You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			334 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			334 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Python
		
	
# Test GroupBy._positional_selector positional grouped indexing GH#42864
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
import pandas._testing as tm
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "arg, expected_rows",
 | 
						|
    [
 | 
						|
        [0, [0, 1, 4]],
 | 
						|
        [2, [5]],
 | 
						|
        [5, []],
 | 
						|
        [-1, [3, 4, 7]],
 | 
						|
        [-2, [1, 6]],
 | 
						|
        [-6, []],
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_int(slice_test_df, slice_test_grouped, arg, expected_rows):
 | 
						|
    # Test single integer
 | 
						|
    result = slice_test_grouped._positional_selector[arg]
 | 
						|
    expected = slice_test_df.iloc[expected_rows]
 | 
						|
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
def test_slice(slice_test_df, slice_test_grouped):
 | 
						|
    # Test single slice
 | 
						|
    result = slice_test_grouped._positional_selector[0:3:2]
 | 
						|
    expected = slice_test_df.iloc[[0, 1, 4, 5]]
 | 
						|
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "arg, expected_rows",
 | 
						|
    [
 | 
						|
        [[0, 2], [0, 1, 4, 5]],
 | 
						|
        [[0, 2, -1], [0, 1, 3, 4, 5, 7]],
 | 
						|
        [range(0, 3, 2), [0, 1, 4, 5]],
 | 
						|
        [{0, 2}, [0, 1, 4, 5]],
 | 
						|
    ],
 | 
						|
    ids=[
 | 
						|
        "list",
 | 
						|
        "negative",
 | 
						|
        "range",
 | 
						|
        "set",
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_list(slice_test_df, slice_test_grouped, arg, expected_rows):
 | 
						|
    # Test lists of integers and integer valued iterables
 | 
						|
    result = slice_test_grouped._positional_selector[arg]
 | 
						|
    expected = slice_test_df.iloc[expected_rows]
 | 
						|
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
def test_ints(slice_test_df, slice_test_grouped):
 | 
						|
    # Test tuple of ints
 | 
						|
    result = slice_test_grouped._positional_selector[0, 2, -1]
 | 
						|
    expected = slice_test_df.iloc[[0, 1, 3, 4, 5, 7]]
 | 
						|
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
def test_slices(slice_test_df, slice_test_grouped):
 | 
						|
    # Test tuple of slices
 | 
						|
    result = slice_test_grouped._positional_selector[:2, -2:]
 | 
						|
    expected = slice_test_df.iloc[[0, 1, 2, 3, 4, 6, 7]]
 | 
						|
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
def test_mix(slice_test_df, slice_test_grouped):
 | 
						|
    # Test mixed tuple of ints and slices
 | 
						|
    result = slice_test_grouped._positional_selector[0, 1, -2:]
 | 
						|
    expected = slice_test_df.iloc[[0, 1, 2, 3, 4, 6, 7]]
 | 
						|
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "arg, expected_rows",
 | 
						|
    [
 | 
						|
        [0, [0, 1, 4]],
 | 
						|
        [[0, 2, -1], [0, 1, 3, 4, 5, 7]],
 | 
						|
        [(slice(None, 2), slice(-2, None)), [0, 1, 2, 3, 4, 6, 7]],
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_as_index(slice_test_df, arg, expected_rows):
 | 
						|
    # Test the default as_index behaviour
 | 
						|
    result = slice_test_df.groupby("Group", sort=False)._positional_selector[arg]
 | 
						|
    expected = slice_test_df.iloc[expected_rows]
 | 
						|
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
def test_doc_examples():
 | 
						|
    # Test the examples in the documentation
 | 
						|
    df = pd.DataFrame(
 | 
						|
        [["a", 1], ["a", 2], ["a", 3], ["b", 4], ["b", 5]], columns=["A", "B"]
 | 
						|
    )
 | 
						|
 | 
						|
    grouped = df.groupby("A", as_index=False)
 | 
						|
 | 
						|
    result = grouped._positional_selector[1:2]
 | 
						|
    expected = pd.DataFrame([["a", 2], ["b", 5]], columns=["A", "B"], index=[1, 4])
