You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			760 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			760 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
"""
 | 
						|
Utility classes and functions for the polynomial modules.
 | 
						|
 | 
						|
This module provides: error and warning objects; a polynomial base class;
 | 
						|
and some routines used in both the `polynomial` and `chebyshev` modules.
 | 
						|
 | 
						|
Functions
 | 
						|
---------
 | 
						|
 | 
						|
.. autosummary::
 | 
						|
   :toctree: generated/
 | 
						|
 | 
						|
   as_series    convert list of array_likes into 1-D arrays of common type.
 | 
						|
   trimseq      remove trailing zeros.
 | 
						|
   trimcoef     remove small trailing coefficients.
 | 
						|
   getdomain    return the domain appropriate for a given set of abscissae.
 | 
						|
   mapdomain    maps points between domains.
 | 
						|
   mapparms     parameters of the linear map between domains.
 | 
						|
 | 
						|
"""
 | 
						|
import functools
 | 
						|
import operator
 | 
						|
import warnings
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from numpy._core.multiarray import dragon4_positional, dragon4_scientific
 | 
						|
from numpy.exceptions import RankWarning
 | 
						|
 | 
						|
__all__ = [
 | 
						|
    'as_series', 'trimseq', 'trimcoef', 'getdomain', 'mapdomain', 'mapparms',
 | 
						|
    'format_float']
 | 
						|
 | 
						|
#
 | 
						|
# Helper functions to convert inputs to 1-D arrays
 | 
						|
#
 | 
						|
def trimseq(seq):
 | 
						|
    """Remove small Poly series coefficients.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    seq : sequence
 | 
						|
        Sequence of Poly series coefficients.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    series : sequence
 | 
						|
        Subsequence with trailing zeros removed. If the resulting sequence
 | 
						|
        would be empty, return the first element. The returned sequence may
 | 
						|
        or may not be a view.
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    Do not lose the type info if the sequence contains unknown objects.
 | 
						|
 | 
						|
    """
 | 
						|
    if len(seq) == 0 or seq[-1] != 0:
 | 
						|
        return seq
 | 
						|
    else:
 | 
						|
        for i in range(len(seq) - 1, -1, -1):
 | 
						|
            if seq[i] != 0:
 | 
						|
                break
 | 
						|
        return seq[:i + 1]
 | 
						|
 | 
						|
 | 
						|
def as_series(alist, trim=True):
 | 
						|
    """
 | 
						|
    Return argument as a list of 1-d arrays.
 | 
						|
 | 
						|
    The returned list contains array(s) of dtype double, complex double, or
 | 
						|
    object.  A 1-d argument of shape ``(N,)`` is parsed into ``N`` arrays of
 | 
						|
    size one; a 2-d argument of shape ``(M,N)`` is parsed into ``M`` arrays
 | 
						|
    of size ``N`` (i.e., is "parsed by row"); and a higher dimensional array
 | 
						|
    raises a Value Error if it is not first reshaped into either a 1-d or 2-d
 | 
						|
    array.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    alist : array_like
 | 
						|
        A 1- or 2-d array_like
 | 
						|
    trim : boolean, optional
 | 
						|
        When True, trailing zeros are removed from the inputs.
 | 
						|
        When False, the inputs are passed through intact.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    [a1, a2,...] : list of 1-D arrays
 | 
						|
        A copy of the input data as a list of 1-d arrays.
 | 
						|
 | 
						|
    Raises
 | 
						|
    ------
 | 
						|
    ValueError
 | 
						|
        Raised when `as_series` cannot convert its input to 1-d arrays, or at
 | 
						|
        least one of the resulting arrays is empty.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> from numpy.polynomial import polyutils as pu
 | 
						|
    >>> a = np.arange(4)
 | 
						|
    >>> pu.as_series(a)
 | 
						|
    [array([0.]), array([1.]), array([2.]), array([3.])]
 | 
						|
    >>> b = np.arange(6).reshape((2,3))
 | 
						|
    >>> pu.as_series(b)
 | 
						|
    [array([0., 1., 2.]), array([3., 4., 5.])]
 | 
						|
 | 
						|
    >>> pu.as_series((1, np.arange(3), np.arange(2, dtype=np.float16)))
 | 
						|
    [array([1.]), array([0., 1., 2.]), array([0., 1.])]
