You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			2180 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			2180 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			Python
		
	
# Arithmetic tests for DataFrame/Series/Index/Array classes that should
 | 
						|
# behave identically.
 | 
						|
from datetime import (
 | 
						|
    datetime,
 | 
						|
    timedelta,
 | 
						|
)
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
from pandas.errors import (
 | 
						|
    OutOfBoundsDatetime,
 | 
						|
    PerformanceWarning,
 | 
						|
)
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
from pandas import (
 | 
						|
    DataFrame,
 | 
						|
    DatetimeIndex,
 | 
						|
    Index,
 | 
						|
    NaT,
 | 
						|
    Series,
 | 
						|
    Timedelta,
 | 
						|
    TimedeltaIndex,
 | 
						|
    Timestamp,
 | 
						|
    offsets,
 | 
						|
    timedelta_range,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
from pandas.core.arrays import NumpyExtensionArray
 | 
						|
from pandas.tests.arithmetic.common import (
 | 
						|
    assert_invalid_addsub_type,
 | 
						|
    assert_invalid_comparison,
 | 
						|
    get_upcast_box,
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
def assert_dtype(obj, expected_dtype):
 | 
						|
    """
 | 
						|
    Helper to check the dtype for a Series, Index, or single-column DataFrame.
 | 
						|
    """
 | 
						|
    dtype = tm.get_dtype(obj)
 | 
						|
 | 
						|
    assert dtype == expected_dtype
 | 
						|
 | 
						|
 | 
						|
def get_expected_name(box, names):
 | 
						|
    if box is DataFrame:
 | 
						|
        # Since we are operating with a DataFrame and a non-DataFrame,
 | 
						|
        # the non-DataFrame is cast to Series and its name ignored.
 | 
						|
        exname = names[0]
 | 
						|
    elif box in [tm.to_array, pd.array]:
 | 
						|
        exname = names[1]
 | 
						|
    else:
 | 
						|
        exname = names[2]
 | 
						|
    return exname
 | 
						|
 | 
						|
 | 
						|
# ------------------------------------------------------------------
 | 
						|
# Timedelta64[ns] dtype Comparisons
 | 
						|
 | 
						|
 | 
						|
class TestTimedelta64ArrayLikeComparisons:
 | 
						|
    # Comparison tests for timedelta64[ns] vectors fully parametrized over
 | 
						|
    #  DataFrame/Series/TimedeltaIndex/TimedeltaArray.  Ideally all comparison
 | 
						|
    #  tests will eventually end up here.
 | 
						|
 | 
						|
    def test_compare_timedelta64_zerodim(self, box_with_array):
 | 
						|
        # GH#26689 should unbox when comparing with zerodim array
 | 
						|
        box = box_with_array
 | 
						|
        xbox = box_with_array if box_with_array not in [Index, pd.array] else np.ndarray
 | 
						|
 | 
						|
        tdi = timedelta_range("2h", periods=4)
 | 
						|
        other = np.array(tdi.to_numpy()[0])
 | 
						|
 | 
						|
        tdi = tm.box_expected(tdi, box)
 | 
						|
        res = tdi <= other
 | 
						|
        expected = np.array([True, False, False, False])
 | 
						|
        expected = tm.box_expected(expected, xbox)
 | 
						|
        tm.assert_equal(res, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "td_scalar",
 | 
						|
        [
 | 
						|
            timedelta(days=1),
 | 
						|
            Timedelta(days=1),
 | 
						|
            Timedelta(days=1).to_timedelta64(),
 | 
						|
            offsets.Hour(24),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_compare_timedeltalike_scalar(self, box_with_array, td_scalar):
 | 
						|
        # regression test for GH#5963
 | 
						|
        box = box_with_array
 | 
						|
        xbox = box if box not in [Index, pd.array] else np.ndarray
 | 
						|
 | 
						|
        ser = Series([timedelta(days=1), timedelta(days=2)])
 | 
						|
        ser = tm.box_expected(ser, box)
 | 
						|
        actual = ser > td_scalar
 | 
						|
        expected = Series([False, True])
 | 
						|
        expected = tm.box_expected(expected, xbox)
 | 
						|
        tm.assert_equal(actual, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "invalid",
 | 
						|
        [
 | 
						|
            345600000000000,
 | 
						|
            "a",
 | 
						|
            Timestamp("2021-01-01"),
 | 
						|
            Timestamp("2021-01-01").now("UTC"),
 | 
						|
            Timestamp("2021-01-01").now().to_datetime64(),
 | 
						|
            Timestamp("2021-01-01").now().to_pydatetime(),
 | 
						|
            Timestamp("2021-01-01").date(),
 | 
						|
            np.array(4),  # zero-dim mismatched dtype
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_td64_comparisons_invalid(self, box_with_array, invalid):
 | 
						|
        # GH#13624 for str
 | 
						|
        box = box_with_array
 | 
						|
 | 
						|
        rng = timedelta_range("1 days", periods=10)
 | 
						|
        obj = tm.box_expected(rng, box)
 | 
						|
 | 
						|
        assert_invalid_comparison(obj, invalid, box)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "other",
 | 
						|
        [
 | 
						|
            list(range(10)),
 | 
						|
            np.arange(10),
 | 
						|
            np.arange(10).astype(np.float32),
 | 
						|
            np.arange(10).astype(object),
 | 
						|
            pd.date_range("1970-01-01", periods=10, tz="UTC").array,
 | 
						|
            np.array(pd.date_range("1970-01-01", periods=10)),
 | 
						|
            list(pd.date_range("1970-01-01", periods=10)),
 | 
						|
            pd.date_range("1970-01-01", periods=10).astype(object),
 | 
						|
            pd.period_range("1971-01-01", freq="D", periods=10).array,
 | 
						|
            pd.period_range("1971-01-01", freq="D", periods=10).astype(object),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_td64arr_cmp_arraylike_invalid(self, other, box_with_array):
 | 
						|
        # We don't parametrize this over box_with_array because listlike
 | 
						|
        #  other plays poorly with assert_invalid_comparison reversed checks
 | 
						|
 | 
						|
        rng = timedelta_range("1 days", periods=10)._data
 | 
						|
        rng = tm.box_expected(rng, box_with_array)
 | 
						|
        assert_invalid_comparison(rng, other, box_with_array)
 | 
						|
 | 
						|
    def test_td64arr_cmp_mixed_invalid(self):
 | 
						|
        rng = timedelta_range("1 days", periods=5)._data
 | 
						|
        other = np.array([0, 1, 2, rng[3], Timestamp("2021-01-01")])
 | 
						|
 | 
						|
        result = rng == other
 | 
						|
        expected = np.array([False, False, False, True, False])
 | 
						|
        tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
        result = rng != other
 | 
						|
        tm.assert_numpy_array_equal(result, ~expected)
 | 
						|
 | 
						|
        msg = "Invalid comparison between|Cannot compare type|not supported between"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            rng < other
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            rng > other
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            rng <= other
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            rng >= other
 | 
						|
 | 
						|
 | 
						|
class TestTimedelta64ArrayComparisons:
 | 
						|
    # TODO: All of these need to be parametrized over box
 | 
						|
 | 
						|
    @pytest.mark.parametrize("dtype", [None, object])
 | 
						|
    def test_comp_nat(self, dtype):
 | 
						|
        left = TimedeltaIndex([Timedelta("1 days"), NaT, Timedelta("3 days")])
 | 
						|
        right = TimedeltaIndex([NaT, NaT, Timedelta("3 days")])
 | 
						|
 | 
						|
        lhs, rhs = left, right
 | 
						|
        if dtype is object:
 | 
						|
            lhs, rhs = left.astype(object), right.astype(object)
 | 
						|
 | 
						|
        result = rhs == lhs
 | 
						|
        expected = np.array([False, False, True])
 | 
						|
        tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
        result = rhs != lhs
 | 
						|
        expected = np.array([True, True, False])
 | 
						|
        tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
        expected = np.array([False, False, False])
 | 
						|
        tm.assert_numpy_array_equal(lhs == NaT, expected)
 | 
						|
        tm.assert_numpy_array_equal(NaT == rhs, expected)
 | 
						|
 | 
						|
        expected = np.array([True, True, True])
 | 
						|
        tm.assert_numpy_array_equal(lhs != NaT, expected)
 | 
						|
        tm.assert_numpy_array_equal(NaT != lhs, expected)
 | 
						|
 | 
						|
        expected = np.array([False, False, False])
 | 
						|
        tm.assert_numpy_array_equal(lhs < NaT, expected)
 | 
						|
        tm.assert_numpy_array_equal(NaT > lhs, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "idx2",
 | 
						|
        [
 | 
						|
            TimedeltaIndex(
 | 
						|
                ["2 day", "2 day", NaT, NaT, "1 day 00:00:02", "5 days 00:00:03"]
 | 
						|
            ),
 | 
						|
            np.array(
 | 
						|
                [
 | 
						|
                    np.timedelta64(2, "D"),
 | 
						|
                    np.timedelta64(2, "D"),
 | 
						|
                    np.timedelta64("nat"),
 | 
						|
                    np.timedelta64("nat"),
 | 
						|
                    np.timedelta64(1, "D") + np.timedelta64(2, "s"),
 | 
						|
                    np.timedelta64(5, "D") + np.timedelta64(3, "s"),
 | 
						|
                ]
 | 
						|
            ),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_comparisons_nat(self, idx2):
 | 
						|
        idx1 = TimedeltaIndex(
 | 
						|
            [
 | 
						|
                "1 day",
 | 
						|
                NaT,
 | 
						|
                "1 day 00:00:01",
 | 
						|
                NaT,
 | 
						|
                "1 day 00:00:01",
 | 
						|
                "5 day 00:00:03",
 | 
						|
            ]
 | 
						|
        )
 | 
						|
        # Check pd.NaT is handles as the same as np.nan
 | 
						|
        result = idx1 < idx2
 | 
						|
        expected = np.array([True, False, False, False, True, False])
 | 
						|
        tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
        result = idx2 > idx1
 | 
						|
        expected = np.array([True, False, False, False, True, False])
 | 
						|
        tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
        result = idx1 <= idx2
 | 
						|
        expected = np.array([True, False, False, False, True, True])
 | 
						|
        tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
        result = idx2 >= idx1
 | 
						|
        expected = np.array([True, False, False, False, True, True])
 | 
						|
        tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
        result = idx1 == idx2
 | 
						|
        expected = np.array([False, False, False, False, False, True])
 | 
						|
        tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
        result = idx1 != idx2
 | 
						|
        expected = np.array([True, True, True, True, True, False])
 | 
						|
        tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
    # TODO: better name
 | 
						|
    def test_comparisons_coverage(self):
 | 
						|
        rng = timedelta_range("1 days", periods=10)
 | 
						|
 | 
						|
        result = rng < rng[3]
 | 
						|
        expected = np.array([True, True, True] + [False] * 7)
 | 
						|
        tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
        result = rng == list(rng)
 | 
						|
        exp = rng == rng
 | 
						|
        tm.assert_numpy_array_equal(result, exp)
 | 
						|
 | 
						|
 | 
						|
# ------------------------------------------------------------------
 | 
						|
# Timedelta64[ns] dtype Arithmetic Operations
 | 
						|
 | 
						|
 | 
						|
class TestTimedelta64ArithmeticUnsorted:
 | 
						|
    # Tests moved from type-specific test files but not
 | 
						|
    #  yet sorted/parametrized/de-duplicated
 | 
						|
 | 
						|
    def test_ufunc_coercions(self):
 | 
						|
        # normal ops are also tested in tseries/test_timedeltas.py
 | 
						|
        idx = TimedeltaIndex(["2h", "4h", "6h", "8h", "10h"], freq="2h", name="x")
 | 
						|
 | 
						|
        for result in [idx * 2, np.multiply(idx, 2)]:
 | 
						|
            assert isinstance(result, TimedeltaIndex)
 | 
						|
            exp = TimedeltaIndex(["4h", "8h", "12h", "16h", "20h"], freq="4h", name="x")
 | 
						|
            tm.assert_index_equal(result, exp)
 | 
						|
            assert result.freq == "4h"
 | 
						|
 | 
						|
        for result in [idx / 2, np.divide(idx, 2)]:
 | 
						|
