You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			417 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			417 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
from typing import Any
 | 
						|
 | 
						|
import numpy as np
 | 
						|
 | 
						|
from pandas._typing import npt
 | 
						|
 | 
						|
class Infinity:
 | 
						|
    def __eq__(self, other) -> bool: ...
 | 
						|
    def __ne__(self, other) -> bool: ...
 | 
						|
    def __lt__(self, other) -> bool: ...
 | 
						|
    def __le__(self, other) -> bool: ...
 | 
						|
    def __gt__(self, other) -> bool: ...
 | 
						|
    def __ge__(self, other) -> bool: ...
 | 
						|
 | 
						|
class NegInfinity:
 | 
						|
    def __eq__(self, other) -> bool: ...
 | 
						|
    def __ne__(self, other) -> bool: ...
 | 
						|
    def __lt__(self, other) -> bool: ...
 | 
						|
    def __le__(self, other) -> bool: ...
 | 
						|
    def __gt__(self, other) -> bool: ...
 | 
						|
    def __ge__(self, other) -> bool: ...
 | 
						|
 | 
						|
def unique_deltas(
 | 
						|
    arr: np.ndarray,  # const int64_t[:]
 | 
						|
) -> np.ndarray: ...  # np.ndarray[np.int64, ndim=1]
 | 
						|
def is_lexsorted(list_of_arrays: list[npt.NDArray[np.int64]]) -> bool: ...
 | 
						|
def groupsort_indexer(
 | 
						|
    index: np.ndarray,  # const int64_t[:]
 | 
						|
    ngroups: int,
 | 
						|
) -> tuple[
 | 
						|
    np.ndarray,  # ndarray[int64_t, ndim=1]
 | 
						|
    np.ndarray,  # ndarray[int64_t, ndim=1]
 | 
						|
]: ...
 | 
						|
def kth_smallest(
 | 
						|
    arr: np.ndarray,  # numeric[:]
 | 
						|
    k: int,
 | 
						|
) -> Any: ...  # numeric
 | 
						|
 | 
						|
# ----------------------------------------------------------------------
 | 
						|
# Pairwise correlation/covariance
 | 
						|
 | 
						|
def nancorr(
 | 
						|
    mat: npt.NDArray[np.float64],  # const float64_t[:, :]
 | 
						|
    cov: bool = ...,
 | 
						|
    minp: int | None = ...,
 | 
						|
) -> npt.NDArray[np.float64]: ...  # ndarray[float64_t, ndim=2]
 | 
						|
def nancorr_spearman(
 | 
						|
    mat: npt.NDArray[np.float64],  # ndarray[float64_t, ndim=2]
 | 
						|
    minp: int = ...,
 | 
						|
) -> npt.NDArray[np.float64]: ...  # ndarray[float64_t, ndim=2]
 | 
						|
 | 
						|
# ----------------------------------------------------------------------
 | 
						|
 | 
						|
def validate_limit(nobs: int | None, limit=...) -> int: ...
 | 
						|
def get_fill_indexer(
 | 
						|
    mask: npt.NDArray[np.bool_],
 | 
						|
    limit: int | None = None,
 | 
						|
) -> npt.NDArray[np.intp]: ...
 | 
						|
def pad(
 | 
						|
    old: np.ndarray,  # ndarray[numeric_object_t]
 | 
						|
    new: np.ndarray,  # ndarray[numeric_object_t]
 | 
						|
    limit=...,
 | 
						|
) -> npt.NDArray[np.intp]: ...  # np.ndarray[np.intp, ndim=1]
 | 
						|
def pad_inplace(
 | 
						|
    values: np.ndarray,  # numeric_object_t[:]
 | 
						|
    mask: np.ndarray,  # uint8_t[:]
 | 
						|
    limit=...,
 | 
						|
) -> None: ...
 | 
						|
def pad_2d_inplace(
 | 
						|
    values: np.ndarray,  # numeric_object_t[:, :]
 | 
						|
    mask: np.ndarray,  # const uint8_t[:, :]
 | 
						|
    limit=...,
 | 
						|
) -> None: ...
 | 
						|
def backfill(
 | 
						|
    old: np.ndarray,  # ndarray[numeric_object_t]
 | 
						|
    new: np.ndarray,  # ndarray[numeric_object_t]
 | 
						|
    limit=...,
 | 
						|
) -> npt.NDArray[np.intp]: ...  # np.ndarray[np.intp, ndim=1]
 | 
						|
def backfill_inplace(
 | 
						|
    values: np.ndarray,  # numeric_object_t[:]
 | 
						|
    mask: np.ndarray,  # uint8_t[:]
 | 
						|
    limit=...,
 | 
						|
) -> None: ...
