lib._function_base_impl import average
 | 
						|
from numpy.lib._index_tricks_impl import AxisConcatenator
 | 
						|
 | 
						|
from .core import MaskedArray, dot
 | 
						|
 | 
						|
__all__ = [
 | 
						|
    "apply_along_axis",
 | 
						|
    "apply_over_axes",
 | 
						|
    "atleast_1d",
 | 
						|
    "atleast_2d",
 | 
						|
    "atleast_3d",
 | 
						|
    "average",
 | 
						|
    "clump_masked",
 | 
						|
    "clump_unmasked",
 | 
						|
    "column_stack",
 | 
						|
    "compress_cols",
 | 
						|
    "compress_nd",
 | 
						|
    "compress_rowcols",
 | 
						|
    "compress_rows",
 | 
						|
    "corrcoef",
 | 
						|
    "count_masked",
 | 
						|
    "cov",
 | 
						|
    "diagflat",
 | 
						|
    "dot",
 | 
						|
    "dstack",
 | 
						|
    "ediff1d",
 | 
						|
    "flatnotmasked_contiguous",
 | 
						|
    "flatnotmasked_edges",
 | 
						|
    "hsplit",
 | 
						|
    "hstack",
 | 
						|
    "in1d",
 | 
						|
    "intersect1d",
 | 
						|
    "isin",
 | 
						|
    "mask_cols",
 | 
						|
    "mask_rowcols",
 | 
						|
    "mask_rows",
 | 
						|
    "masked_all",
 | 
						|
    "masked_all_like",
 | 
						|
    "median",
 | 
						|
    "mr_",
 | 
						|
    "ndenumerate",
 | 
						|
    "notmasked_contiguous",
 | 
						|
    "notmasked_edges",
 | 
						|
    "polyfit",
 | 
						|
    "row_stack",
 | 
						|
    "setdiff1d",
 | 
						|
    "setxor1d",
 | 
						|
    "stack",
 | 
						|
    "union1d",
 | 
						|
    "unique",
 | 
						|
    "vander",
 | 
						|
    "vstack",
 | 
						|
]
 | 
						|
 | 
						|
def count_masked(arr, axis=...): ...
 | 
						|
def masked_all(shape, dtype=...): ...
 | 
						|
def masked_all_like(arr): ...
 | 
						|
 | 
						|
class _fromnxfunction:
 | 
						|
    __name__: Incomplete
 | 
						|
    __doc__: Incomplete
 | 
						|
    def __init__(self, funcname) -> None: ...
 | 
						|
    def getdoc(self): ...
 | 
						|
    def __call__(self, *args, **params): ...
 | 
						|
 | 
						|
class _fromnxfunction_single(_fromnxfunction):
 | 
						|
    def __call__(self, x, *args, **params): ...
 | 
						|
 | 
						|
class _fromnxfunction_seq(_fromnxfunction):
 | 
						|
    def __call__(self, x, *args, **params): ...
 | 
						|
 | 
						|
class _fromnxfunction_allargs(_fromnxfunction):
 | 
						|
    def __call__(self, *args, **params): ...
 | 
						|
 | 
						|
atleast_1d: _fromnxfunction_allargs
 | 
						|
atleast_2d: _fromnxfunction_allargs
 | 
						|
atleast_3d: _fromnxfunction_allargs
 | 
						|
 | 
						|
vstack: _fromnxfunction_seq
 | 
						|
row_stack: _fromnxfunction_seq
 | 
						|
hstack: _fromnxfunction_seq
 | 
						|
column_stack: _fromnxfunction_seq
 | 
						|
dstack: _fromnxfunction_seq
 | 
						|
stack: _fromnxfunction_seq
 | 
						|
 | 
						|
hsplit: _fromnxfunction_single
 | 
						|
diagflat: _fromnxfunction_single
 | 
						|
 | 
						|
def apply_along_axis(func1d, axis, arr, *args, **kwargs): ...
 | 
						|
def apply_over_axes(func, a, axes): ...
 | 
						|
def median(a, axis=..., out=..., overwrite_input=..., keepdims=...): ...
 | 
						|
def compress_nd(x, axis=...): ...
 | 
						|
def compress_rowcols(x, axis=...): ...
 | 
						|
def compress_rows(a): ...
 | 
						|
def compress_cols(a): ...
 | 
						|
def mask_rows(a, axis=...): ...
 | 
						|
def mask_cols(a, axis=...): ...
 | 
						|
def ediff1d(arr, to_end=..., to_begin=...): ...
 | 
						|
def unique(ar1, return_index=..., return_inverse=...): ...
 | 
						|
def intersect1d(ar1, ar2, assume_unique=...): ...
 | 
						|
def setxor1d(ar1, ar2, assume_unique=...): ...
 | 
						|
def in1d(ar1, ar2, assume_unique=..., invert=...): ...
 | 
						|
def isin(element, test_elements, assume_unique=..., invert=...): ...
 | 
						|
def union1d(ar1, ar2): ...
 | 
						|
def setdiff1d(ar1, ar2, assume_unique=...): ...
 | 
						|
def cov(x, y=..., rowvar=..., bias=..., allow_masked=..., ddof=...): ...
 | 
						|
def corrcoef(x, y=..., rowvar=..., bias=..., allow_masked=..., ddof=...): ...
 | 
						|
 | 
						|
class MAxisConcatenator(AxisConcatenator):
 | 
						|
    @staticmethod
 | 
						|
    def concatenate(arrays: Incomplete, axis: int = 0) -> Incomplete: ...  # type: ignore[override]  # pyright: ignore[reportIncompatibleMethodOverride]
 | 
						|
    @classmethod
 | 
						|
    def makemat(cls, arr: Incomplete) -> Incomplete: ...  # type: ignore[override]  # pyright: ignore[reportIncompatibleVariableOverride]
 | 
						|
 | 
						|
class mr_class(MAxisConcatenator):
 | 
						|
    def __init__(self) -> None: ...
 | 
						|
 | 
						|
mr_: mr_class
 | 
						|
 | 
						|
def ndenumerate(a, compressed=...): ...
 | 
						|
def flatnotmasked_edges(a): ...
 | 
						|
def notmasked_edges(a, axis=...): ...
 | 
						|
def flatnotmasked_contiguous(a): ...
 | 
						|
def notmasked_contiguous(a, axis=...): ...
 | 
						|
def clump_unmasked(a): ...
 | 
						|
def clump_masked(a): ...
 | 
						|
def vander(x, n=...): ...
 | 
						|
def polyfit(x, y, deg, rcond=..., full=..., w=..., cov=...): ...
 | 
						|
 | 
						|
#
 | 
						|
def mask_rowcols(a: Incomplete, axis: Incomplete | None = None) -> MaskedArray[Incomplete, np.dtype[Incomplete]]: ...
 |