            assert isinstance(result, TimedeltaIndex)
 | 
						|
            exp = TimedeltaIndex(["1h", "2h", "3h", "4h", "5h"], freq="h", name="x")
 | 
						|
            tm.assert_index_equal(result, exp)
 | 
						|
            assert result.freq == "h"
 | 
						|
 | 
						|
        for result in [-idx, np.negative(idx)]:
 | 
						|
            assert isinstance(result, TimedeltaIndex)
 | 
						|
            exp = TimedeltaIndex(
 | 
						|
                ["-2h", "-4h", "-6h", "-8h", "-10h"], freq="-2h", name="x"
 | 
						|
            )
 | 
						|
            tm.assert_index_equal(result, exp)
 | 
						|
            assert result.freq == "-2h"
 | 
						|
 | 
						|
        idx = TimedeltaIndex(["-2h", "-1h", "0h", "1h", "2h"], freq="h", name="x")
 | 
						|
        for result in [abs(idx), np.absolute(idx)]:
 | 
						|
            assert isinstance(result, TimedeltaIndex)
 | 
						|
            exp = TimedeltaIndex(["2h", "1h", "0h", "1h", "2h"], freq=None, name="x")
 | 
						|
            tm.assert_index_equal(result, exp)
 | 
						|
            assert result.freq is None
 | 
						|
 | 
						|
    def test_subtraction_ops(self):
 | 
						|
        # with datetimes/timedelta and tdi/dti
 | 
						|
        tdi = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo")
 | 
						|
        dti = pd.date_range("20130101", periods=3, name="bar")
 | 
						|
        td = Timedelta("1 days")
 | 
						|
        dt = Timestamp("20130101")
 | 
						|
 | 
						|
        msg = "cannot subtract a datelike from a TimedeltaArray"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            tdi - dt
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            tdi - dti
 | 
						|
 | 
						|
        msg = r"unsupported operand type\(s\) for -"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            td - dt
 | 
						|
 | 
						|
        msg = "(bad|unsupported) operand type for unary"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            td - dti
 | 
						|
 | 
						|
        result = dt - dti
 | 
						|
        expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"], name="bar")
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
        result = dti - dt
 | 
						|
        expected = TimedeltaIndex(["0 days", "1 days", "2 days"], name="bar")
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
        result = tdi - td
 | 
						|
        expected = TimedeltaIndex(["0 days", NaT, "1 days"], name="foo")
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
        result = td - tdi
 | 
						|
        expected = TimedeltaIndex(["0 days", NaT, "-1 days"], name="foo")
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
        result = dti - td
 | 
						|
        expected = DatetimeIndex(
 | 
						|
            ["20121231", "20130101", "20130102"], dtype="M8[ns]", freq="D", name="bar"
 | 
						|
        )
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
        result = dt - tdi
 | 
						|
        expected = DatetimeIndex(
 | 
						|
            ["20121231", NaT, "20121230"], dtype="M8[ns]", name="foo"
 | 
						|
        )
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
    def test_subtraction_ops_with_tz(self, box_with_array):
 | 
						|
        # check that dt/dti subtraction ops with tz are validated
 | 
						|
        dti = pd.date_range("20130101", periods=3)
 | 
						|
        dti = tm.box_expected(dti, box_with_array)
 | 
						|
        ts = Timestamp("20130101")
 | 
						|
        dt = ts.to_pydatetime()
 | 
						|
        dti_tz = pd.date_range("20130101", periods=3).tz_localize("US/Eastern")
 | 
						|
        dti_tz = tm.box_expected(dti_tz, box_with_array)
 | 
						|
        ts_tz = Timestamp("20130101").tz_localize("US/Eastern")
 | 
						|
        ts_tz2 = Timestamp("20130101").tz_localize("CET")
 | 
						|
        dt_tz = ts_tz.to_pydatetime()
 | 
						|
        td = Timedelta("1 days")
 | 
						|
 | 
						|
        def _check(result, expected):
 | 
						|
            assert result == expected
 | 
						|
            assert isinstance(result, Timedelta)
 | 
						|
 | 
						|
        # scalars
 | 
						|
        result = ts - ts
 | 
						|
        expected = Timedelta("0 days")
 | 
						|
        _check(result, expected)
 | 
						|
 | 
						|
        result = dt_tz - ts_tz
 | 
						|
        expected = Timedelta("0 days")
 | 
						|
        _check(result, expected)
 | 
						|
 | 
						|
        result = ts_tz - dt_tz
 | 
						|
        expected = Timedelta("0 days")
 | 
						|
        _check(result, expected)
 | 
						|
 | 
						|
        # tz mismatches
 | 
						|
        msg = "Cannot subtract tz-naive and tz-aware datetime-like objects."
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            dt_tz - ts
 | 
						|
        msg = "can't subtract offset-naive and offset-aware datetimes"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            dt_tz - dt
 | 
						|
        msg = "can't subtract offset-naive and offset-aware datetimes"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            dt - dt_tz
 | 
						|
        msg = "Cannot subtract tz-naive and tz-aware datetime-like objects."
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            ts - dt_tz
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            ts_tz2 - ts
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            ts_tz2 - dt
 | 
						|
 | 
						|
        msg = "Cannot subtract tz-naive and tz-aware"
 | 
						|
        # with dti
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            dti - ts_tz
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            dti_tz - ts
 | 
						|
 | 
						|
        result = dti_tz - dt_tz
 | 
						|
        expected = TimedeltaIndex(["0 days", "1 days", "2 days"])
 | 
						|
        expected = tm.box_expected(expected, box_with_array)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = dt_tz - dti_tz
 | 
						|
        expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"])
 | 
						|
        expected = tm.box_expected(expected, box_with_array)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = dti_tz - ts_tz
 | 
						|
        expected = TimedeltaIndex(["0 days", "1 days", "2 days"])
 | 
						|
        expected = tm.box_expected(expected, box_with_array)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = ts_tz - dti_tz
 | 
						|
        expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"])
 | 
						|
        expected = tm.box_expected(expected, box_with_array)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = td - td
 | 
						|
        expected = Timedelta("0 days")
 | 
						|
        _check(result, expected)
 | 
						|
 | 
						|
        result = dti_tz - td
 | 
						|
        expected = DatetimeIndex(
 | 
						|
            ["20121231", "20130101", "20130102"], tz="US/Eastern"
 | 
						|
        ).as_unit("ns")
 | 
						|
        expected = tm.box_expected(expected, box_with_array)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    def test_dti_tdi_numeric_ops(self):
 | 
						|
        # These are normally union/diff set-like ops
 | 
						|
        tdi = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo")
 | 
						|
        dti = pd.date_range("20130101", periods=3, name="bar")
 | 
						|
 | 
						|
        result = tdi - tdi
 | 
						|
        expected = TimedeltaIndex(["0 days", NaT, "0 days"], name="foo")
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
        result = tdi + tdi
 | 
						|
        expected = TimedeltaIndex(["2 days", NaT, "4 days"], name="foo")
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
        result = dti - tdi  # name will be reset
 | 
						|
        expected = DatetimeIndex(["20121231", NaT, "20130101"], dtype="M8[ns]")
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
    def test_addition_ops(self):
 | 
						|
        # with datetimes/timedelta and tdi/dti
 | 
						|
        tdi = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo")
 | 
						|
        dti = pd.date_range("20130101", periods=3, name="bar")
 | 
						|
        td = Timedelta("1 days")
 | 
						|
        dt = Timestamp("20130101")
 | 
						|
 | 
						|
        result = tdi + dt
 | 
						|
        expected = DatetimeIndex(
 | 
						|
            ["20130102", NaT, "20130103"], dtype="M8[ns]", name="foo"
 | 
						|
        )
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
        result = dt + tdi
 | 
						|
        expected = DatetimeIndex(
 | 
						|
            ["20130102", NaT, "20130103"], dtype="M8[ns]", name="foo"
 | 
						|
        )
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
        result = td + tdi
 | 
						|
        expected = TimedeltaIndex(["2 days", NaT, "3 days"], name="foo")
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
        result = tdi + td
 | 
						|
        expected = TimedeltaIndex(["2 days", NaT, "3 days"], name="foo")
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
        # unequal length
 | 
						|
        msg = "cannot add indices of unequal length"
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            tdi + dti[0:1]
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            tdi[0:1] + dti
 | 
						|
 | 
						|
        # random indexes
 | 
						|
        msg = "Addition/subtraction of integers and integer-arrays"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            tdi + Index([1, 2, 3], dtype=np.int64)
 | 
						|
 | 
						|
        # this is a union!
 | 
						|
        # FIXME: don't leave commented-out
 | 
						|
        # pytest.raises(TypeError, lambda : Index([1,2,3]) + tdi)
 | 
						|
 | 
						|
        result = tdi + dti  # name will be reset
 | 
						|
        expected = DatetimeIndex(["20130102", NaT, "20130105"], dtype="M8[ns]")
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
        result = dti + tdi  # name will be reset
 | 
						|
        expected = DatetimeIndex(["20130102", NaT, "20130105"], dtype="M8[ns]")
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
        result = dt + td
 | 
						|
        expected = Timestamp("20130102")
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
        result = td + dt
 | 
						|
        expected = Timestamp("20130102")
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
    # TODO: Needs more informative name, probably split up into
 | 
						|
    # more targeted tests
 | 
						|
    @pytest.mark.parametrize("freq", ["D", "B"])
 | 
						|
    def test_timedelta(self, freq):
 | 
						|
        index = pd.date_range("1/1/2000", periods=50, freq=freq)
 | 
						|
 | 
						|
        shifted = index + timedelta(1)
 | 
						|
        back = shifted + timedelta(-1)
 | 
						|
        back = back._with_freq("infer")
 | 
						|
        tm.assert_index_equal(index, back)
 | 
						|
 | 
						|
        if freq == "D":
 | 
						|
            expected = pd.tseries.offsets.Day(1)
 | 
						|
            assert index.freq == expected
 | 
						|
            assert shifted.freq == expected
 | 
						|
            assert back.freq == expected
 | 
						|
        else:  # freq == 'B'
 | 
						|
            assert index.freq == pd.tseries.offsets.BusinessDay(1)
 | 
						|
            assert shifted.freq is None
 | 
						|
            assert back.freq == pd.tseries.offsets.BusinessDay(1)
 | 
						|
 | 
						|
        result = index - timedelta(1)
 | 
						|
        expected = index + timedelta(-1)
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
    def test_timedelta_tick_arithmetic(self):
 | 
						|
        # GH#4134, buggy with timedeltas
 | 
						|
        rng = pd.date_range("2013", "2014")
 | 
						|
        s = Series(rng)
 | 
						|
        result1 = rng - offsets.Hour(1)
 | 
						|
        result2 = DatetimeIndex(s - np.timedelta64(100000000))
 | 
						|
        result3 = rng - np.timedelta64(100000000)
 | 
						|
        result4 = DatetimeIndex(s - offsets.Hour(1))
 | 
						|
 | 
						|
        assert result1.freq == rng.freq
 | 
						|
        result1 = result1._with_freq(None)
 | 
						|
        tm.assert_index_equal(result1, result4)
 | 
						|
 | 
						|
        assert result3.freq == rng.freq
 | 
						|
        result3 = result3._with_freq(None)
 | 
						|
        tm.assert_index_equal(result2, result3)
 | 
						|
 | 
						|
    def test_tda_add_sub_index(self):
 | 
						|
        # Check that TimedeltaArray defers to Index on arithmetic ops
 | 
						|
        tdi = TimedeltaIndex(["1 days", NaT, "2 days"])
 | 
						|
        tda = tdi.array
 | 
						|
 | 
						|
        dti = pd.date_range("1999-12-31", periods=3, freq="D")