 | 
						|
def backfill_2d_inplace(
 | 
						|
    values: np.ndarray,  # numeric_object_t[:, :]
 | 
						|
    mask: np.ndarray,  # const uint8_t[:, :]
 | 
						|
    limit=...,
 | 
						|
) -> None: ...
 | 
						|
def is_monotonic(
 | 
						|
    arr: np.ndarray,  # ndarray[numeric_object_t, ndim=1]
 | 
						|
    timelike: bool,
 | 
						|
) -> tuple[bool, bool, bool]: ...
 | 
						|
 | 
						|
# ----------------------------------------------------------------------
 | 
						|
# rank_1d, rank_2d
 | 
						|
# ----------------------------------------------------------------------
 | 
						|
 | 
						|
def rank_1d(
 | 
						|
    values: np.ndarray,  # ndarray[numeric_object_t, ndim=1]
 | 
						|
    labels: np.ndarray | None = ...,  # const int64_t[:]=None
 | 
						|
    is_datetimelike: bool = ...,
 | 
						|
    ties_method=...,
 | 
						|
    ascending: bool = ...,
 | 
						|
    pct: bool = ...,
 | 
						|
    na_option=...,
 | 
						|
    mask: npt.NDArray[np.bool_] | None = ...,
 | 
						|
) -> np.ndarray: ...  # np.ndarray[float64_t, ndim=1]
 | 
						|
def rank_2d(
 | 
						|
    in_arr: np.ndarray,  # ndarray[numeric_object_t, ndim=2]
 | 
						|
    axis: int = ...,
 | 
						|
    is_datetimelike: bool = ...,
 | 
						|
    ties_method=...,
 | 
						|
    ascending: bool = ...,
 | 
						|
    na_option=...,
 | 
						|
    pct: bool = ...,
 | 
						|
) -> np.ndarray: ...  # np.ndarray[float64_t, ndim=1]
 | 
						|
def diff_2d(
 | 
						|
    arr: np.ndarray,  # ndarray[diff_t, ndim=2]
 | 
						|
    out: np.ndarray,  # ndarray[out_t, ndim=2]
 | 
						|
    periods: int,
 | 
						|
    axis: int,
 | 
						|
    datetimelike: bool = ...,
 | 
						|
) -> None: ...
 | 
						|
def ensure_platform_int(arr: object) -> npt.NDArray[np.intp]: ...
 | 
						|
def ensure_object(arr: object) -> npt.NDArray[np.object_]: ...
 | 
						|
def ensure_float64(arr: object) -> npt.NDArray[np.float64]: ...
 | 
						|
def ensure_int8(arr: object) -> npt.NDArray[np.int8]: ...
 | 
						|
def ensure_int16(arr: object) -> npt.NDArray[np.int16]: ...
 | 
						|
def ensure_int32(arr: object) -> npt.NDArray[np.int32]: ...
 | 
						|
def ensure_int64(arr: object) -> npt.NDArray[np.int64]: ...
 | 
						|
def ensure_uint64(arr: object) -> npt.NDArray[np.uint64]: ...
 | 
						|
def take_1d_int8_int8(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_1d_int8_int32(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_1d_int8_int64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_1d_int8_float64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_1d_int16_int16(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_1d_int16_int32(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_1d_int16_int64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_1d_int16_float64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_1d_int32_int32(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_1d_int32_int64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_1d_int32_float64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_1d_int64_int64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_1d_int64_float64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_1d_float32_float32(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_1d_float32_float64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_1d_float64_float64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_1d_object_object(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_1d_bool_bool(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_1d_bool_object(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis0_int8_int8(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis0_int8_int32(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis0_int8_int64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis0_int8_float64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis0_int16_int16(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis0_int16_int32(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis0_int16_int64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis0_int16_float64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis0_int32_int32(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis0_int32_int64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis0_int32_float64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis0_int64_int64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis0_int64_float64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis0_float32_float32(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis0_float32_float64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis0_float64_float64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis0_object_object(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis0_bool_bool(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis0_bool_object(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis1_int8_int8(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis1_int8_int32(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis1_int8_int64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis1_int8_float64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis1_int16_int16(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis1_int16_int32(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis1_int16_int64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis1_int16_float64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis1_int32_int32(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis1_int32_int64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis1_int32_float64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis1_int64_int64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis1_int64_float64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis1_float32_float32(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis1_float32_float64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis1_float64_float64(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis1_object_object(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis1_bool_bool(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_axis1_bool_object(
 | 
						|
    values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
 | 
						|
) -> None: ...
