You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			191 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			191 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
import sys
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
from pandas._config import using_string_dtype
 | 
						|
 | 
						|
from pandas.compat import PYPY
 | 
						|
 | 
						|
from pandas.core.dtypes.common import (
 | 
						|
    is_dtype_equal,
 | 
						|
    is_object_dtype,
 | 
						|
)
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
from pandas import (
 | 
						|
    Index,
 | 
						|
    Series,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
 | 
						|
 | 
						|
def test_isnull_notnull_docstrings():
 | 
						|
    # GH#41855 make sure its clear these are aliases
 | 
						|
    doc = pd.DataFrame.notnull.__doc__
 | 
						|
    assert doc.startswith("\nDataFrame.notnull is an alias for DataFrame.notna.\n")
 | 
						|
    doc = pd.DataFrame.isnull.__doc__
 | 
						|
    assert doc.startswith("\nDataFrame.isnull is an alias for DataFrame.isna.\n")
 | 
						|
 | 
						|
    doc = Series.notnull.__doc__
 | 
						|
    assert doc.startswith("\nSeries.notnull is an alias for Series.notna.\n")
 | 
						|
    doc = Series.isnull.__doc__
 | 
						|
    assert doc.startswith("\nSeries.isnull is an alias for Series.isna.\n")
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "op_name, op",
 | 
						|
    [
 | 
						|
        ("add", "+"),
 | 
						|
        ("sub", "-"),
 | 
						|
        ("mul", "*"),
 | 
						|
        ("mod", "%"),
 | 
						|
        ("pow", "**"),
 | 
						|
        ("truediv", "/"),
 | 
						|
        ("floordiv", "//"),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_binary_ops_docstring(frame_or_series, op_name, op):
 | 
						|
    # not using the all_arithmetic_functions fixture with _get_opstr
 | 
						|
    # as _get_opstr is used internally in the dynamic implementation of the docstring
 | 
						|
    klass = frame_or_series
 | 
						|
 | 
						|
    operand1 = klass.__name__.lower()
 | 
						|
    operand2 = "other"
 | 
						|
    expected_str = " ".join([operand1, op, operand2])
 | 
						|
    assert expected_str in getattr(klass, op_name).__doc__
 | 
						|
 | 
						|
    # reverse version of the binary ops
 | 
						|
    expected_str = " ".join([operand2, op, operand1])
 | 
						|
    assert expected_str in getattr(klass, "r" + op_name).__doc__
 | 
						|
 | 
						|
 | 
						|
def test_ndarray_compat_properties(index_or_series_obj):
 | 
						|
    obj = index_or_series_obj
 | 
						|
 | 
						|
    # Check that we work.
 | 
						|
    for p in ["shape", "dtype", "T", "nbytes"]:
 | 
						|
        assert getattr(obj, p, None) is not None
 | 
						|
 | 
						|
    # deprecated properties
 | 
						|
    for p in ["strides", "itemsize", "base", "data"]:
 | 
						|
        assert not hasattr(obj, p)
 | 
						|
 | 
						|
    msg = "can only convert an array of size 1 to a Python scalar"
 | 
						|
    with pytest.raises(ValueError, match=msg):
 | 
						|
        obj.item()  # len > 1
 | 
						|
 | 
						|
    assert obj.ndim == 1
 | 
						|
    assert obj.size == len(obj)
 | 
						|
 | 
						|
    assert Index([1]).item() == 1
 | 
						|
    assert Series([1]).item() == 1
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.skipif(
 | 
						|
    PYPY or using_string_dtype(),
 | 
						|
    reason="not relevant for PyPy doesn't work properly for arrow strings",
 | 
						|
)
 | 
						|
def test_memory_usage(index_or_series_memory_obj):
 | 
						|
    obj = index_or_series_memory_obj
 | 
						|
    # Clear index caches so that len(obj) == 0 report 0 memory usage
 | 
						|
    if isinstance(obj, Series):
 | 
						|
        is_ser = True
 | 
						|
        obj.index._engine.clear_mapping()
 | 
						|
    else:
 | 
						|
        is_ser = False
 | 
						|
        obj._engine.clear_mapping()
 | 
						|
 | 
						|
    res = obj.memory_usage()
 | 
						|
    res_deep = obj.memory_usage(deep=True)
 | 
						|
 | 
						|
    is_object = is_object_dtype(obj) or (is_ser and is_object_dtype(obj.index))
 | 
						|
