You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			307 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			307 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
import operator
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
from pandas.core.dtypes.common import is_list_like
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
from pandas import (
 | 
						|
    Categorical,
 | 
						|
    Index,
 | 
						|
    Interval,
 | 
						|
    IntervalIndex,
 | 
						|
    Period,
 | 
						|
    Series,
 | 
						|
    Timedelta,
 | 
						|
    Timestamp,
 | 
						|
    date_range,
 | 
						|
    period_range,
 | 
						|
    timedelta_range,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
from pandas.core.arrays import (
 | 
						|
    BooleanArray,
 | 
						|
    IntervalArray,
 | 
						|
)
 | 
						|
from pandas.tests.arithmetic.common import get_upcast_box
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture(
 | 
						|
    params=[
 | 
						|
        (Index([0, 2, 4, 4]), Index([1, 3, 5, 8])),
 | 
						|
        (Index([0.0, 1.0, 2.0, np.nan]), Index([1.0, 2.0, 3.0, np.nan])),
 | 
						|
        (
 | 
						|
            timedelta_range("0 days", periods=3).insert(3, pd.NaT),
 | 
						|
            timedelta_range("1 day", periods=3).insert(3, pd.NaT),
 | 
						|
        ),
 | 
						|
        (
 | 
						|
            date_range("20170101", periods=3).insert(3, pd.NaT),
 | 
						|
            date_range("20170102", periods=3).insert(3, pd.NaT),
 | 
						|
        ),
 | 
						|
        (
 | 
						|
            date_range("20170101", periods=3, tz="US/Eastern").insert(3, pd.NaT),
 | 
						|
            date_range("20170102", periods=3, tz="US/Eastern").insert(3, pd.NaT),
 | 
						|
        ),
 | 
						|
    ],
 | 
						|
    ids=lambda x: str(x[0].dtype),
 | 
						|
)
 | 
						|
def left_right_dtypes(request):
 | 
						|
    """
 | 
						|
    Fixture for building an IntervalArray from various dtypes
 | 
						|
    """
 | 
						|
    return request.param
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def interval_array(left_right_dtypes):
 | 
						|
    """
 | 
						|
    Fixture to generate an IntervalArray of various dtypes containing NA if possible
 | 
						|
    """
 | 
						|
    left, right = left_right_dtypes
 | 
						|
    return IntervalArray.from_arrays(left, right)
 | 
						|
 | 
						|
 | 
						|
def create_categorical_intervals(left, right, closed="right"):
 | 
						|
    return Categorical(IntervalIndex.from_arrays(left, right, closed))
 | 
						|
 | 
						|
 | 
						|
def create_series_intervals(left, right, closed="right"):
 | 
						|
    return Series(IntervalArray.from_arrays(left, right, closed))
 | 
						|
 | 
						|
 | 
						|
def create_series_categorical_intervals(left, right, closed="right"):
 | 
						|
    return Series(Categorical(IntervalIndex.from_arrays(left, right, closed)))
 | 
						|
 | 
						|
 | 
						|
class TestComparison:
 | 
						|
    @pytest.fixture(params=[operator.eq, operator.ne])
 | 
						|
    def op(self, request):
 | 
						|
        return request.param
 | 
						|
 | 
						|
    @pytest.fixture(
 | 
						|
        params=[
 | 
						|
            IntervalArray.from_arrays,
 | 
						|
            IntervalIndex.from_arrays,
 | 
						|
            create_categorical_intervals,
 | 
						|
            create_series_intervals,
 | 
						|
            create_series_categorical_intervals,
 | 
						|
        ],
 | 
						|
        ids=[
 | 
						|
            "IntervalArray",
 | 
						|
            "IntervalIndex",
 | 
						|
            "Categorical[Interval]",
 | 
						|
            "Series[Interval]",
 | 
						|
            "Series[Categorical[Interval]]",
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def interval_constructor(self, request):
 | 
						|
        """
 | 
						|
        Fixture for all pandas native interval constructors.
 | 
						|
        To be used as the LHS of IntervalArray comparisons.