 | 
						|
 | 
						|
    >>> pu.as_series([2, [1.1, 0.]])
 | 
						|
    [array([2.]), array([1.1])]
 | 
						|
 | 
						|
    >>> pu.as_series([2, [1.1, 0.]], trim=False)
 | 
						|
    [array([2.]), array([1.1, 0. ])]
 | 
						|
 | 
						|
    """
 | 
						|
    arrays = [np.array(a, ndmin=1, copy=None) for a in alist]
 | 
						|
    for a in arrays:
 | 
						|
        if a.size == 0:
 | 
						|
            raise ValueError("Coefficient array is empty")
 | 
						|
        if a.ndim != 1:
 | 
						|
            raise ValueError("Coefficient array is not 1-d")
 | 
						|
    if trim:
 | 
						|
        arrays = [trimseq(a) for a in arrays]
 | 
						|
 | 
						|
    try:
 | 
						|
        dtype = np.common_type(*arrays)
 | 
						|
    except Exception as e:
 | 
						|
        object_dtype = np.dtypes.ObjectDType()
 | 
						|
        has_one_object_type = False
 | 
						|
        ret = []
 | 
						|
        for a in arrays:
 | 
						|
            if a.dtype != object_dtype:
 | 
						|
                tmp = np.empty(len(a), dtype=object_dtype)
 | 
						|
                tmp[:] = a[:]
 | 
						|
                ret.append(tmp)
 | 
						|
            else:
 | 
						|
                has_one_object_type = True
 | 
						|
                ret.append(a.copy())
 | 
						|
        if not has_one_object_type:
 | 
						|
            raise ValueError("Coefficient arrays have no common type") from e
 | 
						|
    else:
 | 
						|
        ret = [np.array(a, copy=True, dtype=dtype) for a in arrays]
 | 
						|
    return ret
 | 
						|
 | 
						|
 | 
						|
def trimcoef(c, tol=0):
 | 
						|
    """
 | 
						|
    Remove "small" "trailing" coefficients from a polynomial.
 | 
						|
 | 
						|
    "Small" means "small in absolute value" and is controlled by the
 | 
						|
    parameter `tol`; "trailing" means highest order coefficient(s), e.g., in
 | 
						|
    ``[0, 1, 1, 0, 0]`` (which represents ``0 + x + x**2 + 0*x**3 + 0*x**4``)
 | 
						|
    both the 3-rd and 4-th order coefficients would be "trimmed."
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    c : array_like
 | 
						|
        1-d array of coefficients, ordered from lowest order to highest.
 | 
						|
    tol : number, optional
 | 
						|
        Trailing (i.e., highest order) elements with absolute value less
 | 
						|
        than or equal to `tol` (default value is zero) are removed.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    trimmed : ndarray
 | 
						|
        1-d array with trailing zeros removed.  If the resulting series
 | 
						|
        would be empty, a series containing a single zero is returned.
 | 
						|
 | 
						|
    Raises
 | 
						|
    ------
 | 
						|
    ValueError
 | 
						|
        If `tol` < 0
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> from numpy.polynomial import polyutils as pu
 | 
						|
    >>> pu.trimcoef((0,0,3,0,5,0,0))
 | 
						|
    array([0.,  0.,  3.,  0.,  5.])
 | 
						|
    >>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
 | 
						|
    array([0.])
 | 
						|
    >>> i = complex(0,1) # works for complex
 | 
						|
    >>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
 | 
						|
    array([0.0003+0.j   , 0.001 -0.001j])
 | 
						|
 | 
						|
    """
 | 
						|
    if tol < 0:
 | 
						|
        raise ValueError("tol must be non-negative")
 | 
						|
 | 
						|
    [c] = as_series([c])
 | 
						|
    [ind] = np.nonzero(np.abs(c) > tol)
 | 
						|
    if len(ind) == 0:
 | 
						|
        return c[:1] * 0
 | 
						|
    else:
 | 
						|
        return c[:ind[-1] + 1].copy()
 | 
						|
 | 
						|
def getdomain(x):
 | 
						|
    """
 | 
						|
    Return a domain suitable for given abscissae.