    is_categorical = isinstance(obj.dtype, pd.CategoricalDtype) or (
 | 
						|
        is_ser and isinstance(obj.index.dtype, pd.CategoricalDtype)
 | 
						|
    )
 | 
						|
    is_object_string = is_dtype_equal(obj, "string[python]") or (
 | 
						|
        is_ser and is_dtype_equal(obj.index.dtype, "string[python]")
 | 
						|
    )
 | 
						|
 | 
						|
    if len(obj) == 0:
 | 
						|
        expected = 0
 | 
						|
        assert res_deep == res == expected
 | 
						|
    elif is_object or is_categorical or is_object_string:
 | 
						|
        # only deep will pick them up
 | 
						|
        assert res_deep > res
 | 
						|
    else:
 | 
						|
        assert res == res_deep
 | 
						|
 | 
						|
    # sys.getsizeof will call the .memory_usage with
 | 
						|
    # deep=True, and add on some GC overhead
 | 
						|
    diff = res_deep - sys.getsizeof(obj)
 | 
						|
    assert abs(diff) < 100
 | 
						|
 | 
						|
 | 
						|
def test_memory_usage_components_series(series_with_simple_index):
 | 
						|
    series = series_with_simple_index
 | 
						|
    total_usage = series.memory_usage(index=True)
 | 
						|
    non_index_usage = series.memory_usage(index=False)
 | 
						|
    index_usage = series.index.memory_usage()
 | 
						|
    assert total_usage == non_index_usage + index_usage
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("dtype", tm.NARROW_NP_DTYPES)
 | 
						|
def test_memory_usage_components_narrow_series(dtype):
 | 
						|
    series = Series(range(5), dtype=dtype, index=[f"i-{i}" for i in range(5)], name="a")
 | 
						|
    total_usage = series.memory_usage(index=True)
 | 
						|
    non_index_usage = series.memory_usage(index=False)
 | 
						|
    index_usage = series.index.memory_usage()
 | 
						|
    assert total_usage == non_index_usage + index_usage
 | 
						|
 | 
						|
 | 
						|
def test_searchsorted(request, index_or_series_obj):
 | 
						|
    # numpy.searchsorted calls obj.searchsorted under the hood.
 | 
						|
    # See gh-12238
 | 
						|
    obj = index_or_series_obj
 | 
						|
 | 
						|
    if isinstance(obj, pd.MultiIndex):
 | 
						|
        # See gh-14833
 | 
						|
        request.applymarker(
 | 
						|
            pytest.mark.xfail(
 | 
						|
                reason="np.searchsorted doesn't work on pd.MultiIndex: GH 14833"
 | 
						|
            )
 | 
						|
        )
 | 
						|
    elif obj.dtype.kind == "c" and isinstance(obj, Index):
 | 
						|
        # TODO: Should Series cases also raise? Looks like they use numpy
 | 
						|
        #  comparison semantics https://github.com/numpy/numpy/issues/15981
 | 
						|
        mark = pytest.mark.xfail(reason="complex objects are not comparable")
 | 
						|
        request.applymarker(mark)
 | 
						|
 | 
						|
    max_obj = max(obj, default=0)
 | 
						|
    index = np.searchsorted(obj, max_obj)
 | 
						|
    assert 0 <= index <= len(obj)
 | 
						|
 | 
						|
    index = np.searchsorted(obj, max_obj, sorter=range(len(obj)))
 | 
						|
    assert 0 <= index <= len(obj)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.filterwarnings(r"ignore:Dtype inference:FutureWarning")
 | 
						|
def test_access_by_position(index_flat):
 | 
						|
    index = index_flat
 | 
						|
 | 
						|
    if len(index) == 0:
 | 
						|
        pytest.skip("Test doesn't make sense on empty data")
 | 
						|
 | 
						|
    series = Series(index)
 | 
						|
    assert index[0] == series.iloc[0]
 | 
						|
    assert index[5] == series.iloc[5]
 | 
						|
    assert index[-1] == series.iloc[-1]
 | 
						|
 | 
						|
    size = len(index)
 | 
						|
    assert index[-1] == index[size - 1]
 | 
						|
 | 
						|
    msg = f"index {size} is out of bounds for axis 0 with size {size}"
 | 
						|
    if isinstance(index.dtype, pd.StringDtype) and index.dtype.storage == "pyarrow":
 | 
						|
        msg = "index out of bounds"
 | 
						|
    with pytest.raises(IndexError, match=msg):
 | 
						|
        index[size]
 | 
						|
    msg = "single positional indexer is out-of-bounds"
 | 
						|
    with pytest.raises(IndexError, match=msg):
 | 
						|
        series.iloc[size]
 |