 | 
						|
 | 
						|
        result = tda + dti
 | 
						|
        expected = tdi + dti
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
        result = tda + tdi
 | 
						|
        expected = tdi + tdi
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
        result = tda - tdi
 | 
						|
        expected = tdi - tdi
 | 
						|
        tm.assert_index_equal(result, expected)
 | 
						|
 | 
						|
    def test_tda_add_dt64_object_array(self, box_with_array, tz_naive_fixture):
 | 
						|
        # Result should be cast back to DatetimeArray
 | 
						|
        box = box_with_array
 | 
						|
 | 
						|
        dti = pd.date_range("2016-01-01", periods=3, tz=tz_naive_fixture)
 | 
						|
        dti = dti._with_freq(None)
 | 
						|
        tdi = dti - dti
 | 
						|
 | 
						|
        obj = tm.box_expected(tdi, box)
 | 
						|
        other = tm.box_expected(dti, box)
 | 
						|
 | 
						|
        with tm.assert_produces_warning(PerformanceWarning):
 | 
						|
            result = obj + other.astype(object)
 | 
						|
        tm.assert_equal(result, other.astype(object))
 | 
						|
 | 
						|
    # -------------------------------------------------------------
 | 
						|
    # Binary operations TimedeltaIndex and timedelta-like
 | 
						|
 | 
						|
    def test_tdi_iadd_timedeltalike(self, two_hours, box_with_array):
 | 
						|
        # only test adding/sub offsets as + is now numeric
 | 
						|
        rng = timedelta_range("1 days", "10 days")
 | 
						|
        expected = timedelta_range("1 days 02:00:00", "10 days 02:00:00", freq="D")
 | 
						|
 | 
						|
        rng = tm.box_expected(rng, box_with_array)
 | 
						|
        expected = tm.box_expected(expected, box_with_array)
 | 
						|
 | 
						|
        orig_rng = rng
 | 
						|
        rng += two_hours
 | 
						|
        tm.assert_equal(rng, expected)
 | 
						|
        if box_with_array is not Index:
 | 
						|
            # Check that operation is actually inplace
 | 
						|
            tm.assert_equal(orig_rng, expected)
 | 
						|
 | 
						|
    def test_tdi_isub_timedeltalike(self, two_hours, box_with_array):
 | 
						|
        # only test adding/sub offsets as - is now numeric
 | 
						|
        rng = timedelta_range("1 days", "10 days")
 | 
						|
        expected = timedelta_range("0 days 22:00:00", "9 days 22:00:00")
 | 
						|
 | 
						|
        rng = tm.box_expected(rng, box_with_array)
 | 
						|
        expected = tm.box_expected(expected, box_with_array)
 | 
						|
 | 
						|
        orig_rng = rng
 | 
						|
        rng -= two_hours
 | 
						|
        tm.assert_equal(rng, expected)
 | 
						|
        if box_with_array is not Index:
 | 
						|
            # Check that operation is actually inplace
 | 
						|
            tm.assert_equal(orig_rng, expected)
 | 
						|
 | 
						|
    # -------------------------------------------------------------
 | 
						|
 | 
						|
    def test_tdi_ops_attributes(self):
 | 
						|
        rng = timedelta_range("2 days", periods=5, freq="2D", name="x")
 | 
						|
 | 
						|
        result = rng + 1 * rng.freq
 | 
						|
        exp = timedelta_range("4 days", periods=5, freq="2D", name="x")
 | 
						|
        tm.assert_index_equal(result, exp)
 | 
						|
        assert result.freq == "2D"
 | 
						|
 | 
						|
        result = rng - 2 * rng.freq
 | 
						|
        exp = timedelta_range("-2 days", periods=5, freq="2D", name="x")
 | 
						|
        tm.assert_index_equal(result, exp)
 | 
						|
        assert result.freq == "2D"
 | 
						|
 | 
						|
        result = rng * 2
 | 
						|
        exp = timedelta_range("4 days", periods=5, freq="4D", name="x")
 | 
						|
        tm.assert_index_equal(result, exp)
 | 
						|
        assert result.freq == "4D"
 | 
						|
 | 
						|
        result = rng / 2
 | 
						|
        exp = timedelta_range("1 days", periods=5, freq="D", name="x")
 | 
						|
        tm.assert_index_equal(result, exp)
 | 
						|
        assert result.freq == "D"
 | 
						|
 | 
						|
        result = -rng
 | 
						|
        exp = timedelta_range("-2 days", periods=5, freq="-2D", name="x")
 | 
						|
        tm.assert_index_equal(result, exp)
 | 
						|
        assert result.freq == "-2D"
 | 
						|
 | 
						|
        rng = timedelta_range("-2 days", periods=5, freq="D", name="x")
 | 
						|
 | 
						|
        result = abs(rng)
 | 
						|
        exp = TimedeltaIndex(
 | 
						|
            ["2 days", "1 days", "0 days", "1 days", "2 days"], name="x"
 | 
						|
        )
 | 
						|
        tm.assert_index_equal(result, exp)
 | 
						|
        assert result.freq is None
 | 
						|
 | 
						|
 | 
						|
class TestAddSubNaTMasking:
 | 
						|
    # TODO: parametrize over boxes
 | 
						|
 | 
						|
    @pytest.mark.parametrize("str_ts", ["1950-01-01", "1980-01-01"])
 | 
						|
    def test_tdarr_add_timestamp_nat_masking(self, box_with_array, str_ts):
 | 
						|
        # GH#17991 checking for overflow-masking with NaT
 | 
						|
        tdinat = pd.to_timedelta(["24658 days 11:15:00", "NaT"])
 | 
						|
        tdobj = tm.box_expected(tdinat, box_with_array)
 | 
						|
 | 
						|
        ts = Timestamp(str_ts)
 | 
						|
        ts_variants = [
 | 
						|
            ts,
 | 
						|
            ts.to_pydatetime(),
 | 
						|
            ts.to_datetime64().astype("datetime64[ns]"),
 | 
						|
            ts.to_datetime64().astype("datetime64[D]"),
 | 
						|
        ]
 | 
						|
 | 
						|
        for variant in ts_variants:
 | 
						|
            res = tdobj + variant
 | 
						|
            if box_with_array is DataFrame:
 | 
						|
                assert res.iloc[1, 1] is NaT
 | 
						|
            else:
 | 
						|
                assert res[1] is NaT
 | 
						|
 | 
						|
    def test_tdi_add_overflow(self):
 | 
						|
        # See GH#14068
 | 
						|
        # preliminary test scalar analogue of vectorized tests below
 | 
						|
        # TODO: Make raised error message more informative and test
 | 
						|
        with pytest.raises(OutOfBoundsDatetime, match="10155196800000000000"):
 | 
						|
            pd.to_timedelta(106580, "D") + Timestamp("2000")
 | 
						|
        with pytest.raises(OutOfBoundsDatetime, match="10155196800000000000"):
 | 
						|
            Timestamp("2000") + pd.to_timedelta(106580, "D")
 | 
						|
 | 
						|
        _NaT = NaT._value + 1
 | 
						|
        msg = "Overflow in int64 addition"
 | 
						|
        with pytest.raises(OverflowError, match=msg):
 | 
						|
            pd.to_timedelta([106580], "D") + Timestamp("2000")
 | 
						|
        with pytest.raises(OverflowError, match=msg):
 | 
						|
            Timestamp("2000") + pd.to_timedelta([106580], "D")
 | 
						|
        with pytest.raises(OverflowError, match=msg):
 | 
						|
            pd.to_timedelta([_NaT]) - Timedelta("1 days")
 | 
						|
        with pytest.raises(OverflowError, match=msg):
 | 
						|
            pd.to_timedelta(["5 days", _NaT]) - Timedelta("1 days")
 | 
						|
        with pytest.raises(OverflowError, match=msg):
 | 
						|
            (
 | 
						|
                pd.to_timedelta([_NaT, "5 days", "1 hours"])
 | 
						|
                - pd.to_timedelta(["7 seconds", _NaT, "4 hours"])
 | 
						|
            )
 | 
						|
 | 
						|
        # These should not overflow!
 | 
						|
        exp = TimedeltaIndex([NaT])
 | 
						|
        result = pd.to_timedelta([NaT]) - Timedelta("1 days")
 | 
						|
        tm.assert_index_equal(result, exp)
 | 
						|
 | 
						|
        exp = TimedeltaIndex(["4 days", NaT])
 | 
						|
        result = pd.to_timedelta(["5 days", NaT]) - Timedelta("1 days")
 | 
						|
        tm.assert_index_equal(result, exp)
 | 
						|
 | 
						|
        exp = TimedeltaIndex([NaT, NaT, "5 hours"])
 | 
						|
        result = pd.to_timedelta([NaT, "5 days", "1 hours"]) + pd.to_timedelta(
 | 
						|
            ["7 seconds", NaT, "4 hours"]
 | 
						|
        )
 | 
						|
        tm.assert_index_equal(result, exp)
 | 
						|
 | 
						|
 | 
						|
class TestTimedeltaArraylikeAddSubOps:
 | 
						|
    # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__
 | 
						|
 | 
						|
    def test_sub_nat_retain_unit(self):
 | 
						|
        ser = pd.to_timedelta(Series(["00:00:01"])).astype("m8[s]")
 | 
						|
 | 
						|
        result = ser - NaT
 | 
						|
        expected = Series([NaT], dtype="m8[s]")
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
    # TODO: moved from tests.indexes.timedeltas.test_arithmetic; needs
 | 
						|
    #  parametrization+de-duplication
 | 
						|
    def test_timedelta_ops_with_missing_values(self):
 | 
						|
        # setup
 | 
						|
        s1 = pd.to_timedelta(Series(["00:00:01"]))
 | 
						|
        s2 = pd.to_timedelta(Series(["00:00:02"]))
 | 
						|
 | 
						|
        sn = pd.to_timedelta(Series([NaT], dtype="m8[ns]"))
 | 
						|
 | 
						|
        df1 = DataFrame(["00:00:01"]).apply(pd.to_timedelta)
 | 
						|
        df2 = DataFrame(["00:00:02"]).apply(pd.to_timedelta)
 | 
						|
 | 
						|
        dfn = DataFrame([NaT._value]).apply(pd.to_timedelta)
 | 
						|
 | 
						|
        scalar1 = pd.to_timedelta("00:00:01")
 | 
						|
        scalar2 = pd.to_timedelta("00:00:02")
 | 
						|
        timedelta_NaT = pd.to_timedelta("NaT")
 | 
						|
 | 
						|
        actual = scalar1 + scalar1
 | 
						|
        assert actual == scalar2
 | 
						|
        actual = scalar2 - scalar1
 | 
						|
        assert actual == scalar1
 | 
						|
 | 
						|
        actual = s1 + s1
 | 
						|
        tm.assert_series_equal(actual, s2)
 | 
						|
        actual = s2 - s1
 | 
						|
        tm.assert_series_equal(actual, s1)
 | 
						|
 | 
						|
        actual = s1 + scalar1
 | 
						|
        tm.assert_series_equal(actual, s2)
 | 
						|
        actual = scalar1 + s1
 | 
						|
        tm.assert_series_equal(actual, s2)
 | 
						|
        actual = s2 - scalar1
 | 
						|
        tm.assert_series_equal(actual, s1)
 | 
						|
        actual = -scalar1 + s2
 | 
						|
        tm.assert_series_equal(actual, s1)
 | 
						|
 | 
						|
        actual = s1 + timedelta_NaT
 | 
						|
        tm.assert_series_equal(actual, sn)
 | 
						|
        actual = timedelta_NaT + s1
 | 
						|
        tm.assert_series_equal(actual, sn)
 | 
						|
        actual = s1 - timedelta_NaT
 | 
						|
        tm.assert_series_equal(actual, sn)
 | 
						|
        actual = -timedelta_NaT + s1
 | 
						|
        tm.assert_series_equal(actual, sn)
 | 
						|
 | 
						|
        msg = "unsupported operand type"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            s1 + np.nan
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            np.nan + s1
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            s1 - np.nan
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            -np.nan + s1
 | 
						|
 | 
						|
        actual = s1 + NaT
 | 
						|
        tm.assert_series_equal(actual, sn)
 | 
						|
        actual = s2 - NaT
 | 
						|
        tm.assert_series_equal(actual, sn)
 | 
						|
 | 
						|
        actual = s1 + df1
 | 
						|
        tm.assert_frame_equal(actual, df2)
 | 
						|
        actual = s2 - df1
 | 
						|
        tm.assert_frame_equal(actual, df1)
 | 
						|
        actual = df1 + s1
 | 
						|
        tm.assert_frame_equal(actual, df2)
 | 
						|
        actual = df2 - s1
 | 
						|
        tm.assert_frame_equal(actual, df1)
 | 
						|
 | 
						|
        actual = df1 + df1
 | 
						|
        tm.assert_frame_equal(actual, df2)
 | 
						|
        actual = df2 - df1
 | 
						|
        tm.assert_frame_equal(actual, df1)
 | 
						|
 | 
						|
        actual = df1 + scalar1
 | 
						|
        tm.assert_frame_equal(actual, df2)
 | 
						|
        actual = df2 - scalar1
 | 
						|
        tm.assert_frame_equal(actual, df1)
 | 
						|
 | 
						|
        actual = df1 + timedelta_NaT
 | 
						|
        tm.assert_frame_equal(actual, dfn)
 | 
						|
        actual = df1 - timedelta_NaT
 | 
						|
        tm.assert_frame_equal(actual, dfn)
 | 
						|
 | 
						|
        msg = "cannot subtract a datelike from|unsupported operand type"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            df1 + np.nan
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            df1 - np.nan
 | 
						|
 | 
						|
        actual = df1 + NaT  # NaT is datetime, not timedelta
 | 
						|
        tm.assert_frame_equal(actual, dfn)
 | 
						|
        actual = df1 - NaT
 | 
						|
        tm.assert_frame_equal(actual, dfn)
