You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			128 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			128 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Python
		
	
from typing import (
 | 
						|
    Any,
 | 
						|
    Callable,
 | 
						|
    Literal,
 | 
						|
)
 | 
						|
 | 
						|
import numpy as np
 | 
						|
 | 
						|
from pandas._typing import (
 | 
						|
    WindowingRankType,
 | 
						|
    npt,
 | 
						|
)
 | 
						|
 | 
						|
def roll_sum(
 | 
						|
    values: np.ndarray,  # const float64_t[:]
 | 
						|
    start: np.ndarray,  # np.ndarray[np.int64]
 | 
						|
    end: np.ndarray,  # np.ndarray[np.int64]
 | 
						|
    minp: int,  # int64_t
 | 
						|
) -> np.ndarray: ...  # np.ndarray[float]
 | 
						|
def roll_mean(
 | 
						|
    values: np.ndarray,  # const float64_t[:]
 | 
						|
    start: np.ndarray,  # np.ndarray[np.int64]
 | 
						|
    end: np.ndarray,  # np.ndarray[np.int64]
 | 
						|
    minp: int,  # int64_t
 | 
						|
) -> np.ndarray: ...  # np.ndarray[float]
 | 
						|
def roll_var(
 | 
						|
    values: np.ndarray,  # const float64_t[:]
 | 
						|
    start: np.ndarray,  # np.ndarray[np.int64]
 | 
						|
    end: np.ndarray,  # np.ndarray[np.int64]
 | 
						|
    minp: int,  # int64_t
 | 
						|
    ddof: int = ...,
 | 
						|
) -> np.ndarray: ...  # np.ndarray[float]
 | 
						|
def roll_skew(
 | 
						|
    values: np.ndarray,  # np.ndarray[np.float64]
 | 
						|
    start: np.ndarray,  # np.ndarray[np.int64]
 | 
						|
    end: np.ndarray,  # np.ndarray[np.int64]
 | 
						|
    minp: int,  # int64_t
 | 
						|
) -> np.ndarray: ...  # np.ndarray[float]
 | 
						|
def roll_kurt(
 | 
						|
    values: np.ndarray,  # np.ndarray[np.float64]
 | 
						|
    start: np.ndarray,  # np.ndarray[np.int64]
 | 
						|
    end: np.ndarray,  # np.ndarray[np.int64]
 | 
						|
    minp: int,  # int64_t
 | 
						|
) -> np.ndarray: ...  # np.ndarray[float]
 | 
						|
def roll_median_c(
 | 
						|
    values: np.ndarray,  # np.ndarray[np.float64]
 | 
						|
    start: np.ndarray,  # np.ndarray[np.int64]
 | 
						|
    end: np.ndarray,  # np.ndarray[np.int64]
 | 
						|
    minp: int,  # int64_t
 | 
						|
) -> np.ndarray: ...  # np.ndarray[float]
 | 
						|
def roll_max(
 | 
						|
    values: np.ndarray,  # np.ndarray[np.float64]
 | 
						|
    start: np.ndarray,  # np.ndarray[np.int64]
 | 
						|
    end: np.ndarray,  # np.ndarray[np.int64]
 | 
						|
    minp: int,  # int64_t
 | 
						|
) -> np.ndarray: ...  # np.ndarray[float]
 | 
						|
def roll_min(
 | 
						|
    values: np.ndarray,  # np.ndarray[np.float64]
 | 
						|
    start: np.ndarray,  # np.ndarray[np.int64]
 | 
						|
    end: np.ndarray,  # np.ndarray[np.int64]
 | 
						|
    minp: int,  # int64_t
 | 
						|
) -> np.ndarray: ...  # np.ndarray[float]
 | 
						|
def roll_quantile(
 | 
						|
    values: np.ndarray,  # const float64_t[:]
 | 
						|
    start: np.ndarray,  # np.ndarray[np.int64]
 | 
						|
    end: np.ndarray,  # np.ndarray[np.int64]
 | 
						|
    minp: int,  # int64_t
 | 
						|
    quantile: float,  # float64_t
 | 
						|
    interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
 | 
						|
) -> np.ndarray: ...  # np.ndarray[float]
 | 
						|
def roll_rank(
 | 
						|
    values: np.ndarray,
 | 
						|
    start: np.ndarray,
 | 
						|
    end: np.ndarray,
 | 
						|
    minp: int,
 | 
						|
    percentile: bool,
 | 
						|
    method: WindowingRankType,
 | 
						|
    ascending: bool,
 | 
						|
) -> np.ndarray: ...  # np.ndarray[float]
 | 
						|
def roll_apply(
 | 
						|
    obj: object,
 | 
						|
    start: np.ndarray,  # np.ndarray[np.int64]
 | 
						|
    end: np.ndarray,  # np.ndarray[np.int64]
 | 
						|
    minp: int,  # int64_t
 | 
						|
    function: Callable[..., Any],
 | 
						|
    raw: bool,
 | 
						|
    args: tuple[Any, ...],
 | 
						|
    kwargs: dict[str, Any],
 | 
						|
) -> npt.NDArray[np.float64]: ...
 | 
						|
def roll_weighted_sum(
 | 
						|
    values: np.ndarray,  # const float64_t[:]
 | 
						|
    weights: np.ndarray,  # const float64_t[:]
 | 
						|
    minp: int,
 | 
						|
) -> np.ndarray: ...  # np.ndarray[np.float64]
 | 
						|
def roll_weighted_mean(
 | 
						|
    values: np.ndarray,  # const float64_t[:]
 | 
						|
    weights: np.ndarray,  # const float64_t[:]
 | 
						|
    minp: int,
 | 
						|
) -> np.ndarray: ...  # np.ndarray[np.float64]
 | 
						|
def roll_weighted_var(
 | 
						|
    values: np.ndarray,  # const float64_t[:]
 | 
						|
    weights: np.ndarray,  # const float64_t[:]
 | 
						|
    minp: int,  # int64_t
 | 
						|
    ddof: int,  # unsigned int
 | 
						|
) -> np.ndarray: ...  # np.ndarray[np.float64]
 | 
						|
def ewm(
 | 
						|
    vals: np.ndarray,  # const float64_t[:]
 | 
						|
    start: np.ndarray,  # const int64_t[:]
 | 
						|
    end: np.ndarray,  # const int64_t[:]
 | 
						|
    minp: int,
 | 
						|
    com: float,  # float64_t
 | 
						|
    adjust: bool,
 | 
						|
    ignore_na: bool,
 | 
						|
    deltas: np.ndarray | None = None,  # const float64_t[:]
 | 
						|
    normalize: bool = True,
 | 
						|
) -> np.ndarray: ...  # np.ndarray[np.float64]
 | 
						|
def ewmcov(
 | 
						|
    input_x: np.ndarray,  # const float64_t[:]
 | 
						|
    start: np.ndarray,  # const int64_t[:]
 | 
						|
    end: np.ndarray,  # const int64_t[:]
 | 
						|
    minp: int,
 | 
						|
    input_y: np.ndarray,  # const float64_t[:]
 | 
						|
    com: float,  # float64_t
 | 
						|
    adjust: bool,
 | 
						|
    ignore_na: bool,
 | 
						|
    bias: bool,
 | 
						|
) -> np.ndarray: ...  # np.ndarray[np.float64]
 |