 | 
						|
 | 
						|
    Find a domain suitable for a polynomial or Chebyshev series
 | 
						|
    defined at the values supplied.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    x : array_like
 | 
						|
        1-d array of abscissae whose domain will be determined.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    domain : ndarray
 | 
						|
        1-d array containing two values.  If the inputs are complex, then
 | 
						|
        the two returned points are the lower left and upper right corners
 | 
						|
        of the smallest rectangle (aligned with the axes) in the complex
 | 
						|
        plane containing the points `x`. If the inputs are real, then the
 | 
						|
        two points are the ends of the smallest interval containing the
 | 
						|
        points `x`.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    mapparms, mapdomain
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> from numpy.polynomial import polyutils as pu
 | 
						|
    >>> points = np.arange(4)**2 - 5; points
 | 
						|
    array([-5, -4, -1,  4])
 | 
						|
    >>> pu.getdomain(points)
 | 
						|
    array([-5.,  4.])
 | 
						|
    >>> c = np.exp(complex(0,1)*np.pi*np.arange(12)/6) # unit circle
 | 
						|
    >>> pu.getdomain(c)
 | 
						|
    array([-1.-1.j,  1.+1.j])
 | 
						|
 | 
						|
    """
 | 
						|
    [x] = as_series([x], trim=False)
 | 
						|
    if x.dtype.char in np.typecodes['Complex']:
 | 
						|
        rmin, rmax = x.real.min(), x.real.max()
 | 
						|
        imin, imax = x.imag.min(), x.imag.max()
 | 
						|
        return np.array((complex(rmin, imin), complex(rmax, imax)))
 | 
						|
    else:
 | 
						|
        return np.array((x.min(), x.max()))
 | 
						|
 | 
						|
def mapparms(old, new):
 | 
						|
    """
 | 
						|
    Linear map parameters between domains.
 | 
						|
 | 
						|
    Return the parameters of the linear map ``offset + scale*x`` that maps
 | 
						|
    `old` to `new` such that ``old[i] -> new[i]``, ``i = 0, 1``.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    old, new : array_like
 | 
						|
        Domains. Each domain must (successfully) convert to a 1-d array
 | 
						|
        containing precisely two values.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    offset, scale : scalars
 | 
						|
        The map ``L(x) = offset + scale*x`` maps the first domain to the
 | 
						|
        second.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    getdomain, mapdomain
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    Also works for complex numbers, and thus can be used to calculate the
 | 
						|
    parameters required to map any line in the complex plane to any other
 | 
						|
    line therein.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> from numpy.polynomial import polyutils as pu
 | 
						|
    >>> pu.mapparms((-1,1),(-1,1))
 | 
						|
    (0.0, 1.0)
 | 
						|
    >>> pu.mapparms((1,-1),(-1,1))
 | 
						|
    (-0.0, -1.0)
 | 
						|
    >>> i = complex(0,1)
 | 
						|
    >>> pu.mapparms((-i,-1),(1,i))
 | 
						|
    ((1+1j), (1-0j))
 | 
						|
 | 
						|
    """
 | 
						|
    oldlen = old[1] - old[0]
 | 
						|
    newlen = new[1] - new[0]
 | 
						|
    off = (old[1] * new[0] - old[0] * new[1]) / oldlen
 | 
						|
    scl = newlen / oldlen
 | 
						|
    return off, scl
 | 
						|
 | 
						|
def mapdomain(x, old, new):
 | 
						|
    """
 | 
						|
    Apply linear map to input points.
 | 
						|
 | 
						|
    The linear map ``offset + scale*x`` that maps the domain `old` to
 | 
						|
    the domain `new` is applied to the points `x`.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    x : array_like
 | 
						|
        Points to be mapped. If `x` is a subtype of ndarray the subtype
 | 
						|
        will be preserved.
 | 
						|
    old, new : array_like
 | 
						|
        The two domains that determine the map.  Each must (successfully)
 | 
						|
        convert to 1-d arrays containing precisely two values.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    x_out : ndarray
 | 
						|
        Array of points of the same shape as `x`, after application of the
 | 
						|
        linear map between the two domains.