 | 
						|
 | 
						|
    # TODO: moved from tests.series.test_operators, needs splitting, cleanup,
 | 
						|
    # de-duplication, box-parametrization...
 | 
						|
    def test_operators_timedelta64(self):
 | 
						|
        # series ops
 | 
						|
        v1 = pd.date_range("2012-1-1", periods=3, freq="D")
 | 
						|
        v2 = pd.date_range("2012-1-2", periods=3, freq="D")
 | 
						|
        rs = Series(v2) - Series(v1)
 | 
						|
        xp = Series(1e9 * 3600 * 24, rs.index).astype("int64").astype("timedelta64[ns]")
 | 
						|
        tm.assert_series_equal(rs, xp)
 | 
						|
        assert rs.dtype == "timedelta64[ns]"
 | 
						|
 | 
						|
        df = DataFrame({"A": v1})
 | 
						|
        td = Series([timedelta(days=i) for i in range(3)])
 | 
						|
        assert td.dtype == "timedelta64[ns]"
 | 
						|
 | 
						|
        # series on the rhs
 | 
						|
        result = df["A"] - df["A"].shift()
 | 
						|
        assert result.dtype == "timedelta64[ns]"
 | 
						|
 | 
						|
        result = df["A"] + td
 | 
						|
        assert result.dtype == "M8[ns]"
 | 
						|
 | 
						|
        # scalar Timestamp on rhs
 | 
						|
        maxa = df["A"].max()
 | 
						|
        assert isinstance(maxa, Timestamp)
 | 
						|
 | 
						|
        resultb = df["A"] - df["A"].max()
 | 
						|
        assert resultb.dtype == "timedelta64[ns]"
 | 
						|
 | 
						|
        # timestamp on lhs
 | 
						|
        result = resultb + df["A"]
 | 
						|
        values = [Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103")]
 | 
						|
        expected = Series(values, dtype="M8[ns]", name="A")
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        # datetimes on rhs
 | 
						|
        result = df["A"] - datetime(2001, 1, 1)
 | 
						|
        expected = Series([timedelta(days=4017 + i) for i in range(3)], name="A")
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
        assert result.dtype == "m8[ns]"
 | 
						|
 | 
						|
        d = datetime(2001, 1, 1, 3, 4)
 | 
						|
        resulta = df["A"] - d
 | 
						|
        assert resulta.dtype == "m8[ns]"
 | 
						|
 | 
						|
        # roundtrip
 | 
						|
        resultb = resulta + d
 | 
						|
        tm.assert_series_equal(df["A"], resultb)
 | 
						|
 | 
						|
        # timedeltas on rhs
 | 
						|
        td = timedelta(days=1)
 | 
						|
        resulta = df["A"] + td
 | 
						|
        resultb = resulta - td
 | 
						|
        tm.assert_series_equal(resultb, df["A"])
 | 
						|
        assert resultb.dtype == "M8[ns]"
 | 
						|
 | 
						|
        # roundtrip
 | 
						|
        td = timedelta(minutes=5, seconds=3)
 | 
						|
        resulta = df["A"] + td
 | 
						|
        resultb = resulta - td
 | 
						|
        tm.assert_series_equal(df["A"], resultb)
 | 
						|
        assert resultb.dtype == "M8[ns]"
 | 
						|
 | 
						|
        # inplace
 | 
						|
        value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1))
 | 
						|
        rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1))
 | 
						|
        assert rs[2] == value
 | 
						|
 | 
						|
    def test_timedelta64_ops_nat(self):
 | 
						|
        # GH 11349
 | 
						|
        timedelta_series = Series([NaT, Timedelta("1s")])
 | 
						|
        nat_series_dtype_timedelta = Series([NaT, NaT], dtype="timedelta64[ns]")
 | 
						|
        single_nat_dtype_timedelta = Series([NaT], dtype="timedelta64[ns]")
 | 
						|
 | 
						|
        # subtraction
 | 
						|
        tm.assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta)
 | 
						|
        tm.assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta)
 | 
						|
 | 
						|
        tm.assert_series_equal(
 | 
						|
            timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta
 | 
						|
        )
 | 
						|
        tm.assert_series_equal(
 | 
						|
            -single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta
 | 
						|
        )
 | 
						|
 | 
						|
        # addition
 | 
						|
        tm.assert_series_equal(
 | 
						|
            nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta
 | 
						|
        )
 | 
						|
        tm.assert_series_equal(
 | 
						|
            NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta
 | 
						|
        )
 | 
						|
 | 
						|
        tm.assert_series_equal(
 | 
						|
            nat_series_dtype_timedelta + single_nat_dtype_timedelta,
 | 
						|
            nat_series_dtype_timedelta,
 | 
						|
        )
 | 
						|
        tm.assert_series_equal(
 | 
						|
            single_nat_dtype_timedelta + nat_series_dtype_timedelta,
 | 
						|
            nat_series_dtype_timedelta,
 | 
						|
        )
 | 
						|
 | 
						|
        tm.assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta)
 | 
						|
        tm.assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta)
 | 
						|
 | 
						|
        tm.assert_series_equal(
 | 
						|
            timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta
 | 
						|
        )
 | 
						|
        tm.assert_series_equal(
 | 
						|
            single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta
 | 
						|
        )
 | 
						|
 | 
						|
        tm.assert_series_equal(
 | 
						|
            nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta
 | 
						|
        )
 | 
						|
        tm.assert_series_equal(
 | 
						|
            NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta
 | 
						|
        )
 | 
						|
 | 
						|
        tm.assert_series_equal(
 | 
						|
            nat_series_dtype_timedelta + single_nat_dtype_timedelta,
 | 
						|
            nat_series_dtype_timedelta,
 | 
						|
        )
 | 
						|
        tm.assert_series_equal(
 | 
						|
            single_nat_dtype_timedelta + nat_series_dtype_timedelta,
 | 
						|
            nat_series_dtype_timedelta,
 | 
						|
        )
 | 
						|
 | 
						|
        # multiplication
 | 
						|
        tm.assert_series_equal(
 | 
						|
            nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta
 | 
						|
        )
 | 
						|
        tm.assert_series_equal(
 | 
						|
            1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta
 | 
						|
        )
 | 
						|
 | 
						|
        tm.assert_series_equal(timedelta_series * 1, timedelta_series)
 | 
						|
        tm.assert_series_equal(1 * timedelta_series, timedelta_series)
 | 
						|
 | 
						|
        tm.assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta("1.5s")]))
 | 
						|
        tm.assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta("1.5s")]))
 | 
						|
 | 
						|
        tm.assert_series_equal(timedelta_series * np.nan, nat_series_dtype_timedelta)
 | 
						|
        tm.assert_series_equal(np.nan * timedelta_series, nat_series_dtype_timedelta)
 | 
						|
 | 
						|
        # division
 | 
						|
        tm.assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta("0.5s")]))
 | 
						|
        tm.assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta("0.5s")]))
 | 
						|
        tm.assert_series_equal(timedelta_series / np.nan, nat_series_dtype_timedelta)
 | 
						|
 | 
						|
    # -------------------------------------------------------------
 | 
						|
    # Binary operations td64 arraylike and datetime-like
 | 
						|
 | 
						|
    @pytest.mark.parametrize("cls", [Timestamp, datetime, np.datetime64])
 | 
						|
    def test_td64arr_add_sub_datetimelike_scalar(
 | 
						|
        self, cls, box_with_array, tz_naive_fixture
 | 
						|
    ):
 | 
						|
        # GH#11925, GH#29558, GH#23215
 | 
						|
        tz = tz_naive_fixture
 | 
						|
 | 
						|
        dt_scalar = Timestamp("2012-01-01", tz=tz)
 | 
						|
        if cls is datetime:
 | 
						|
            ts = dt_scalar.to_pydatetime()
 | 
						|
        elif cls is np.datetime64:
 | 
						|
            if tz_naive_fixture is not None:
 | 
						|
                pytest.skip(f"{cls} doesn support {tz_naive_fixture}")
 | 
						|
            ts = dt_scalar.to_datetime64()
 | 
						|
        else:
 | 
						|
            ts = dt_scalar
 | 
						|
 | 
						|
        tdi = timedelta_range("1 day", periods=3)
 | 
						|
        expected = pd.date_range("2012-01-02", periods=3, tz=tz)
 | 
						|
 | 
						|
        tdarr = tm.box_expected(tdi, box_with_array)
 | 
						|
        expected = tm.box_expected(expected, box_with_array)
 | 
						|
 | 
						|
        tm.assert_equal(ts + tdarr, expected)
 | 
						|
        tm.assert_equal(tdarr + ts, expected)
 | 
						|
 | 
						|
        expected2 = pd.date_range("2011-12-31", periods=3, freq="-1D", tz=tz)
 | 
						|
        expected2 = tm.box_expected(expected2, box_with_array)
 | 
						|
 | 
						|
        tm.assert_equal(ts - tdarr, expected2)
 | 
						|
        tm.assert_equal(ts + (-tdarr), expected2)
 | 
						|
 | 
						|
        msg = "cannot subtract a datelike"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            tdarr - ts
 | 
						|
 | 
						|
    def test_td64arr_add_datetime64_nat(self, box_with_array):
 | 
						|
        # GH#23215
 | 
						|
        other = np.datetime64("NaT")
 | 
						|
 | 
						|
        tdi = timedelta_range("1 day", periods=3)
 | 
						|
        expected = DatetimeIndex(["NaT", "NaT", "NaT"], dtype="M8[ns]")
 | 
						|
 | 
						|
        tdser = tm.box_expected(tdi, box_with_array)
 | 
						|
        expected = tm.box_expected(expected, box_with_array)
 | 
						|
 | 
						|
        tm.assert_equal(tdser + other, expected)
 | 
						|
        tm.assert_equal(other + tdser, expected)
 | 
						|
 | 
						|
    def test_td64arr_sub_dt64_array(self, box_with_array):
 | 
						|
        dti = pd.date_range("2016-01-01", periods=3)
 | 
						|
        tdi = TimedeltaIndex(["-1 Day"] * 3)
 | 
						|
        dtarr = dti.values
 | 
						|
        expected = DatetimeIndex(dtarr) - tdi
 | 
						|
 | 
						|
        tdi = tm.box_expected(tdi, box_with_array)
 | 
						|
        expected = tm.box_expected(expected, box_with_array)
 | 
						|
 | 
						|
        msg = "cannot subtract a datelike from"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            tdi - dtarr
 | 
						|
 | 
						|
        # TimedeltaIndex.__rsub__
 | 
						|
        result = dtarr - tdi
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    def test_td64arr_add_dt64_array(self, box_with_array):
 | 
						|
        dti = pd.date_range("2016-01-01", periods=3)
 | 
						|
        tdi = TimedeltaIndex(["-1 Day"] * 3)
 | 
						|
        dtarr = dti.values
 | 
						|
        expected = DatetimeIndex(dtarr) + tdi
 | 
						|
 | 
						|
        tdi = tm.box_expected(tdi, box_with_array)
 | 
						|
        expected = tm.box_expected(expected, box_with_array)
 | 
						|
 | 
						|
        result = tdi + dtarr
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
        result = dtarr + tdi
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    # ------------------------------------------------------------------
 | 
						|
    # Invalid __add__/__sub__ operations
 | 
						|
 | 
						|
    @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "h"])
 | 
						|
    @pytest.mark.parametrize("tdi_freq", [None, "h"])
 | 
						|
    def test_td64arr_sub_periodlike(
 | 
						|
        self, box_with_array, box_with_array2, tdi_freq, pi_freq
 | 
						|
    ):
 | 
						|
        # GH#20049 subtracting PeriodIndex should raise TypeError
 | 
						|
        tdi = TimedeltaIndex(["1 hours", "2 hours"], freq=tdi_freq)
 | 
						|
        dti = Timestamp("2018-03-07 17:16:40") + tdi
 | 
						|
        pi = dti.to_period(pi_freq)
 | 
						|
        per = pi[0]
 | 
						|
 | 
						|
        tdi = tm.box_expected(tdi, box_with_array)
 | 
						|
        pi = tm.box_expected(pi, box_with_array2)
 | 
						|
        msg = "cannot subtract|unsupported operand type"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            tdi - pi
 | 
						|
 | 
						|
        # GH#13078 subtraction of Period scalar not supported
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            tdi - per
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "other",
 | 
						|
        [
 | 
						|
            # GH#12624 for str case
 | 
						|
            "a",
 | 
						|
            # GH#19123
 | 
						|
            1,
 | 
						|
            1.5,
 | 
						|
            np.array(2),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_td64arr_addsub_numeric_scalar_invalid(self, box_with_array, other):
 | 
						|
        # vector-like others are tested in test_td64arr_add_sub_numeric_arr_invalid
 | 
						|
        tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
 | 
						|
        tdarr = tm.box_expected(tdser, box_with_array)
 | 
						|
 | 
						|
        assert_invalid_addsub_type(tdarr, other)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "vec",
 | 
						|
        [
 | 