 | 
						|
        """
 | 
						|
        return request.param
 | 
						|
 | 
						|
    def elementwise_comparison(self, op, interval_array, other):
 | 
						|
        """
 | 
						|
        Helper that performs elementwise comparisons between `array` and `other`
 | 
						|
        """
 | 
						|
        other = other if is_list_like(other) else [other] * len(interval_array)
 | 
						|
        expected = np.array([op(x, y) for x, y in zip(interval_array, other)])
 | 
						|
        if isinstance(other, Series):
 | 
						|
            return Series(expected, index=other.index)
 | 
						|
        return expected
 | 
						|
 | 
						|
    def test_compare_scalar_interval(self, op, interval_array):
 | 
						|
        # matches first interval
 | 
						|
        other = interval_array[0]
 | 
						|
        result = op(interval_array, other)
 | 
						|
        expected = self.elementwise_comparison(op, interval_array, other)
 | 
						|
        tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
        # matches on a single endpoint but not both
 | 
						|
        other = Interval(interval_array.left[0], interval_array.right[1])
 | 
						|
        result = op(interval_array, other)
 | 
						|
        expected = self.elementwise_comparison(op, interval_array, other)
 | 
						|
        tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
    def test_compare_scalar_interval_mixed_closed(self, op, closed, other_closed):
 | 
						|
        interval_array = IntervalArray.from_arrays(range(2), range(1, 3), closed=closed)
 | 
						|
        other = Interval(0, 1, closed=other_closed)
 | 
						|
 | 
						|
        result = op(interval_array, other)
 | 
						|
        expected = self.elementwise_comparison(op, interval_array, other)
 | 
						|
        tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
    def test_compare_scalar_na(self, op, interval_array, nulls_fixture, box_with_array):
 | 
						|
        box = box_with_array
 | 
						|
        obj = tm.box_expected(interval_array, box)
 | 
						|
        result = op(obj, nulls_fixture)
 | 
						|
 | 
						|
        if nulls_fixture is pd.NA:
 | 
						|
            # GH#31882
 | 
						|
            exp = np.ones(interval_array.shape, dtype=bool)
 | 
						|
            expected = BooleanArray(exp, exp)
 | 
						|
        else:
 | 
						|
            expected = self.elementwise_comparison(op, interval_array, nulls_fixture)
 | 
						|
 | 
						|
        if not (box is Index and nulls_fixture is pd.NA):
 | 
						|
            # don't cast expected from BooleanArray to ndarray[object]
 | 
						|
            xbox = get_upcast_box(obj, nulls_fixture, True)
 | 
						|
            expected = tm.box_expected(expected, xbox)
 | 
						|
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        rev = op(nulls_fixture, obj)
 | 
						|
        tm.assert_equal(rev, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "other",
 | 
						|
        [
 | 
						|
            0,
 | 
						|
            1.0,
 | 
						|
            True,
 | 
						|
            "foo",
 | 
						|
            Timestamp("2017-01-01"),
 | 
						|
            Timestamp("2017-01-01", tz="US/Eastern"),
 | 
						|
            Timedelta("0 days"),
 | 
						|
            Period("2017-01-01", "D"),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_compare_scalar_other(self, op, interval_array, other):
 | 
						|
        result = op(interval_array, other)
 | 
						|
        expected = self.elementwise_comparison(op, interval_array, other)
 | 
						|
        tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
    def test_compare_list_like_interval(self, op, interval_array, interval_constructor):
 | 
						|
        # same endpoints
 | 
						|
        other = interval_constructor(interval_array.left, interval_array.right)
 | 
						|
        result = op(interval_array, other)
 | 
						|
        expected = self.elementwise_comparison(op, interval_array, other)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        # different endpoints
 | 
						|
        other = interval_constructor(
 | 
						|
            interval_array.left[::-1], interval_array.right[::-1]
 | 
						|
        )
 | 
						|
        result = op(interval_array, other)
 | 
						|
        expected = self.elementwise_comparison(op, interval_array, other)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        # all nan endpoints
 | 
						|
        other = interval_constructor([np.nan] * 4, [np.nan] * 4)
 | 
						|
        result = op(interval_array, other)
 | 
						|
        expected = self.elementwise_comparison(op, interval_array, other)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    def test_compare_list_like_interval_mixed_closed(
 | 
						|
        self, op, interval_constructor, closed, other_closed
 | 
						|
    ):
 | 
						|
        interval_array = IntervalArray.from_arrays(range(2), range(1, 3), closed=closed)
 | 
						|
        other = interval_constructor(range(2), range(1, 3), closed=other_closed)
 | 
						|
 | 
						|