 | 
						|
def take_2d_multi_int8_int8(
 | 
						|
    values: np.ndarray,
 | 
						|
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
 | 
						|
    out: np.ndarray,
 | 
						|
    fill_value=...,
 | 
						|
) -> None: ...
 | 
						|
def take_2d_multi_int8_int32(
 | 
						|
    values: np.ndarray,
 | 
						|
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
 | 
						|
    out: np.ndarray,
 | 
						|
    fill_value=...,
 | 
						|
) -> None: ...
 | 
						|
def take_2d_multi_int8_int64(
 | 
						|
    values: np.ndarray,
 | 
						|
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
 | 
						|
    out: np.ndarray,
 | 
						|
    fill_value=...,
 | 
						|
) -> None: ...
 | 
						|
def take_2d_multi_int8_float64(
 | 
						|
    values: np.ndarray,
 | 
						|
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
 | 
						|
    out: np.ndarray,
 | 
						|
    fill_value=...,
 | 
						|
) -> None: ...
 | 
						|
def take_2d_multi_int16_int16(
 | 
						|
    values: np.ndarray,
 | 
						|
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
 | 
						|
    out: np.ndarray,
 | 
						|
    fill_value=...,
 | 
						|
) -> None: ...
 | 
						|
def take_2d_multi_int16_int32(
 | 
						|
    values: np.ndarray,
 | 
						|
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
 | 
						|
    out: np.ndarray,
 | 
						|
    fill_value=...,
 | 
						|
) -> None: ...
 | 
						|
def take_2d_multi_int16_int64(
 | 
						|
    values: np.ndarray,
 | 
						|
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
 | 
						|
    out: np.ndarray,
 | 
						|
    fill_value=...,
 | 
						|
) -> None: ...
 | 
						|
def take_2d_multi_int16_float64(
 | 
						|
    values: np.ndarray,
 | 
						|
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
 | 
						|
    out: np.ndarray,
 | 
						|
    fill_value=...,
 | 
						|
) -> None: ...
 | 
						|
def take_2d_multi_int32_int32(
 | 
						|
    values: np.ndarray,
 | 
						|
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
 | 
						|
    out: np.ndarray,
 | 
						|
    fill_value=...,
 | 
						|
) -> None: ...
 | 
						|
def take_2d_multi_int32_int64(
 | 
						|
    values: np.ndarray,
 | 
						|
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
 | 
						|
    out: np.ndarray,
 | 
						|
    fill_value=...,
 | 
						|
) -> None: ...
 | 
						|
def take_2d_multi_int32_float64(
 | 
						|
    values: np.ndarray,
 | 
						|
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
 | 
						|
    out: np.ndarray,
 | 
						|
    fill_value=...,
 | 
						|
) -> None: ...
 | 
						|
def take_2d_multi_int64_float64(
 | 
						|
    values: np.ndarray,
 | 
						|
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
 | 
						|
    out: np.ndarray,
 | 
						|
    fill_value=...,
 | 
						|
) -> None: ...
 | 
						|
def take_2d_multi_float32_float32(
 | 
						|
    values: np.ndarray,
 | 
						|
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
 | 
						|
    out: np.ndarray,
 | 
						|
    fill_value=...,
 | 
						|
) -> None: ...
 | 
						|
def take_2d_multi_float32_float64(
 | 
						|
    values: np.ndarray,
 | 
						|
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
 | 
						|
    out: np.ndarray,
 | 
						|
    fill_value=...,
 | 
						|
) -> None: ...
 | 
						|
def take_2d_multi_float64_float64(
 | 
						|
    values: np.ndarray,
 | 
						|
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
 | 
						|
    out: np.ndarray,
 | 
						|
    fill_value=...,
 | 
						|
) -> None: ...
 | 
						|
def take_2d_multi_object_object(
 | 
						|
    values: np.ndarray,
 | 
						|
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
 | 
						|
    out: np.ndarray,
 | 
						|
    fill_value=...,
 | 
						|
) -> None: ...
 | 
						|
def take_2d_multi_bool_bool(
 | 
						|
    values: np.ndarray,
 | 
						|
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
 | 
						|
    out: np.ndarray,
 | 
						|
    fill_value=...,
 | 
						|
) -> None: ...
 | 
						|
def take_2d_multi_bool_object(
 | 
						|
    values: np.ndarray,
 | 
						|
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
 | 
						|
    out: np.ndarray,
 | 
						|
    fill_value=...,
 | 
						|
) -> None: ...
 | 
						|
def take_2d_multi_int64_int64(
 | 
						|
    values: np.ndarray,
 | 
						|
    indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
 | 
						|
    out: np.ndarray,
 | 
						|
    fill_value=...,
 | 
						|
) -> None: ...
 |