						|
            np.array([1, 2, 3]),
 | 
						|
            Index([1, 2, 3]),
 | 
						|
            Series([1, 2, 3]),
 | 
						|
            DataFrame([[1, 2, 3]]),
 | 
						|
        ],
 | 
						|
        ids=lambda x: type(x).__name__,
 | 
						|
    )
 | 
						|
    def test_td64arr_addsub_numeric_arr_invalid(
 | 
						|
        self, box_with_array, vec, any_real_numpy_dtype
 | 
						|
    ):
 | 
						|
        tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
 | 
						|
        tdarr = tm.box_expected(tdser, box_with_array)
 | 
						|
 | 
						|
        vector = vec.astype(any_real_numpy_dtype)
 | 
						|
        assert_invalid_addsub_type(tdarr, vector)
 | 
						|
 | 
						|
    def test_td64arr_add_sub_int(self, box_with_array, one):
 | 
						|
        # Variants of `one` for #19012, deprecated GH#22535
 | 
						|
        rng = timedelta_range("1 days 09:00:00", freq="h", periods=10)
 | 
						|
        tdarr = tm.box_expected(rng, box_with_array)
 | 
						|
 | 
						|
        msg = "Addition/subtraction of integers"
 | 
						|
        assert_invalid_addsub_type(tdarr, one, msg)
 | 
						|
 | 
						|
        # TODO: get inplace ops into assert_invalid_addsub_type
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            tdarr += one
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            tdarr -= one
 | 
						|
 | 
						|
    def test_td64arr_add_sub_integer_array(self, box_with_array):
 | 
						|
        # GH#19959, deprecated GH#22535
 | 
						|
        # GH#22696 for DataFrame case, check that we don't dispatch to numpy
 | 
						|
        #  implementation, which treats int64 as m8[ns]
 | 
						|
        box = box_with_array
 | 
						|
        xbox = np.ndarray if box is pd.array else box
 | 
						|
 | 
						|
        rng = timedelta_range("1 days 09:00:00", freq="h", periods=3)
 | 
						|
        tdarr = tm.box_expected(rng, box)
 | 
						|
        other = tm.box_expected([4, 3, 2], xbox)
 | 
						|
 | 
						|
        msg = "Addition/subtraction of integers and integer-arrays"
 | 
						|
        assert_invalid_addsub_type(tdarr, other, msg)
 | 
						|
 | 
						|
    def test_td64arr_addsub_integer_array_no_freq(self, box_with_array):
 | 
						|
        # GH#19959
 | 
						|
        box = box_with_array
 | 
						|
        xbox = np.ndarray if box is pd.array else box
 | 
						|
 | 
						|
        tdi = TimedeltaIndex(["1 Day", "NaT", "3 Hours"])
 | 
						|
        tdarr = tm.box_expected(tdi, box)
 | 
						|
        other = tm.box_expected([14, -1, 16], xbox)
 | 
						|
 | 
						|
        msg = "Addition/subtraction of integers"
 | 
						|
        assert_invalid_addsub_type(tdarr, other, msg)
 | 
						|
 | 
						|
    # ------------------------------------------------------------------
 | 
						|
    # Operations with timedelta-like others
 | 
						|
 | 
						|
    def test_td64arr_add_sub_td64_array(self, box_with_array):
 | 
						|
        box = box_with_array
 | 
						|
        dti = pd.date_range("2016-01-01", periods=3)
 | 
						|
        tdi = dti - dti.shift(1)
 | 
						|
        tdarr = tdi.values
 | 
						|
 | 
						|
        expected = 2 * tdi
 | 
						|
        tdi = tm.box_expected(tdi, box)
 | 
						|
        expected = tm.box_expected(expected, box)
 | 
						|
 | 
						|
        result = tdi + tdarr
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
        result = tdarr + tdi
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        expected_sub = 0 * tdi
 | 
						|
        result = tdi - tdarr
 | 
						|
        tm.assert_equal(result, expected_sub)
 | 
						|
        result = tdarr - tdi
 | 
						|
        tm.assert_equal(result, expected_sub)
 | 
						|
 | 
						|
    def test_td64arr_add_sub_tdi(self, box_with_array, names):
 | 
						|
        # GH#17250 make sure result dtype is correct
 | 
						|
        # GH#19043 make sure names are propagated correctly
 | 
						|
        box = box_with_array
 | 
						|
        exname = get_expected_name(box, names)
 | 
						|
 | 
						|
        tdi = TimedeltaIndex(["0 days", "1 day"], name=names[1])
 | 
						|
        tdi = np.array(tdi) if box in [tm.to_array, pd.array] else tdi
 | 
						|
        ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[0])
 | 
						|
        expected = Series([Timedelta(hours=3), Timedelta(days=1, hours=4)], name=exname)
 | 
						|
 | 
						|
        ser = tm.box_expected(ser, box)
 | 
						|
        expected = tm.box_expected(expected, box)
 | 
						|
 | 
						|
        result = tdi + ser
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
        assert_dtype(result, "timedelta64[ns]")
 | 
						|
 | 
						|
        result = ser + tdi
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
        assert_dtype(result, "timedelta64[ns]")
 | 
						|
 | 
						|
        expected = Series(
 | 
						|
            [Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=exname
 | 
						|
        )
 | 
						|
        expected = tm.box_expected(expected, box)
 | 
						|
 | 
						|
        result = tdi - ser
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
        assert_dtype(result, "timedelta64[ns]")
 | 
						|
 | 
						|
        result = ser - tdi
 | 
						|
        tm.assert_equal(result, -expected)
 | 
						|
        assert_dtype(result, "timedelta64[ns]")
 | 
						|
 | 
						|
    @pytest.mark.parametrize("tdnat", [np.timedelta64("NaT"), NaT])
 | 
						|
    def test_td64arr_add_sub_td64_nat(self, box_with_array, tdnat):
 | 
						|
        # GH#18808, GH#23320 special handling for timedelta64("NaT")
 | 
						|
        box = box_with_array
 | 
						|
        tdi = TimedeltaIndex([NaT, Timedelta("1s")])
 | 
						|
        expected = TimedeltaIndex(["NaT"] * 2)
 | 
						|
 | 
						|
        obj = tm.box_expected(tdi, box)
 | 
						|
        expected = tm.box_expected(expected, box)
 | 
						|
 | 
						|
        result = obj + tdnat
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
        result = tdnat + obj
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
        result = obj - tdnat
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
        result = tdnat - obj
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    def test_td64arr_add_timedeltalike(self, two_hours, box_with_array):
 | 
						|
        # only test adding/sub offsets as + is now numeric
 | 
						|
        # GH#10699 for Tick cases
 | 
						|
        box = box_with_array
 | 
						|
        rng = timedelta_range("1 days", "10 days")
 | 
						|
        expected = timedelta_range("1 days 02:00:00", "10 days 02:00:00", freq="D")
 | 
						|
        rng = tm.box_expected(rng, box)
 | 
						|
        expected = tm.box_expected(expected, box)
 | 
						|
 | 
						|
        result = rng + two_hours
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = two_hours + rng
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    def test_td64arr_sub_timedeltalike(self, two_hours, box_with_array):
 | 
						|
        # only test adding/sub offsets as - is now numeric
 | 
						|
        # GH#10699 for Tick cases
 | 
						|
        box = box_with_array
 | 
						|
        rng = timedelta_range("1 days", "10 days")
 | 
						|
        expected = timedelta_range("0 days 22:00:00", "9 days 22:00:00")
 | 
						|
 | 
						|
        rng = tm.box_expected(rng, box)
 | 
						|
        expected = tm.box_expected(expected, box)
 | 
						|
 | 
						|
        result = rng - two_hours
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = two_hours - rng
 | 
						|
        tm.assert_equal(result, -expected)
 | 
						|
 | 
						|
    # ------------------------------------------------------------------
 | 
						|
    # __add__/__sub__ with DateOffsets and arrays of DateOffsets
 | 
						|
 | 
						|
    def test_td64arr_add_sub_offset_index(self, names, box_with_array):
 | 
						|
        # GH#18849, GH#19744
 | 
						|
        box = box_with_array
 | 
						|
        exname = get_expected_name(box, names)
 | 
						|
 | 
						|
        tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"], name=names[0])
 | 
						|
        other = Index([offsets.Hour(n=1), offsets.Minute(n=-2)], name=names[1])
 | 
						|
        other = np.array(other) if box in [tm.to_array, pd.array] else other
 | 
						|
 | 
						|
        expected = TimedeltaIndex(
 | 
						|
            [tdi[n] + other[n] for n in range(len(tdi))], freq="infer", name=exname
 | 
						|
        )
 | 
						|
        expected_sub = TimedeltaIndex(
 | 
						|
            [tdi[n] - other[n] for n in range(len(tdi))], freq="infer", name=exname
 | 
						|
        )
 | 
						|
 | 
						|
        tdi = tm.box_expected(tdi, box)
 | 
						|
        expected = tm.box_expected(expected, box).astype(object, copy=False)
 | 
						|
        expected_sub = tm.box_expected(expected_sub, box).astype(object, copy=False)
 | 
						|
 | 
						|
        with tm.assert_produces_warning(PerformanceWarning):
 | 
						|
            res = tdi + other
 | 
						|
        tm.assert_equal(res, expected)
 | 
						|
 | 
						|
        with tm.assert_produces_warning(PerformanceWarning):
 | 
						|
            res2 = other + tdi
 | 
						|
        tm.assert_equal(res2, expected)
 | 
						|
 | 
						|
        with tm.assert_produces_warning(PerformanceWarning):
 | 
						|
            res_sub = tdi - other
 | 
						|
        tm.assert_equal(res_sub, expected_sub)
 | 
						|
 | 
						|
    def test_td64arr_add_sub_offset_array(self, box_with_array):
 | 
						|
        # GH#18849, GH#18824
 | 
						|
        box = box_with_array
 | 
						|
        tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"])
 | 
						|
        other = np.array([offsets.Hour(n=1), offsets.Minute(n=-2)])
 | 
						|
 | 
						|
        expected = TimedeltaIndex(
 | 
						|
            [tdi[n] + other[n] for n in range(len(tdi))], freq="infer"
 | 
						|
        )
 | 
						|
        expected_sub = TimedeltaIndex(
 | 
						|
            [tdi[n] - other[n] for n in range(len(tdi))], freq="infer"
 | 
						|
        )
 | 
						|
 | 
						|
        tdi = tm.box_expected(tdi, box)
 | 
						|
        expected = tm.box_expected(expected, box).astype(object)
 | 
						|
 | 
						|
        with tm.assert_produces_warning(PerformanceWarning):
 | 
						|
            res = tdi + other
 | 
						|
        tm.assert_equal(res, expected)
 | 
						|
 | 
						|
        with tm.assert_produces_warning(PerformanceWarning):
 | 
						|
            res2 = other + tdi
 | 
						|
        tm.assert_equal(res2, expected)
 | 
						|
 | 
						|
        expected_sub = tm.box_expected(expected_sub, box_with_array).astype(object)
 | 
						|
        with tm.assert_produces_warning(PerformanceWarning):
 | 
						|
            res_sub = tdi - other
 | 
						|
        tm.assert_equal(res_sub, expected_sub)
 | 
						|
 | 
						|
    def test_td64arr_with_offset_series(self, names, box_with_array):
 | 
						|
        # GH#18849
 | 
						|
        box = box_with_array
 | 
						|
        box2 = Series if box in [Index, tm.to_array, pd.array] else box
 | 
						|
        exname = get_expected_name(box, names)
 | 
						|
 | 
						|
        tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"], name=names[0])
 | 
						|
        other = Series([offsets.Hour(n=1), offsets.Minute(n=-2)], name=names[1])
 | 
						|
 | 
						|
        expected_add = Series(
 | 
						|
            [tdi[n] + other[n] for n in range(len(tdi))], name=exname, dtype=object
 | 
						|
        )
 | 
						|
        obj = tm.box_expected(tdi, box)
 | 
						|
        expected_add = tm.box_expected(expected_add, box2).astype(object)
 | 
						|
 | 
						|
        with tm.assert_produces_warning(PerformanceWarning):
 | 
						|
            res = obj + other
 | 
						|
        tm.assert_equal(res, expected_add)
 | 
						|
 | 
						|
        with tm.assert_produces_warning(PerformanceWarning):
 | 
						|
            res2 = other + obj
 | 
						|
        tm.assert_equal(res2, expected_add)
 | 
						|
 | 
						|
        expected_sub = Series(
 | 
						|
            [tdi[n] - other[n] for n in range(len(tdi))], name=exname, dtype=object
 | 
						|
        )
 | 
						|
        expected_sub = tm.box_expected(expected_sub, box2).astype(object)
 | 
						|
 | 
						|
        with tm.assert_produces_warning(PerformanceWarning):
 | 
						|
            res3 = obj - other
 | 
						|
        tm.assert_equal(res3, expected_sub)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("obox", [np.array, Index, Series])
 | 
						|
    def test_td64arr_addsub_anchored_offset_arraylike(self, obox, box_with_array):
 | 
						|
        # GH#18824
 | 
						|
        tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"])
 | 
						|
        tdi = tm.box_expected(tdi, box_with_array)
 | 
						|
 | 
						|
        anchored = obox([offsets.MonthEnd(), offsets.Day(n=2)])