 | 
						|
 | 
						|
    See Also
 | 
						|
    --------
 | 
						|
    getdomain, mapparms
 | 
						|
 | 
						|
    Notes
 | 
						|
    -----
 | 
						|
    Effectively, this implements:
 | 
						|
 | 
						|
    .. math::
 | 
						|
        x\\_out = new[0] + m(x - old[0])
 | 
						|
 | 
						|
    where
 | 
						|
 | 
						|
    .. math::
 | 
						|
        m = \\frac{new[1]-new[0]}{old[1]-old[0]}
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> import numpy as np
 | 
						|
    >>> from numpy.polynomial import polyutils as pu
 | 
						|
    >>> old_domain = (-1,1)
 | 
						|
    >>> new_domain = (0,2*np.pi)
 | 
						|
    >>> x = np.linspace(-1,1,6); x
 | 
						|
    array([-1. , -0.6, -0.2,  0.2,  0.6,  1. ])
 | 
						|
    >>> x_out = pu.mapdomain(x, old_domain, new_domain); x_out
 | 
						|
    array([ 0.        ,  1.25663706,  2.51327412,  3.76991118,  5.02654825, # may vary
 | 
						|
            6.28318531])
 | 
						|
    >>> x - pu.mapdomain(x_out, new_domain, old_domain)
 | 
						|
    array([0., 0., 0., 0., 0., 0.])
 | 
						|
 | 
						|
    Also works for complex numbers (and thus can be used to map any line in
 | 
						|
    the complex plane to any other line therein).
 | 
						|
 | 
						|
    >>> i = complex(0,1)
 | 
						|
    >>> old = (-1 - i, 1 + i)
 | 
						|
    >>> new = (-1 + i, 1 - i)
 | 
						|
    >>> z = np.linspace(old[0], old[1], 6); z
 | 
						|
    array([-1. -1.j , -0.6-0.6j, -0.2-0.2j,  0.2+0.2j,  0.6+0.6j,  1. +1.j ])
 | 
						|
    >>> new_z = pu.mapdomain(z, old, new); new_z
 | 
						|
    array([-1.0+1.j , -0.6+0.6j, -0.2+0.2j,  0.2-0.2j,  0.6-0.6j,  1.0-1.j ]) # may vary
 | 
						|
 | 
						|
    """
 | 
						|
    if type(x) not in (int, float, complex) and not isinstance(x, np.generic):
 | 
						|
        x = np.asanyarray(x)
 | 
						|
    off, scl = mapparms(old, new)
 | 
						|
    return off + scl * x
 | 
						|
 | 
						|
 | 
						|
def _nth_slice(i, ndim):
 | 
						|
    sl = [np.newaxis] * ndim
 | 
						|
    sl[i] = slice(None)
 | 
						|
    return tuple(sl)
 | 
						|
 | 
						|
 | 
						|
def _vander_nd(vander_fs, points, degrees):
 | 
						|
    r"""
 | 
						|
    A generalization of the Vandermonde matrix for N dimensions
 | 
						|
 | 
						|
    The result is built by combining the results of 1d Vandermonde matrices,
 | 
						|
 | 
						|
    .. math::
 | 
						|
        W[i_0, \ldots, i_M, j_0, \ldots, j_N] = \prod_{k=0}^N{V_k(x_k)[i_0, \ldots, i_M, j_k]}
 | 
						|
 | 
						|
    where
 | 
						|
 | 
						|
    .. math::
 | 
						|
        N &= \texttt{len(points)} = \texttt{len(degrees)} = \texttt{len(vander\_fs)} \\
 | 
						|
        M &= \texttt{points[k].ndim} \\
 | 
						|
        V_k &= \texttt{vander\_fs[k]} \\
 | 
						|
        x_k &= \texttt{points[k]} \\
 | 
						|
        0 \le j_k &\le \texttt{degrees[k]}
 | 
						|
 | 
						|
    Expanding the one-dimensional :math:`V_k` functions gives:
 | 
						|
 | 
						|
    .. math::
 | 
						|
        W[i_0, \ldots, i_M, j_0, \ldots, j_N] = \prod_{k=0}^N{B_{k, j_k}(x_k[i_0, \ldots, i_M])}
 | 
						|
 | 
						|
    where :math:`B_{k,m}` is the m'th basis of the polynomial construction used along
 | 
						|
    dimension :math:`k`. For a regular polynomial, :math:`B_{k, m}(x) = P_m(x) = x^m`.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    vander_fs : Sequence[function(array_like, int) -> ndarray]
 | 
						|
        The 1d vander function to use for each axis, such as ``polyvander``
 | 
						|
    points : Sequence[array_like]
 | 
						|
        Arrays of point coordinates, all of the same shape. The dtypes
 | 
						|
        will be converted to either float64 or complex128 depending on
 | 
						|
        whether any of the elements are complex. Scalars are converted to
 | 
						|
        1-D arrays.
