You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			106 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			106 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
from pandas.core.dtypes import dtypes
 | 
						|
from pandas.core.dtypes.common import is_extension_array_dtype
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
import pandas._testing as tm
 | 
						|
from pandas.core.arrays import ExtensionArray
 | 
						|
 | 
						|
 | 
						|
class DummyDtype(dtypes.ExtensionDtype):
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
class DummyArray(ExtensionArray):
 | 
						|
    def __init__(self, data) -> None:
 | 
						|
        self.data = data
 | 
						|
 | 
						|
    def __array__(self, dtype=None, copy=None):
 | 
						|
        return self.data
 | 
						|
 | 
						|
    @property
 | 
						|
    def dtype(self):
 | 
						|
        return DummyDtype()
 | 
						|
 | 
						|
    def astype(self, dtype, copy=True):
 | 
						|
        # we don't support anything but a single dtype
 | 
						|
        if isinstance(dtype, DummyDtype):
 | 
						|
            if copy:
 | 
						|
                return type(self)(self.data)
 | 
						|
            return self
 | 
						|
        elif not copy:
 | 
						|
            return np.asarray(self, dtype=dtype)
 | 
						|
        else:
 | 
						|
            return np.array(self, dtype=dtype, copy=copy)
 | 
						|
 | 
						|
 | 
						|
class TestExtensionArrayDtype:
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "values",
 | 
						|
        [
 | 
						|
            pd.Categorical([]),
 | 
						|
            pd.Categorical([]).dtype,
 | 
						|
            pd.Series(pd.Categorical([])),
 | 
						|
            DummyDtype(),
 | 
						|
            DummyArray(np.array([1, 2])),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_is_extension_array_dtype(self, values):
 | 
						|
        assert is_extension_array_dtype(values)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("values", [np.array([]), pd.Series(np.array([]))])
 | 
						|
    def test_is_not_extension_array_dtype(self, values):
 | 
						|
        assert not is_extension_array_dtype(values)
 | 
						|
 | 
						|
 | 
						|
def test_astype():
 | 
						|
    arr = DummyArray(np.array([1, 2, 3]))
 | 
						|
    expected = np.array([1, 2, 3], dtype=object)
 | 
						|
 | 
						|
    result = arr.astype(object)
 | 
						|
    tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
    result = arr.astype("object")
 | 
						|
    tm.assert_numpy_array_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
def test_astype_no_copy():
 | 
						|
    arr = DummyArray(np.array([1, 2, 3], dtype=np.int64))
 | 
						|
    result = arr.astype(arr.dtype, copy=False)
 | 
						|
 | 
						|
    assert arr is result
 | 
						|
 | 
						|
    result = arr.astype(arr.dtype)
 | 
						|
    assert arr is not result
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("dtype", [dtypes.CategoricalDtype(), dtypes.IntervalDtype()])
 | 
						|
def test_is_extension_array_dtype(dtype):
 | 
						|
    assert isinstance(dtype, dtypes.ExtensionDtype)
 | 
						|
    assert is_extension_array_dtype(dtype)
 | 
						|
 | 
						|
 | 
						|
class CapturingStringArray(pd.arrays.StringArray):
 | 
						|
    """Extend StringArray to capture arguments to __getitem__"""
 | 
						|
 | 
						|
    def __getitem__(self, item):
 | 
						|
        self.last_item_arg = item
 | 
						|
        return super().__getitem__(item)
 | 
						|
 | 
						|
 | 
						|
def test_ellipsis_index():
 | 
						|
    # GH#42430 1D slices over extension types turn into N-dimensional slices
 | 
						|
    #  over ExtensionArrays
 | 
						|
    df = pd.DataFrame(
 | 
						|
        {"col1": CapturingStringArray(np.array(["hello", "world"], dtype=object))}
 | 
						|
    )
 | 
						|
    _ = df.iloc[:1]
 | 
						|
 | 
						|
    # String comparison because there's no native way to compare slices.
 | 
						|
    # Before the fix for GH#42430, last_item_arg would get set to the 2D slice
 | 
						|
    # (Ellipsis, slice(None, 1, None))
 | 
						|
    out = df["col1"].array.last_item_arg
 | 
						|
    assert str(out) == "slice(None, 1, None)"
 |