 | 
						|
 | 
						|
        # addition/subtraction ops with anchored offsets should issue
 | 
						|
        # a PerformanceWarning and _then_ raise a TypeError.
 | 
						|
        msg = "has incorrect type|cannot add the type MonthEnd"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            with tm.assert_produces_warning(PerformanceWarning):
 | 
						|
                tdi + anchored
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            with tm.assert_produces_warning(PerformanceWarning):
 | 
						|
                anchored + tdi
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            with tm.assert_produces_warning(PerformanceWarning):
 | 
						|
                tdi - anchored
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            with tm.assert_produces_warning(PerformanceWarning):
 | 
						|
                anchored - tdi
 | 
						|
 | 
						|
    # ------------------------------------------------------------------
 | 
						|
    # Unsorted
 | 
						|
 | 
						|
    def test_td64arr_add_sub_object_array(self, box_with_array):
 | 
						|
        box = box_with_array
 | 
						|
        xbox = np.ndarray if box is pd.array else box
 | 
						|
 | 
						|
        tdi = timedelta_range("1 day", periods=3, freq="D")
 | 
						|
        tdarr = tm.box_expected(tdi, box)
 | 
						|
 | 
						|
        other = np.array([Timedelta(days=1), offsets.Day(2), Timestamp("2000-01-04")])
 | 
						|
 | 
						|
        with tm.assert_produces_warning(PerformanceWarning):
 | 
						|
            result = tdarr + other
 | 
						|
 | 
						|
        expected = Index(
 | 
						|
            [Timedelta(days=2), Timedelta(days=4), Timestamp("2000-01-07")]
 | 
						|
        )
 | 
						|
        expected = tm.box_expected(expected, xbox).astype(object)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        msg = "unsupported operand type|cannot subtract a datelike"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            with tm.assert_produces_warning(PerformanceWarning):
 | 
						|
                tdarr - other
 | 
						|
 | 
						|
        with tm.assert_produces_warning(PerformanceWarning):
 | 
						|
            result = other - tdarr
 | 
						|
 | 
						|
        expected = Index([Timedelta(0), Timedelta(0), Timestamp("2000-01-01")])
 | 
						|
        expected = tm.box_expected(expected, xbox).astype(object)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
class TestTimedeltaArraylikeMulDivOps:
 | 
						|
    # Tests for timedelta64[ns]
 | 
						|
    # __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__
 | 
						|
 | 
						|
    # ------------------------------------------------------------------
 | 
						|
    # Multiplication
 | 
						|
    # organized with scalar others first, then array-like
 | 
						|
 | 
						|
    def test_td64arr_mul_int(self, box_with_array):
 | 
						|
        idx = TimedeltaIndex(np.arange(5, dtype="int64"))
 | 
						|
        idx = tm.box_expected(idx, box_with_array)
 | 
						|
 | 
						|
        result = idx * 1
 | 
						|
        tm.assert_equal(result, idx)
 | 
						|
 | 
						|
        result = 1 * idx
 | 
						|
        tm.assert_equal(result, idx)
 | 
						|
 | 
						|
    def test_td64arr_mul_tdlike_scalar_raises(self, two_hours, box_with_array):
 | 
						|
        rng = timedelta_range("1 days", "10 days", name="foo")
 | 
						|
        rng = tm.box_expected(rng, box_with_array)
 | 
						|
        msg = "|".join(
 | 
						|
            [
 | 
						|
                "argument must be an integer",
 | 
						|
                "cannot use operands with types dtype",
 | 
						|
                "Cannot multiply with",
 | 
						|
            ]
 | 
						|
        )
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            rng * two_hours
 | 
						|
 | 
						|
    def test_tdi_mul_int_array_zerodim(self, box_with_array):
 | 
						|
        rng5 = np.arange(5, dtype="int64")
 | 
						|
        idx = TimedeltaIndex(rng5)
 | 
						|
        expected = TimedeltaIndex(rng5 * 5)
 | 
						|
 | 
						|
        idx = tm.box_expected(idx, box_with_array)
 | 
						|
        expected = tm.box_expected(expected, box_with_array)
 | 
						|
 | 
						|
        result = idx * np.array(5, dtype="int64")
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    def test_tdi_mul_int_array(self, box_with_array):
 | 
						|
        rng5 = np.arange(5, dtype="int64")
 | 
						|
        idx = TimedeltaIndex(rng5)
 | 
						|
        expected = TimedeltaIndex(rng5**2)
 | 
						|
 | 
						|
        idx = tm.box_expected(idx, box_with_array)
 | 
						|
        expected = tm.box_expected(expected, box_with_array)
 | 
						|
 | 
						|
        result = idx * rng5
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    def test_tdi_mul_int_series(self, box_with_array):
 | 
						|
        box = box_with_array
 | 
						|
        xbox = Series if box in [Index, tm.to_array, pd.array] else box
 | 
						|
 | 
						|
        idx = TimedeltaIndex(np.arange(5, dtype="int64"))
 | 
						|
        expected = TimedeltaIndex(np.arange(5, dtype="int64") ** 2)
 | 
						|
 | 
						|
        idx = tm.box_expected(idx, box)
 | 
						|
        expected = tm.box_expected(expected, xbox)
 | 
						|
 | 
						|
        result = idx * Series(np.arange(5, dtype="int64"))
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    def test_tdi_mul_float_series(self, box_with_array):
 | 
						|
        box = box_with_array
 | 
						|
        xbox = Series if box in [Index, tm.to_array, pd.array] else box
 | 
						|
 | 
						|
        idx = TimedeltaIndex(np.arange(5, dtype="int64"))
 | 
						|
        idx = tm.box_expected(idx, box)
 | 
						|
 | 
						|
        rng5f = np.arange(5, dtype="float64")
 | 
						|
        expected = TimedeltaIndex(rng5f * (rng5f + 1.0))
 | 
						|
        expected = tm.box_expected(expected, xbox)
 | 
						|
 | 
						|
        result = idx * Series(rng5f + 1.0)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    # TODO: Put Series/DataFrame in others?
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "other",
 | 
						|
        [
 | 
						|
            np.arange(1, 11),
 | 
						|
            Index(np.arange(1, 11), np.int64),
 | 
						|
            Index(range(1, 11), np.uint64),
 | 
						|
            Index(range(1, 11), np.float64),
 | 
						|
            pd.RangeIndex(1, 11),
 | 
						|
        ],
 | 
						|
        ids=lambda x: type(x).__name__,
 | 
						|
    )
 | 
						|
    def test_tdi_rmul_arraylike(self, other, box_with_array):
 | 
						|
        box = box_with_array
 | 
						|
 | 
						|
        tdi = TimedeltaIndex(["1 Day"] * 10)
 | 
						|
        expected = timedelta_range("1 days", "10 days")._with_freq(None)
 | 
						|
 | 
						|
        tdi = tm.box_expected(tdi, box)
 | 
						|
        xbox = get_upcast_box(tdi, other)
 | 
						|
 | 
						|
        expected = tm.box_expected(expected, xbox)
 | 
						|
 | 
						|
        result = other * tdi
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
        commute = tdi * other
 | 
						|
        tm.assert_equal(commute, expected)
 | 
						|
 | 
						|
    # ------------------------------------------------------------------
 | 
						|
    # __div__, __rdiv__
 | 
						|
 | 
						|
    def test_td64arr_div_nat_invalid(self, box_with_array):
 | 
						|
        # don't allow division by NaT (maybe could in the future)
 | 
						|
        rng = timedelta_range("1 days", "10 days", name="foo")
 | 
						|
        rng = tm.box_expected(rng, box_with_array)
 | 
						|
 | 
						|
        with pytest.raises(TypeError, match="unsupported operand type"):
 | 
						|
            rng / NaT
 | 
						|
        with pytest.raises(TypeError, match="Cannot divide NaTType by"):
 | 
						|
            NaT / rng
 | 
						|
 | 
						|
        dt64nat = np.datetime64("NaT", "ns")
 | 
						|
        msg = "|".join(
 | 
						|
            [
 | 
						|
                # 'divide' on npdev as of 2021-12-18
 | 
						|
                "ufunc '(true_divide|divide)' cannot use operands",
 | 
						|
                "cannot perform __r?truediv__",
 | 
						|
                "Cannot divide datetime64 by TimedeltaArray",
 | 
						|
            ]
 | 
						|
        )
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            rng / dt64nat
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            dt64nat / rng
 | 
						|
 | 
						|
    def test_td64arr_div_td64nat(self, box_with_array):
 | 
						|
        # GH#23829
 | 
						|
        box = box_with_array
 | 
						|
        xbox = np.ndarray if box is pd.array else box
 | 
						|
 | 
						|
        rng = timedelta_range("1 days", "10 days")
 | 
						|
        rng = tm.box_expected(rng, box)
 | 
						|
 | 
						|
        other = np.timedelta64("NaT")
 | 
						|
 | 
						|
        expected = np.array([np.nan] * 10)
 | 
						|
        expected = tm.box_expected(expected, xbox)
 | 
						|
 | 
						|
        result = rng / other
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = other / rng
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    def test_td64arr_div_int(self, box_with_array):
 | 
						|
        idx = TimedeltaIndex(np.arange(5, dtype="int64"))
 | 
						|
        idx = tm.box_expected(idx, box_with_array)
 | 
						|
 | 
						|
        result = idx / 1
 | 
						|
        tm.assert_equal(result, idx)
 | 
						|
 | 
						|
        with pytest.raises(TypeError, match="Cannot divide"):
 | 
						|
            # GH#23829
 | 
						|
            1 / idx
 | 
						|
 | 
						|
    def test_td64arr_div_tdlike_scalar(self, two_hours, box_with_array):
 | 
						|
        # GH#20088, GH#22163 ensure DataFrame returns correct dtype
 | 
						|
        box = box_with_array
 | 
						|
        xbox = np.ndarray if box is pd.array else box
 | 
						|
 | 
						|
        rng = timedelta_range("1 days", "10 days", name="foo")
 | 
						|
        expected = Index((np.arange(10) + 1) * 12, dtype=np.float64, name="foo")
 | 
						|
 | 
						|
        rng = tm.box_expected(rng, box)
 | 
						|
        expected = tm.box_expected(expected, xbox)
 | 
						|
 | 
						|
        result = rng / two_hours
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = two_hours / rng
 | 
						|
        expected = 1 / expected
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("m", [1, 3, 10])
 | 
						|
    @pytest.mark.parametrize("unit", ["D", "h", "m", "s", "ms", "us", "ns"])
 | 
						|
    def test_td64arr_div_td64_scalar(self, m, unit, box_with_array):
 | 
						|
        box = box_with_array
 | 
						|
        xbox = np.ndarray if box is pd.array else box
 | 
						|
 | 
						|
        ser = Series([Timedelta(days=59)] * 3)
 | 
						|
        ser[2] = np.nan
 | 
						|
        flat = ser
 | 
						|
        ser = tm.box_expected(ser, box)
 | 
						|
 | 
						|
        # op
 | 
						|
        expected = Series([x / np.timedelta64(m, unit) for x in flat])
 | 
						|
        expected = tm.box_expected(expected, xbox)
 | 
						|
        result = ser / np.timedelta64(m, unit)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        # reverse op
 | 
						|
        expected = Series([Timedelta(np.timedelta64(m, unit)) / x for x in flat])
 | 
						|
        expected = tm.box_expected(expected, xbox)
 | 
						|
        result = np.timedelta64(m, unit) / ser
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    def test_td64arr_div_tdlike_scalar_with_nat(self, two_hours, box_with_array):
 | 
						|
        box = box_with_array
 | 
						|
        xbox = np.ndarray if box is pd.array else box
 | 
						|
 | 
						|
        rng = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo")
 | 
						|
        expected = Index([12, np.nan, 24], dtype=np.float64, name="foo")
 | 
						|
 | 
						|
        rng = tm.box_expected(rng, box)
 | 
						|
        expected = tm.box_expected(expected, xbox)
 | 
						|
 | 
						|
        result = rng / two_hours
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = two_hours / rng
 | 
						|
        expected = 1 / expected
