You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			104 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			104 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
import numpy as np
 | 
						|
 | 
						|
from pandas._typing import npt
 | 
						|
 | 
						|
from pandas import MultiIndex
 | 
						|
from pandas.core.arrays import ExtensionArray
 | 
						|
 | 
						|
multiindex_nulls_shift: int
 | 
						|
 | 
						|
class IndexEngine:
 | 
						|
    over_size_threshold: bool
 | 
						|
    def __init__(self, values: np.ndarray) -> None: ...
 | 
						|
    def __contains__(self, val: object) -> bool: ...
 | 
						|
 | 
						|
    # -> int | slice | np.ndarray[bool]
 | 
						|
    def get_loc(self, val: object) -> int | slice | np.ndarray: ...
 | 
						|
    def sizeof(self, deep: bool = ...) -> int: ...
 | 
						|
    def __sizeof__(self) -> int: ...
 | 
						|
    @property
 | 
						|
    def is_unique(self) -> bool: ...
 | 
						|
    @property
 | 
						|
    def is_monotonic_increasing(self) -> bool: ...
 | 
						|
    @property
 | 
						|
    def is_monotonic_decreasing(self) -> bool: ...
 | 
						|
    @property
 | 
						|
    def is_mapping_populated(self) -> bool: ...
 | 
						|
    def clear_mapping(self): ...
 | 
						|
    def get_indexer(self, values: np.ndarray) -> npt.NDArray[np.intp]: ...
 | 
						|
    def get_indexer_non_unique(
 | 
						|
        self,
 | 
						|
        targets: np.ndarray,
 | 
						|
    ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
 | 
						|
 | 
						|
class MaskedIndexEngine(IndexEngine):
 | 
						|
    def __init__(self, values: object) -> None: ...
 | 
						|
    def get_indexer_non_unique(
 | 
						|
        self, targets: object
 | 
						|
    ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
 | 
						|
 | 
						|
class Float64Engine(IndexEngine): ...
 | 
						|
class Float32Engine(IndexEngine): ...
 | 
						|
class Complex128Engine(IndexEngine): ...
 | 
						|
class Complex64Engine(IndexEngine): ...
 | 
						|
class Int64Engine(IndexEngine): ...
 | 
						|
class Int32Engine(IndexEngine): ...
 | 
						|
class Int16Engine(IndexEngine): ...
 | 
						|
class Int8Engine(IndexEngine): ...
 | 
						|
class UInt64Engine(IndexEngine): ...
 | 
						|
class UInt32Engine(IndexEngine): ...
 | 
						|
class UInt16Engine(IndexEngine): ...
 | 
						|
class UInt8Engine(IndexEngine): ...
 | 
						|
class ObjectEngine(IndexEngine): ...
 | 
						|
class DatetimeEngine(Int64Engine): ...
 | 
						|
class TimedeltaEngine(DatetimeEngine): ...
 | 
						|
class PeriodEngine(Int64Engine): ...
 | 
						|
class BoolEngine(UInt8Engine): ...
 | 
						|
class MaskedFloat64Engine(MaskedIndexEngine): ...
 | 
						|
class MaskedFloat32Engine(MaskedIndexEngine): ...
 | 
						|
class MaskedComplex128Engine(MaskedIndexEngine): ...
 | 
						|
class MaskedComplex64Engine(MaskedIndexEngine): ...
 | 
						|
class MaskedInt64Engine(MaskedIndexEngine): ...
 | 
						|
class MaskedInt32Engine(MaskedIndexEngine): ...
 | 
						|
class MaskedInt16Engine(MaskedIndexEngine): ...
 | 
						|
class MaskedInt8Engine(MaskedIndexEngine): ...
 | 
						|
class MaskedUInt64Engine(MaskedIndexEngine): ...
 | 
						|
class MaskedUInt32Engine(MaskedIndexEngine): ...
 | 
						|
class MaskedUInt16Engine(MaskedIndexEngine): ...
 | 
						|
class MaskedUInt8Engine(MaskedIndexEngine): ...
 | 
						|
class MaskedBoolEngine(MaskedUInt8Engine): ...
 | 
						|
 | 
						|
class StringObjectEngine(ObjectEngine):
 | 
						|
    def __init__(self, values: object, na_value) -> None: ...
 | 
						|
 | 
						|
class BaseMultiIndexCodesEngine:
 | 
						|
    levels: list[np.ndarray]
 | 
						|
    offsets: np.ndarray  # ndarray[uint64_t, ndim=1]
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        levels: list[np.ndarray],  # all entries hashable
 | 
						|
        labels: list[np.ndarray],  # all entries integer-dtyped
 | 
						|
        offsets: np.ndarray,  # np.ndarray[np.uint64, ndim=1]
 | 
						|
    ) -> None: ...
 | 
						|
    def get_indexer(self, target: npt.NDArray[np.object_]) -> npt.NDArray[np.intp]: ...
 | 
						|
    def _extract_level_codes(self, target: MultiIndex) -> np.ndarray: ...
 | 
						|
 | 
						|
class ExtensionEngine:
 | 
						|
    def __init__(self, values: ExtensionArray) -> None: ...
 | 
						|
    def __contains__(self, val: object) -> bool: ...
 | 
						|
    def get_loc(self, val: object) -> int | slice | np.ndarray: ...
 | 
						|
    def get_indexer(self, values: np.ndarray) -> npt.NDArray[np.intp]: ...
 | 
						|
    def get_indexer_non_unique(
 | 
						|
        self,
 | 
						|
        targets: np.ndarray,
 | 
						|
    ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
 | 
						|
    @property
 | 
						|
    def is_unique(self) -> bool: ...
 | 
						|
    @property
 | 
						|
    def is_monotonic_increasing(self) -> bool: ...
 | 
						|
    @property
 | 
						|
    def is_monotonic_decreasing(self) -> bool: ...
 | 
						|
    def sizeof(self, deep: bool = ...) -> int: ...
 | 
						|
    def clear_mapping(self): ...
 |