 | 
						|
        This must be the same length as `vander_fs`.
 | 
						|
    degrees : Sequence[int]
 | 
						|
        The maximum degree (inclusive) to use for each axis.
 | 
						|
        This must be the same length as `vander_fs`.
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    vander_nd : ndarray
 | 
						|
        An array of shape ``points[0].shape + tuple(d + 1 for d in degrees)``.
 | 
						|
    """  # noqa: E501
 | 
						|
    n_dims = len(vander_fs)
 | 
						|
    if n_dims != len(points):
 | 
						|
        raise ValueError(
 | 
						|
            f"Expected {n_dims} dimensions of sample points, got {len(points)}")
 | 
						|
    if n_dims != len(degrees):
 | 
						|
        raise ValueError(
 | 
						|
            f"Expected {n_dims} dimensions of degrees, got {len(degrees)}")
 | 
						|
    if n_dims == 0:
 | 
						|
        raise ValueError("Unable to guess a dtype or shape when no points are given")
 | 
						|
 | 
						|
    # convert to the same shape and type
 | 
						|
    points = tuple(np.asarray(tuple(points)) + 0.0)
 | 
						|
 | 
						|
    # produce the vandermonde matrix for each dimension, placing the last
 | 
						|
    # axis of each in an independent trailing axis of the output
 | 
						|
    vander_arrays = (
 | 
						|
        vander_fs[i](points[i], degrees[i])[(...,) + _nth_slice(i, n_dims)]
 | 
						|
        for i in range(n_dims)
 | 
						|
    )
 | 
						|
 | 
						|
    # we checked this wasn't empty already, so no `initial` needed
 | 
						|
    return functools.reduce(operator.mul, vander_arrays)
 | 
						|
 | 
						|
 | 
						|
def _vander_nd_flat(vander_fs, points, degrees):
 | 
						|
    """
 | 
						|
    Like `_vander_nd`, but flattens the last ``len(degrees)`` axes into a single axis
 | 
						|
 | 
						|
    Used to implement the public ``<type>vander<n>d`` functions.
 | 
						|
    """
 | 
						|
    v = _vander_nd(vander_fs, points, degrees)
 | 
						|
    return v.reshape(v.shape[:-len(degrees)] + (-1,))
 | 
						|
 | 
						|
 | 
						|
def _fromroots(line_f, mul_f, roots):
 | 
						|
    """
 | 
						|
    Helper function used to implement the ``<type>fromroots`` functions.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    line_f : function(float, float) -> ndarray
 | 
						|
        The ``<type>line`` function, such as ``polyline``
 | 
						|
    mul_f : function(array_like, array_like) -> ndarray
 | 
						|
        The ``<type>mul`` function, such as ``polymul``
 | 
						|
    roots
 | 
						|
        See the ``<type>fromroots`` functions for more detail
 | 
						|
    """
 | 
						|
    if len(roots) == 0:
 | 
						|
        return np.ones(1)
 | 
						|
    else:
 | 
						|
        [roots] = as_series([roots], trim=False)
 | 
						|
        roots.sort()
 | 
						|
        p = [line_f(-r, 1) for r in roots]
 | 
						|
        n = len(p)
 | 
						|
        while n > 1:
 | 
						|
            m, r = divmod(n, 2)
 | 
						|
            tmp = [mul_f(p[i], p[i + m]) for i in range(m)]
 | 
						|
            if r:
 | 
						|
                tmp[0] = mul_f(tmp[0], p[-1])
 | 
						|
            p = tmp
 | 
						|
            n = m
 | 
						|
        return p[0]
 | 
						|
 | 
						|
 | 
						|
def _valnd(val_f, c, *args):
 | 
						|
    """
 | 
						|
    Helper function used to implement the ``<type>val<n>d`` functions.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    val_f : function(array_like, array_like, tensor: bool) -> array_like
 | 
						|
        The ``<type>val`` function, such as ``polyval``
 | 
						|
    c, args
 | 
						|
        See the ``<type>val<n>d`` functions for more detail
 | 
						|
    """
 | 
						|
    args = [np.asanyarray(a) for a in args]
 | 
						|
    shape0 = args[0].shape
 | 
						|
    if not all(a.shape == shape0 for a in args[1:]):
 | 
						|
        if len(args) == 3:
 | 
						|
            raise ValueError('x, y, z are incompatible')
 | 
						|
        elif len(args) == 2:
 | 
						|
            raise ValueError('x, y are incompatible')
 | 
						|
        else:
 | 
						|
            raise ValueError('ordinates are incompatible')
 | 
						|
    it = iter(args)
 | 
						|
    x0 = next(it)
 | 
						|
 | 
						|
    # use tensor on only the first
 | 
						|
    c = val_f(x0, c)
 | 
						|
    for xi in it:
 | 
						|
        c = val_f(xi, c, tensor=False)
 | 
						|
    return c
 | 
						|
 | 
						|
 | 
						|
def _gridnd(val_f, c, *args):
 | 
						|
    """
 | 
						|
    Helper function used to implement the ``<type>grid<n>d`` functions.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    val_f : function(array_like, array_like, tensor: bool) -> array_like
 | 
						|
        The ``<type>val`` function, such as ``polyval``
 | 
						|
    c, args
 | 
						|
        See the ``<type>grid<n>d`` functions for more detail
 | 
						|
    """
 | 
						|
    for xi in args:
 | 
						|
        c = val_f(xi, c)
 | 
						|
    return c
 | 
						|
 | 
						|
 | 
						|
def _div(mul_f, c1, c2):
 | 
						|
    """
 | 
						|
    Helper function used to implement the ``<type>div`` functions.
 | 
						|
 | 
						|
    Implementation uses repeated subtraction of c2 multiplied by the nth basis.
 | 
						|
    For some polynomial types, a more efficient approach may be possible.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    mul_f : function(array_like, array_like) -> array_like
 | 
						|
        The ``<type>mul`` function, such as ``polymul``
 | 
						|
    c1, c2
 | 
						|
        See the ``<type>div`` functions for more detail
 | 
						|
    """
 | 
						|
    # c1, c2 are trimmed copies
 | 
						|
    [c1, c2] = as_series([c1, c2])
 | 
						|
    if c2[-1] == 0:
 | 
						|
        raise ZeroDivisionError  # FIXME: add message with details to exception
 | 
						|
 | 
						|
    lc1 = len(c1)
 | 
						|
    lc2 = len(c2)
 | 
						|
    if lc1 < lc2:
 | 
						|
        return c1[:1] * 0, c1
 | 
						|
    elif lc2 == 1:
 | 
						|
        return c1 / c2[-1], c1[:1] * 0
 | 
						|
    else:
 | 
						|
        quo = np.empty(lc1 - lc2 + 1, dtype=c1.dtype)
 | 
						|
        rem = c1
 | 
						|
        for i in range(lc1 - lc2, - 1, -1):
 | 
						|
            p = mul_f([0] * i + [1], c2)
 | 
						|
            q = rem[-1] / p[-1]
 | 
						|
            rem = rem[:-1] - q * p[:-1]
 | 
						|
            quo[i] = q
 | 
						|
        return quo, trimseq(rem)
 | 
						|
 | 
						|
 | 
						|
def _add(c1, c2):
 | 
						|
    """ Helper function used to implement the ``<type>add`` functions. """
 | 
						|
    # c1, c2 are trimmed copies
 | 
						|
    [c1, c2] = as_series([c1, c2])
 | 
						|
    if len(c1) > len(c2):
 | 
						|
        c1[:c2.size] += c2
 | 
						|
        ret = c1
 | 
						|
    else:
 | 
						|
        c2[:c1.size] += c1
 | 
						|
        ret = c2
 | 
						|
    return trimseq(ret)
 | 
						|
 | 
						|
 | 
						|
def _sub(c1, c2):
 | 
						|
    """ Helper function used to implement the ``<type>sub`` functions. """
 | 
						|
    # c1, c2 are trimmed copies
 | 
						|
    [c1, c2] = as_series([c1, c2])
 | 
						|
    if len(c1) > len(c2):
 | 
						|
        c1[:c2.size] -= c2
 | 
						|
        ret = c1
 | 
						|
    else:
 | 
						|
        c2 = -c2
 | 
						|
        c2[:c1.size] += c1
 | 
						|
        ret = c2
 | 
						|
    return trimseq(ret)
 | 
						|
 | 
						|
 | 
						|
def _fit(vander_f, x, y, deg, rcond=None, full=False, w=None):
 | 
						|
    """
 | 
						|
    Helper function used to implement the ``<type>fit`` functions.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    vander_f : function(array_like, int) -> ndarray
 | 
						|
        The 1d vander function, such as ``polyvander``
 | 
						|
    c1, c2
 | 
						|
        See the ``<type>fit`` functions for more detail
 | 
						|
    """
 | 
						|
    x = np.asarray(x) + 0.0
 | 
						|
    y = np.asarray(y) + 0.0
 | 
						|
    deg = np.asarray(deg)