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    def test_td64arr_div_td64_ndarray(self, box_with_array):
 | 
						|
        # GH#22631
 | 
						|
        box = box_with_array
 | 
						|
        xbox = np.ndarray if box is pd.array else box
 | 
						|
 | 
						|
        rng = TimedeltaIndex(["1 days", NaT, "2 days"])
 | 
						|
        expected = Index([12, np.nan, 24], dtype=np.float64)
 | 
						|
 | 
						|
        rng = tm.box_expected(rng, box)
 | 
						|
        expected = tm.box_expected(expected, xbox)
 | 
						|
 | 
						|
        other = np.array([2, 4, 2], dtype="m8[h]")
 | 
						|
        result = rng / other
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = rng / tm.box_expected(other, box)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = rng / other.astype(object)
 | 
						|
        tm.assert_equal(result, expected.astype(object))
 | 
						|
 | 
						|
        result = rng / list(other)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        # reversed op
 | 
						|
        expected = 1 / expected
 | 
						|
        result = other / rng
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = tm.box_expected(other, box) / rng
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = other.astype(object) / rng
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = list(other) / rng
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    def test_tdarr_div_length_mismatch(self, box_with_array):
 | 
						|
        rng = TimedeltaIndex(["1 days", NaT, "2 days"])
 | 
						|
        mismatched = [1, 2, 3, 4]
 | 
						|
 | 
						|
        rng = tm.box_expected(rng, box_with_array)
 | 
						|
        msg = "Cannot divide vectors|Unable to coerce to Series"
 | 
						|
        for obj in [mismatched, mismatched[:2]]:
 | 
						|
            # one shorter, one longer
 | 
						|
            for other in [obj, np.array(obj), Index(obj)]:
 | 
						|
                with pytest.raises(ValueError, match=msg):
 | 
						|
                    rng / other
 | 
						|
                with pytest.raises(ValueError, match=msg):
 | 
						|
                    other / rng
 | 
						|
 | 
						|
    def test_td64_div_object_mixed_result(self, box_with_array):
 | 
						|
        # Case where we having a NaT in the result inseat of timedelta64("NaT")
 | 
						|
        #  is misleading
 | 
						|
        orig = timedelta_range("1 Day", periods=3).insert(1, NaT)
 | 
						|
        tdi = tm.box_expected(orig, box_with_array, transpose=False)
 | 
						|
 | 
						|
        other = np.array([orig[0], 1.5, 2.0, orig[2]], dtype=object)
 | 
						|
        other = tm.box_expected(other, box_with_array, transpose=False)
 | 
						|
 | 
						|
        res = tdi / other
 | 
						|
 | 
						|
        expected = Index([1.0, np.timedelta64("NaT", "ns"), orig[0], 1.5], dtype=object)
 | 
						|
        expected = tm.box_expected(expected, box_with_array, transpose=False)
 | 
						|
        if isinstance(expected, NumpyExtensionArray):
 | 
						|
            expected = expected.to_numpy()
 | 
						|
        tm.assert_equal(res, expected)
 | 
						|
        if box_with_array is DataFrame:
 | 
						|
            # We have a np.timedelta64(NaT), not pd.NaT
 | 
						|
            assert isinstance(res.iloc[1, 0], np.timedelta64)
 | 
						|
 | 
						|
        res = tdi // other
 | 
						|
 | 
						|
        expected = Index([1, np.timedelta64("NaT", "ns"), orig[0], 1], dtype=object)
 | 
						|
        expected = tm.box_expected(expected, box_with_array, transpose=False)
 | 
						|
        if isinstance(expected, NumpyExtensionArray):
 | 
						|
            expected = expected.to_numpy()
 | 
						|
        tm.assert_equal(res, expected)
 | 
						|
        if box_with_array is DataFrame:
 | 
						|
            # We have a np.timedelta64(NaT), not pd.NaT
 | 
						|
            assert isinstance(res.iloc[1, 0], np.timedelta64)
 | 
						|
 | 
						|
    # ------------------------------------------------------------------
 | 
						|
    # __floordiv__, __rfloordiv__
 | 
						|
 | 
						|
    def test_td64arr_floordiv_td64arr_with_nat(
 | 
						|
        self, box_with_array, using_array_manager
 | 
						|
    ):
 | 
						|
        # GH#35529
 | 
						|
        box = box_with_array
 | 
						|
        xbox = np.ndarray if box is pd.array else box
 | 
						|
 | 
						|
        left = Series([1000, 222330, 30], dtype="timedelta64[ns]")
 | 
						|
        right = Series([1000, 222330, None], dtype="timedelta64[ns]")
 | 
						|
 | 
						|
        left = tm.box_expected(left, box)
 | 
						|
        right = tm.box_expected(right, box)
 | 
						|
 | 
						|
        expected = np.array([1.0, 1.0, np.nan], dtype=np.float64)
 | 
						|
        expected = tm.box_expected(expected, xbox)
 | 
						|
        if box is DataFrame and using_array_manager:
 | 
						|
            # INFO(ArrayManager) floordiv returns integer, and ArrayManager
 | 
						|
            # performs ops column-wise and thus preserves int64 dtype for
 | 
						|
            # columns without missing values
 | 
						|
            expected[[0, 1]] = expected[[0, 1]].astype("int64")
 | 
						|
 | 
						|
        with tm.maybe_produces_warning(
 | 
						|
            RuntimeWarning, box is pd.array, check_stacklevel=False
 | 
						|
        ):
 | 
						|
            result = left // right
 | 
						|
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        # case that goes through __rfloordiv__ with arraylike
 | 
						|
        with tm.maybe_produces_warning(
 | 
						|
            RuntimeWarning, box is pd.array, check_stacklevel=False
 | 
						|
        ):
 | 
						|
            result = np.asarray(left) // right
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.filterwarnings("ignore:invalid value encountered:RuntimeWarning")
 | 
						|
    def test_td64arr_floordiv_tdscalar(self, box_with_array, scalar_td):
 | 
						|
        # GH#18831, GH#19125
 | 
						|
        box = box_with_array
 | 
						|
        xbox = np.ndarray if box is pd.array else box
 | 
						|
        td = Timedelta("5m3s")  # i.e. (scalar_td - 1sec) / 2
 | 
						|
 | 
						|
        td1 = Series([td, td, NaT], dtype="m8[ns]")
 | 
						|
        td1 = tm.box_expected(td1, box, transpose=False)
 | 
						|
 | 
						|
        expected = Series([0, 0, np.nan])
 | 
						|
        expected = tm.box_expected(expected, xbox, transpose=False)
 | 
						|
 | 
						|
        result = td1 // scalar_td
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        # Reversed op
 | 
						|
        expected = Series([2, 2, np.nan])
 | 
						|
        expected = tm.box_expected(expected, xbox, transpose=False)
 | 
						|
 | 
						|
        result = scalar_td // td1
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        # same thing buts let's be explicit about calling __rfloordiv__
 | 
						|
        result = td1.__rfloordiv__(scalar_td)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    def test_td64arr_floordiv_int(self, box_with_array):
 | 
						|
        idx = TimedeltaIndex(np.arange(5, dtype="int64"))
 | 
						|
        idx = tm.box_expected(idx, box_with_array)
 | 
						|
        result = idx // 1
 | 
						|
        tm.assert_equal(result, idx)
 | 
						|
 | 
						|
        pattern = "floor_divide cannot use operands|Cannot divide int by Timedelta*"
 | 
						|
        with pytest.raises(TypeError, match=pattern):
 | 
						|
            1 // idx
 | 
						|
 | 
						|
    # ------------------------------------------------------------------
 | 
						|
    # mod, divmod
 | 
						|
    # TODO: operations with timedelta-like arrays, numeric arrays,
 | 
						|
    #  reversed ops
 | 
						|
 | 
						|
    def test_td64arr_mod_tdscalar(self, box_with_array, three_days):
 | 
						|
        tdi = timedelta_range("1 Day", "9 days")
 | 
						|
        tdarr = tm.box_expected(tdi, box_with_array)
 | 
						|
 | 
						|
        expected = TimedeltaIndex(["1 Day", "2 Days", "0 Days"] * 3)
 | 
						|
        expected = tm.box_expected(expected, box_with_array)
 | 
						|
 | 
						|
        result = tdarr % three_days
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        warn = None
 | 
						|
        if box_with_array is DataFrame and isinstance(three_days, pd.DateOffset):
 | 
						|
            warn = PerformanceWarning
 | 
						|
            # TODO: making expected be object here a result of DataFrame.__divmod__
 | 
						|
            #  being defined in a naive way that does not dispatch to the underlying
 | 
						|
            #  array's __divmod__
 | 
						|
            expected = expected.astype(object)
 | 
						|
 | 
						|
        with tm.assert_produces_warning(warn):
 | 
						|
            result = divmod(tdarr, three_days)
 | 
						|
 | 
						|
        tm.assert_equal(result[1], expected)
 | 
						|
        tm.assert_equal(result[0], tdarr // three_days)
 | 
						|
 | 
						|
    def test_td64arr_mod_int(self, box_with_array):
 | 
						|
        tdi = timedelta_range("1 ns", "10 ns", periods=10)
 | 
						|
        tdarr = tm.box_expected(tdi, box_with_array)
 | 
						|
 | 
						|
        expected = TimedeltaIndex(["1 ns", "0 ns"] * 5)
 | 
						|
        expected = tm.box_expected(expected, box_with_array)
 | 
						|
 | 
						|
        result = tdarr % 2
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        msg = "Cannot divide int by"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            2 % tdarr
 | 
						|
 | 
						|
        result = divmod(tdarr, 2)
 | 
						|
        tm.assert_equal(result[1], expected)
 | 
						|
        tm.assert_equal(result[0], tdarr // 2)
 | 
						|
 | 
						|
    def test_td64arr_rmod_tdscalar(self, box_with_array, three_days):
 | 
						|
        tdi = timedelta_range("1 Day", "9 days")
 | 
						|
        tdarr = tm.box_expected(tdi, box_with_array)
 | 
						|
 | 
						|
        expected = ["0 Days", "1 Day", "0 Days"] + ["3 Days"] * 6
 | 
						|
        expected = TimedeltaIndex(expected)
 | 
						|
        expected = tm.box_expected(expected, box_with_array)
 | 
						|
 | 
						|
        result = three_days % tdarr
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = divmod(three_days, tdarr)
 | 
						|
        tm.assert_equal(result[1], expected)
 | 
						|
        tm.assert_equal(result[0], three_days // tdarr)
 | 
						|
 | 
						|
    # ------------------------------------------------------------------
 | 
						|
    # Operations with invalid others
 | 
						|
 | 
						|
    def test_td64arr_mul_tdscalar_invalid(self, box_with_array, scalar_td):
 | 
						|
        td1 = Series([timedelta(minutes=5, seconds=3)] * 3)
 | 
						|
        td1.iloc[2] = np.nan
 | 
						|
 | 
						|
        td1 = tm.box_expected(td1, box_with_array)
 | 
						|
 | 
						|
        # check that we are getting a TypeError
 | 
						|
        # with 'operate' (from core/ops.py) for the ops that are not
 | 
						|
        # defined
 | 
						|
        pattern = "operate|unsupported|cannot|not supported"
 | 
						|
        with pytest.raises(TypeError, match=pattern):
 | 
						|
            td1 * scalar_td
 | 
						|
        with pytest.raises(TypeError, match=pattern):
 | 
						|
            scalar_td * td1
 | 
						|
 | 
						|
    def test_td64arr_mul_too_short_raises(self, box_with_array):
 | 
						|
        idx = TimedeltaIndex(np.arange(5, dtype="int64"))
 | 
						|
        idx = tm.box_expected(idx, box_with_array)
 | 
						|
        msg = "|".join(
 | 
						|
            [
 | 
						|
                "cannot use operands with types dtype",
 | 
						|
                "Cannot multiply with unequal lengths",
 | 
						|
                "Unable to coerce to Series",
 | 
						|
            ]
 | 
						|
        )
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            # length check before dtype check
 | 
						|
            idx * idx[:3]
 | 
						|
        with pytest.raises(ValueError, match=msg):
 | 
						|
            idx * np.array([1, 2])
 | 
						|
 | 
						|
    def test_td64arr_mul_td64arr_raises(self, box_with_array):
