You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			82 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			82 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
"""
 | 
						|
Tests for DataFrame cumulative operations
 | 
						|
 | 
						|
See also
 | 
						|
--------
 | 
						|
tests.series.test_cumulative
 | 
						|
"""
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
from pandas import (
 | 
						|
    DataFrame,
 | 
						|
    Series,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
 | 
						|
 | 
						|
class TestDataFrameCumulativeOps:
 | 
						|
    # ---------------------------------------------------------------------
 | 
						|
    # Cumulative Operations - cumsum, cummax, ...
 | 
						|
 | 
						|
    def test_cumulative_ops_smoke(self):
 | 
						|
        # it works
 | 
						|
        df = DataFrame({"A": np.arange(20)}, index=np.arange(20))
 | 
						|
        df.cummax()
 | 
						|
        df.cummin()
 | 
						|
        df.cumsum()
 | 
						|
 | 
						|
        dm = DataFrame(np.arange(20).reshape(4, 5), index=range(4), columns=range(5))
 | 
						|
        # TODO(wesm): do something with this?
 | 
						|
        dm.cumsum()
 | 
						|
 | 
						|
    def test_cumprod_smoke(self, datetime_frame):
 | 
						|
        datetime_frame.iloc[5:10, 0] = np.nan
 | 
						|
        datetime_frame.iloc[10:15, 1] = np.nan
 | 
						|
        datetime_frame.iloc[15:, 2] = np.nan
 | 
						|
 | 
						|
        # ints
 | 
						|
        df = datetime_frame.fillna(0).astype(int)
 | 
						|
        df.cumprod(0)
 | 
						|
        df.cumprod(1)
 | 
						|
 | 
						|
        # ints32
 | 
						|
        df = datetime_frame.fillna(0).astype(np.int32)
 | 
						|
        df.cumprod(0)
 | 
						|
        df.cumprod(1)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("method", ["cumsum", "cumprod", "cummin", "cummax"])
 | 
						|
    def test_cumulative_ops_match_series_apply(self, datetime_frame, method):
 | 
						|
        datetime_frame.iloc[5:10, 0] = np.nan
 | 
						|
        datetime_frame.iloc[10:15, 1] = np.nan
 | 
						|
        datetime_frame.iloc[15:, 2] = np.nan
 | 
						|
 | 
						|
        # axis = 0
 | 
						|
        result = getattr(datetime_frame, method)()
 | 
						|
        expected = datetime_frame.apply(getattr(Series, method))
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # axis = 1
 | 
						|
        result = getattr(datetime_frame, method)(axis=1)
 | 
						|
        expected = datetime_frame.apply(getattr(Series, method), axis=1)
 | 
						|
        tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
        # fix issue TODO: GH ref?
 | 
						|
        assert np.shape(result) == np.shape(datetime_frame)
 | 
						|
 | 
						|
    def test_cumsum_preserve_dtypes(self):
 | 
						|
        # GH#19296 dont incorrectly upcast to object
 | 
						|
        df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3.0], "C": [True, False, False]})
 | 
						|
 | 
						|
        result = df.cumsum()
 | 
						|
 | 
						|
        expected = DataFrame(
 | 
						|
            {
 | 
						|
                "A": Series([1, 3, 6], dtype=np.int64),
 | 
						|
                "B": Series([1, 3, 6], dtype=np.float64),
 | 
						|
                "C": df["C"].cumsum(),
 | 
						|
            }
 | 
						|
        )
 | 
						|
        tm.assert_frame_equal(result, expected)
 |