 | 
						|
 | 
						|
    # check arguments.
 | 
						|
    if deg.ndim > 1 or deg.dtype.kind not in 'iu' or deg.size == 0:
 | 
						|
        raise TypeError("deg must be an int or non-empty 1-D array of int")
 | 
						|
    if deg.min() < 0:
 | 
						|
        raise ValueError("expected deg >= 0")
 | 
						|
    if x.ndim != 1:
 | 
						|
        raise TypeError("expected 1D vector for x")
 | 
						|
    if x.size == 0:
 | 
						|
        raise TypeError("expected non-empty vector for x")
 | 
						|
    if y.ndim < 1 or y.ndim > 2:
 | 
						|
        raise TypeError("expected 1D or 2D array for y")
 | 
						|
    if len(x) != len(y):
 | 
						|
        raise TypeError("expected x and y to have same length")
 | 
						|
 | 
						|
    if deg.ndim == 0:
 | 
						|
        lmax = deg
 | 
						|
        order = lmax + 1
 | 
						|
        van = vander_f(x, lmax)
 | 
						|
    else:
 | 
						|
        deg = np.sort(deg)
 | 
						|
        lmax = deg[-1]
 | 
						|
        order = len(deg)
 | 
						|
        van = vander_f(x, lmax)[:, deg]
 | 
						|
 | 
						|
    # set up the least squares matrices in transposed form
 | 
						|
    lhs = van.T
 | 
						|
    rhs = y.T
 | 
						|
    if w is not None:
 | 
						|
        w = np.asarray(w) + 0.0
 | 
						|
        if w.ndim != 1:
 | 
						|
            raise TypeError("expected 1D vector for w")
 | 
						|
        if len(x) != len(w):
 | 
						|
            raise TypeError("expected x and w to have same length")
 | 
						|
        # apply weights. Don't use inplace operations as they
 | 
						|
        # can cause problems with NA.
 | 
						|
        lhs = lhs * w
 | 
						|
        rhs = rhs * w
 | 
						|
 | 
						|
    # set rcond
 | 
						|
    if rcond is None:
 | 
						|
        rcond = len(x) * np.finfo(x.dtype).eps
 | 
						|
 | 
						|
    # Determine the norms of the design matrix columns.
 | 
						|
    if issubclass(lhs.dtype.type, np.complexfloating):
 | 
						|
        scl = np.sqrt((np.square(lhs.real) + np.square(lhs.imag)).sum(1))
 | 
						|
    else:
 | 
						|
        scl = np.sqrt(np.square(lhs).sum(1))