 | 
						|
        idx = TimedeltaIndex(np.arange(5, dtype="int64"))
 | 
						|
        idx = tm.box_expected(idx, box_with_array)
 | 
						|
        msg = "cannot use operands with types dtype"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            idx * idx
 | 
						|
 | 
						|
    # ------------------------------------------------------------------
 | 
						|
    # Operations with numeric others
 | 
						|
 | 
						|
    def test_td64arr_mul_numeric_scalar(self, box_with_array, one):
 | 
						|
        # GH#4521
 | 
						|
        # divide/multiply by integers
 | 
						|
        tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
 | 
						|
        expected = Series(["-59 Days", "-59 Days", "NaT"], dtype="timedelta64[ns]")
 | 
						|
 | 
						|
        tdser = tm.box_expected(tdser, box_with_array)
 | 
						|
        expected = tm.box_expected(expected, box_with_array)
 | 
						|
 | 
						|
        result = tdser * (-one)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
        result = (-one) * tdser
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        expected = Series(["118 Days", "118 Days", "NaT"], dtype="timedelta64[ns]")
 | 
						|
        expected = tm.box_expected(expected, box_with_array)
 | 
						|
 | 
						|
        result = tdser * (2 * one)
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
        result = (2 * one) * tdser
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("two", [2, 2.0, np.array(2), np.array(2.0)])
 | 
						|
    def test_td64arr_div_numeric_scalar(self, box_with_array, two):
 | 
						|
        # GH#4521
 | 
						|
        # divide/multiply by integers
 | 
						|
        tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
 | 
						|
        expected = Series(["29.5D", "29.5D", "NaT"], dtype="timedelta64[ns]")
 | 
						|
 | 
						|
        tdser = tm.box_expected(tdser, box_with_array)
 | 
						|
        expected = tm.box_expected(expected, box_with_array)
 | 
						|
 | 
						|
        result = tdser / two
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        with pytest.raises(TypeError, match="Cannot divide"):
 | 
						|
            two / tdser
 | 
						|
 | 
						|
    @pytest.mark.parametrize("two", [2, 2.0, np.array(2), np.array(2.0)])
 | 
						|
    def test_td64arr_floordiv_numeric_scalar(self, box_with_array, two):
 | 
						|
        tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
 | 
						|
        expected = Series(["29.5D", "29.5D", "NaT"], dtype="timedelta64[ns]")
 | 
						|
 | 
						|
        tdser = tm.box_expected(tdser, box_with_array)
 | 
						|
        expected = tm.box_expected(expected, box_with_array)
 | 
						|
 | 
						|
        result = tdser // two
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        with pytest.raises(TypeError, match="Cannot divide"):
 | 
						|
            two // tdser
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "vector",
 | 
						|
        [np.array([20, 30, 40]), Index([20, 30, 40]), Series([20, 30, 40])],
 | 
						|
        ids=lambda x: type(x).__name__,
 | 
						|
    )
 | 
						|
    def test_td64arr_rmul_numeric_array(
 | 
						|
        self,
 | 
						|
        box_with_array,
 | 
						|
        vector,
 | 
						|
        any_real_numpy_dtype,
 | 
						|
    ):
 | 
						|
        # GH#4521
 | 
						|
        # divide/multiply by integers
 | 
						|
 | 
						|
        tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
 | 
						|
        vector = vector.astype(any_real_numpy_dtype)
 | 
						|
 | 
						|
        expected = Series(["1180 Days", "1770 Days", "NaT"], dtype="timedelta64[ns]")
 | 
						|
 | 
						|
        tdser = tm.box_expected(tdser, box_with_array)
 | 
						|
        xbox = get_upcast_box(tdser, vector)
 | 
						|
 | 
						|
        expected = tm.box_expected(expected, xbox)
 | 
						|
 | 
						|
        result = tdser * vector
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = vector * tdser
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "vector",
 | 
						|
        [np.array([20, 30, 40]), Index([20, 30, 40]), Series([20, 30, 40])],
 | 
						|
        ids=lambda x: type(x).__name__,
 | 
						|
    )
 | 
						|
    def test_td64arr_div_numeric_array(
 | 
						|
        self, box_with_array, vector, any_real_numpy_dtype
 | 
						|
    ):
 | 
						|
        # GH#4521
 | 
						|
        # divide/multiply by integers
 | 
						|
 | 
						|
        tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
 | 
						|
        vector = vector.astype(any_real_numpy_dtype)
 | 
						|
 | 
						|
        expected = Series(["2.95D", "1D 23h 12m", "NaT"], dtype="timedelta64[ns]")
 | 
						|
 | 
						|
        tdser = tm.box_expected(tdser, box_with_array)
 | 
						|
        xbox = get_upcast_box(tdser, vector)
 | 
						|
        expected = tm.box_expected(expected, xbox)
 | 
						|
 | 
						|
        result = tdser / vector
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        pattern = "|".join(
 | 
						|
            [
 | 
						|
                "true_divide'? cannot use operands",
 | 
						|
                "cannot perform __div__",
 | 
						|
                "cannot perform __truediv__",
 | 
						|
                "unsupported operand",
 | 
						|
                "Cannot divide",
 | 
						|
                "ufunc 'divide' cannot use operands with types",
 | 
						|
            ]
 | 
						|
        )
 | 
						|
        with pytest.raises(TypeError, match=pattern):
 | 
						|
            vector / tdser
 | 
						|
 | 
						|
        result = tdser / vector.astype(object)
 | 
						|
        if box_with_array is DataFrame:
 | 
						|
            expected = [tdser.iloc[0, n] / vector[n] for n in range(len(vector))]
 | 
						|
            expected = tm.box_expected(expected, xbox).astype(object)
 | 
						|
            # We specifically expect timedelta64("NaT") here, not pd.NA
 | 
						|
            msg = "The 'downcast' keyword in fillna"
 | 
						|
            with tm.assert_produces_warning(FutureWarning, match=msg):
 | 
						|
                expected[2] = expected[2].fillna(
 | 
						|
                    np.timedelta64("NaT", "ns"), downcast=False
 | 
						|
                )
 | 
						|
        else:
 | 
						|
            expected = [tdser[n] / vector[n] for n in range(len(tdser))]
 | 
						|
            expected = [
 | 
						|
                x if x is not NaT else np.timedelta64("NaT", "ns") for x in expected
 | 
						|
            ]
 | 
						|
            if xbox is tm.to_array:
 | 
						|
                expected = tm.to_array(expected).astype(object)
 | 
						|
            else:
 | 
						|
                expected = xbox(expected, dtype=object)
 | 
						|
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        with pytest.raises(TypeError, match=pattern):
 | 
						|
            vector.astype(object) / tdser
 | 
						|
 | 
						|
    def test_td64arr_mul_int_series(self, box_with_array, names):
 | 
						|
        # GH#19042 test for correct name attachment
 | 
						|
        box = box_with_array
 | 
						|
        exname = get_expected_name(box, names)
 | 
						|
 | 
						|
        tdi = TimedeltaIndex(
 | 
						|
            ["0days", "1day", "2days", "3days", "4days"], name=names[0]
 | 
						|
        )
 | 
						|
        # TODO: Should we be parametrizing over types for `ser` too?
 | 
						|
        ser = Series([0, 1, 2, 3, 4], dtype=np.int64, name=names[1])
 | 
						|
 | 
						|
        expected = Series(
 | 
						|
            ["0days", "1day", "4days", "9days", "16days"],
 | 
						|
            dtype="timedelta64[ns]",
 | 
						|
            name=exname,
 | 
						|
        )
 | 
						|
 | 
						|
        tdi = tm.box_expected(tdi, box)
 | 
						|
        xbox = get_upcast_box(tdi, ser)
 | 
						|
 | 
						|
        expected = tm.box_expected(expected, xbox)
 | 
						|
 | 
						|
        result = ser * tdi
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = tdi * ser
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    # TODO: Should we be parametrizing over types for `ser` too?
 | 
						|
    def test_float_series_rdiv_td64arr(self, box_with_array, names):
 | 
						|
        # GH#19042 test for correct name attachment
 | 
						|
        box = box_with_array
 | 
						|
        tdi = TimedeltaIndex(
 | 
						|
            ["0days", "1day", "2days", "3days", "4days"], name=names[0]
 | 
						|
        )
 | 
						|
        ser = Series([1.5, 3, 4.5, 6, 7.5], dtype=np.float64, name=names[1])
 | 
						|
 | 
						|
        xname = names[2] if box not in [tm.to_array, pd.array] else names[1]
 | 
						|
        expected = Series(
 | 
						|
            [tdi[n] / ser[n] for n in range(len(ser))],
 | 
						|
            dtype="timedelta64[ns]",
 | 
						|
            name=xname,
 | 
						|
        )
 | 
						|
 | 
						|
        tdi = tm.box_expected(tdi, box)
 | 
						|
        xbox = get_upcast_box(tdi, ser)
 | 
						|
        expected = tm.box_expected(expected, xbox)
 | 
						|
 | 
						|
        result = ser.__rtruediv__(tdi)
 | 
						|
        if box is DataFrame:
 | 
						|
            assert result is NotImplemented
 | 
						|
        else:
 | 
						|
            tm.assert_equal(result, expected)
 | 
						|
 | 
						|
    def test_td64arr_all_nat_div_object_dtype_numeric(self, box_with_array):
 | 
						|
        # GH#39750 make sure we infer the result as td64
 | 
						|
        tdi = TimedeltaIndex([NaT, NaT])
 | 
						|
 | 
						|
        left = tm.box_expected(tdi, box_with_array)
 | 
						|
        right = np.array([2, 2.0], dtype=object)
 | 
						|
 | 
						|
        tdnat = np.timedelta64("NaT", "ns")
 | 
						|
        expected = Index([tdnat] * 2, dtype=object)
 | 
						|
        if box_with_array is not Index:
 | 
						|
            expected = tm.box_expected(expected, box_with_array).astype(object)
 | 
						|
            if box_with_array in [Series, DataFrame]:
 | 
						|
                msg = "The 'downcast' keyword in fillna is deprecated"
 | 
						|
                with tm.assert_produces_warning(FutureWarning, match=msg):
 | 
						|
                    expected = expected.fillna(tdnat, downcast=False)  # GH#18463
 | 
						|
 | 
						|
        result = left / right
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        result = left // right
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
class TestTimedelta64ArrayLikeArithmetic:
 | 
						|
    # Arithmetic tests for timedelta64[ns] vectors fully parametrized over
 | 
						|
    #  DataFrame/Series/TimedeltaIndex/TimedeltaArray.  Ideally all arithmetic
 | 
						|
    #  tests will eventually end up here.
 | 
						|
 | 
						|
    def test_td64arr_pow_invalid(self, scalar_td, box_with_array):
 | 
						|
        td1 = Series([timedelta(minutes=5, seconds=3)] * 3)
 | 
						|
        td1.iloc[2] = np.nan
 | 
						|
 | 
						|
        td1 = tm.box_expected(td1, box_with_array)
 | 
						|
 | 
						|
        # check that we are getting a TypeError
 | 
						|
        # with 'operate' (from core/ops.py) for the ops that are not
 | 
						|
        # defined
 | 
						|
        pattern = "operate|unsupported|cannot|not supported"
 | 
						|
        with pytest.raises(TypeError, match=pattern):
 | 
						|
            scalar_td**td1
 | 
						|
 | 
						|
        with pytest.raises(TypeError, match=pattern):
 | 
						|
            td1**scalar_td
 | 
						|
 | 
						|
 | 
						|
def test_add_timestamp_to_timedelta():
 | 
						|
    # GH: 35897
 | 
						|
    timestamp = Timestamp("2021-01-01")
 | 
						|
    result = timestamp + timedelta_range("0s", "1s", periods=31)
 | 
						|
    expected = DatetimeIndex(
 | 
						|
        [
 | 
						|
            timestamp
 | 
						|
            + (
 | 
						|
                pd.to_timedelta("0.033333333s") * i
 | 
						|
                + pd.to_timedelta("0.000000001s") * divmod(i, 3)[0]
 | 
						|
            )
 | 
						|
            for i in range(31)
 | 
						|
        ]
 | 
						|
    )
 | 
						|
    tm.assert_index_equal(result, expected)
 |