        result = op(interval_array, other)
 | 
						|
        expected = self.elementwise_comparison(op, interval_array, other)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "other",
 | 
						|
        [
 | 
						|
            (
 | 
						|
                Interval(0, 1),
 | 
						|
                Interval(Timedelta("1 day"), Timedelta("2 days")),
 | 
						|
                Interval(4, 5, "both"),
 | 
						|
                Interval(10, 20, "neither"),
 | 
						|
            ),
 | 
						|
            (0, 1.5, Timestamp("20170103"), np.nan),
 | 
						|
            (
 | 
						|
                Timestamp("20170102", tz="US/Eastern"),
 | 
						|
                Timedelta("2 days"),
 | 
						|
                "baz",
 | 
						|
                pd.NaT,
 | 
						|
            ),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_compare_list_like_object(self, op, interval_array, other):
 | 
						|
        result = op(interval_array, other)
 | 
						|
        expected = self.elementwise_comparison(op, interval_array, other)
 | 
						|
        tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
    def test_compare_list_like_nan(self, op, interval_array, nulls_fixture):
 | 
						|
        other = [nulls_fixture] * 4
 | 
						|
        result = op(interval_array, other)
 | 
						|
        expected = self.elementwise_comparison(op, interval_array, other)
 | 
						|
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "other",
 | 
						|
        [
 | 
						|
            np.arange(4, dtype="int64"),
 | 
						|
            np.arange(4, dtype="float64"),
 | 
						|
            date_range("2017-01-01", periods=4),
 | 
						|
            date_range("2017-01-01", periods=4, tz="US/Eastern"),
 | 
						|
            timedelta_range("0 days", periods=4),
 | 
						|
            period_range("2017-01-01", periods=4, freq="D"),
 | 
						|
            Categorical(list("abab")),
 | 
						|
            Categorical(date_range("2017-01-01", periods=4)),
 | 
						|
            pd.array(list("abcd")),
 | 
						|
            pd.array(["foo", 3.14, None, object()], dtype=object),
 | 
						|
        ],
 | 
						|
        ids=lambda x: str(x.dtype),
 | 
						|
    )
 | 
						|
    def test_compare_list_like_other(self, op, interval_array, other):
 | 
						|
        result = op(interval_array, other)
 | 
						|
        expected = self.elementwise_comparison(op, interval_array, other)
 | 
						|
        tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("length", [1, 3, 5])
 | 
						|
    @pytest.mark.parametrize("other_constructor", [IntervalArray, list])
 | 
						|
    def test_compare_length_mismatch_errors(self, op, other_constructor, length):
 | 
						|
        interval_array = IntervalArray.from_arrays(range(4), range(1, 5))
 | 
						|
        other = other_constructor([Interval(0, 1)] * length)
 | 
						|
        with pytest.raises(ValueError, match="Lengths must match to compare"):
 | 
						|
            op(interval_array, other)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "constructor, expected_type, assert_func",
 | 
						|
        [
 | 
						|
            (IntervalIndex, np.array, tm.assert_numpy_array_equal),
 | 
						|
            (Series, Series, tm.assert_series_equal),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_index_series_compat(self, op, constructor, expected_type, assert_func):
 | 
						|
        # IntervalIndex/Series that rely on IntervalArray for comparisons
 | 
						|
        breaks = range(4)
 | 
						|
        index = constructor(IntervalIndex.from_breaks(breaks))
 | 
						|
 | 
						|
        # scalar comparisons
 | 
						|
        other = index[0]
 | 
						|
        result = op(index, other)
 | 
						|
        expected = expected_type(self.elementwise_comparison(op, index, other))
 | 
						|
        assert_func(result, expected)
 | 
						|
 | 
						|
        other = breaks[0]
 | 
						|
        result = op(index, other)
 | 
						|
        expected = expected_type(self.elementwise_comparison(op, index, other))
 | 
						|
        assert_func(result, expected)
 | 
						|
 | 
						|
        # list-like comparisons
 | 
						|
        other = IntervalArray.from_breaks(breaks)
 | 
						|
        result = op(index, other)
 | 
						|
        expected = expected_type(self.elementwise_comparison(op, index, other))
 | 
						|
        assert_func(result, expected)
 | 
						|
 | 
						|
        other = [index[0], breaks[0], "foo"]
 | 
						|
        result = op(index, other)
 | 
						|
        expected = expected_type(self.elementwise_comparison(op, index, other))
 | 
						|
        assert_func(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("scalars", ["a", False, 1, 1.0, None])
 | 
						|
    def test_comparison_operations(self, scalars):
 | 
						|
        # GH #28981
 | 
						|
        expected = Series([False, False])
 | 
						|
        s = Series([Interval(0, 1), Interval(1, 2)], dtype="interval")
 | 
						|
        result = s == scalars
 | 
						|
        tm.assert_series_equal(result, expected)
 |