 | 
						|
    scl[scl == 0] = 1
 | 
						|
 | 
						|
    # Solve the least squares problem.
 | 
						|
    c, resids, rank, s = np.linalg.lstsq(lhs.T / scl, rhs.T, rcond)
 | 
						|
    c = (c.T / scl).T
 | 
						|
 | 
						|
    # Expand c to include non-fitted coefficients which are set to zero
 | 
						|
    if deg.ndim > 0:
 | 
						|
        if c.ndim == 2:
 | 
						|
            cc = np.zeros((lmax + 1, c.shape[1]), dtype=c.dtype)
 | 
						|
        else:
 | 
						|
            cc = np.zeros(lmax + 1, dtype=c.dtype)
 | 
						|
        cc[deg] = c
 | 
						|
        c = cc
 | 
						|
 | 
						|
    # warn on rank reduction
 | 
						|
    if rank != order and not full:
 | 
						|
        msg = "The fit may be poorly conditioned"
 | 
						|
        warnings.warn(msg, RankWarning, stacklevel=2)
 | 
						|
 | 
						|
    if full:
 | 
						|
        return c, [resids, rank, s, rcond]
 | 
						|
    else:
 | 
						|
        return c
 | 
						|
 | 
						|
 | 
						|
def _pow(mul_f, c, pow, maxpower):
 | 
						|
    """
 | 
						|
    Helper function used to implement the ``<type>pow`` functions.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    mul_f : function(array_like, array_like) -> ndarray
 | 
						|
        The ``<type>mul`` function, such as ``polymul``
 | 
						|
    c : array_like
 | 
						|
        1-D array of array of series coefficients
 | 
						|
    pow, maxpower
 | 
						|
        See the ``<type>pow`` functions for more detail
 | 
						|
    """
 | 
						|
    # c is a trimmed copy
 | 
						|
    [c] = as_series([c])
 | 
						|
    power = int(pow)
 | 
						|
    if power != pow or power < 0:
 | 
						|
        raise ValueError("Power must be a non-negative integer.")
 | 
						|
    elif maxpower is not None and power > maxpower:
 | 
						|
        raise ValueError("Power is too large")
 | 
						|
    elif power == 0:
 | 
						|
        return np.array([1], dtype=c.dtype)
 | 
						|
    elif power == 1:
 | 
						|
        return c
 | 
						|
    else:
 | 
						|
        # This can be made more efficient by using powers of two
 | 
						|
        # in the usual way.
 | 
						|
        prd = c
 | 
						|
        for i in range(2, power + 1):
 | 
						|
            prd = mul_f(prd, c)
 | 
						|
        return prd
 | 
						|
 | 
						|
 | 
						|
def _as_int(x, desc):
 | 
						|
    """
 | 
						|
    Like `operator.index`, but emits a custom exception when passed an
 | 
						|
    incorrect type
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    x : int-like
 | 
						|
        Value to interpret as an integer
 | 
						|
    desc : str
 | 
						|
        description to include in any error message
 | 
						|
 | 
						|
    Raises
 | 
						|
    ------
 | 
						|
    TypeError : if x is a float or non-numeric
 | 
						|
    """
 | 
						|
    try:
 | 
						|
        return operator.index(x)
 | 
						|
    except TypeError as e:
 | 
						|
        raise TypeError(f"{desc} must be an integer, received {x}") from e
 | 
						|
 | 
						|
 | 
						|
def format_float(x, parens=False):
 | 
						|
    if not np.issubdtype(type(x), np.floating):
 | 
						|
        return str(x)
 | 
						|
 | 
						|
    opts = np.get_printoptions()
 | 
						|
 | 
						|
    if np.isnan(x):
 | 
						|
        return opts['nanstr']
 | 
						|
    elif np.isinf(x):
 | 
						|
        return opts['infstr']
 | 
						|
 | 
						|
    exp_format = False
 | 
						|
    if x != 0:
 | 
						|
        a = np.abs(x)
 | 
						|
        if a >= 1.e8 or a < 10**min(0, -(opts['precision'] - 1) // 2):
 | 
						|
            exp_format = True
 | 
						|
 | 
						|
    trim, unique = '0', True
 | 
						|
    if opts['floatmode'] == 'fixed':
 | 
						|
        trim, unique = 'k', False
 | 
						|
 | 
						|
    if exp_format:
 | 
						|
        s = dragon4_scientific(x, precision=opts['precision'],
 | 
						|
                               unique=unique, trim=trim,
 | 
						|
                               sign=opts['sign'] == '+')
 | 
						|
        if parens:
 | 
						|
            s = '(' + s + ')'
 | 
						|
    else:
 | 
						|
        s = dragon4_positional(x, precision=opts['precision'],
 | 
						|
                               fractional=True,
 | 
						|
                               unique=unique, trim=trim,
 | 
						|
                               sign=opts['sign'] == '+')
 | 
						|
    return s
 |