 | 
						|
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
    result = grouped._positional_selector[1, -1]
 | 
						|
    expected = pd.DataFrame(
 | 
						|
        [["a", 2], ["a", 3], ["b", 5]], columns=["A", "B"], index=[1, 2, 4]
 | 
						|
    )
 | 
						|
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture()
 | 
						|
def multiindex_data():
 | 
						|
    rng = np.random.default_rng(2)
 | 
						|
    ndates = 100
 | 
						|
    nitems = 20
 | 
						|
    dates = pd.date_range("20130101", periods=ndates, freq="D")
 | 
						|
    items = [f"item {i}" for i in range(nitems)]
 | 
						|
 | 
						|
    data = {}
 | 
						|
    for date in dates:
 | 
						|
        nitems_for_date = nitems - rng.integers(0, 12)
 | 
						|
        levels = [
 | 
						|
            (item, rng.integers(0, 10000) / 100, rng.integers(0, 10000) / 100)
 | 
						|
            for item in items[:nitems_for_date]
 | 
						|
        ]
 | 
						|
        levels.sort(key=lambda x: x[1])
 | 
						|
        data[date] = levels
 | 
						|
 | 
						|
    return data
 | 
						|
 | 
						|
 | 
						|
def _make_df_from_data(data):
 | 
						|
    rows = {}
 | 
						|
    for date in data:
 | 
						|
        for level in data[date]:
 | 
						|
            rows[(date, level[0])] = {"A": level[1], "B": level[2]}
 | 
						|
 | 
						|
    df = pd.DataFrame.from_dict(rows, orient="index")
 | 
						|
    df.index.names = ("Date", "Item")
 | 
						|
    return df
 | 
						|
 | 
						|
 | 
						|
def test_multiindex(multiindex_data):
 | 
						|
    # Test the multiindex mentioned as the use-case in the documentation
 | 
						|
    df = _make_df_from_data(multiindex_data)
 | 
						|
    result = df.groupby("Date", as_index=False).nth(slice(3, -3))
 | 
						|
 | 
						|
    sliced = {date: multiindex_data[date][3:-3] for date in multiindex_data}
 | 
						|
    expected = _make_df_from_data(sliced)
 | 
						|
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("arg", [1, 5, 30, 1000, -1, -5, -30, -1000])
 | 
						|
@pytest.mark.parametrize("method", ["head", "tail"])
 | 
						|
@pytest.mark.parametrize("simulated", [True, False])
 | 
						|
def test_against_head_and_tail(arg, method, simulated):
 | 
						|
    # Test gives the same results as grouped head and tail
 | 
						|
    n_groups = 100
 | 
						|
    n_rows_per_group = 30
 | 
						|
 | 
						|
    data = {
 | 
						|
        "group": [
 | 
						|
            f"group {g}" for j in range(n_rows_per_group) for g in range(n_groups)
 | 
						|
        ],
 | 
						|
        "value": [
 | 
						|
            f"group {g} row {j}"
 | 
						|
            for j in range(n_rows_per_group)
 | 
						|
            for g in range(n_groups)
 | 
						|
        ],
 | 
						|
    }
 | 
						|
    df = pd.DataFrame(data)
 | 
						|
    grouped = df.groupby("group", as_index=False)
 | 
						|
    size = arg if arg >= 0 else n_rows_per_group + arg
 | 
						|
 | 
						|
    if method == "head":
 | 
						|
        result = grouped._positional_selector[:arg]
 | 
						|
 | 
						|
        if simulated:
 | 
						|
            indices = [
 | 
						|
                j * n_groups + i
 | 
						|
                for j in range(size)
 | 
						|
                for i in range(n_groups)
 | 
						|
                if j * n_groups + i < n_groups * n_rows_per_group
 | 
						|
            ]
 | 
						|
            expected = df.iloc[indices]
 | 
						|
 | 
						|
        else:
 | 
						|
            expected = grouped.head(arg)
 | 
						|
 | 
						|
    else:
 | 
						|
        result = grouped._positional_selector[-arg:]
 | 
						|
 | 
						|
        if simulated:
 | 
						|
            indices = [
 | 
						|
                (n_rows_per_group + j - size) * n_groups + i
 | 
						|
                for j in range(size)
 | 
						|
                for i in range(n_groups)
 | 
						|
                if (n_rows_per_group + j - size) * n_groups + i >= 0
 | 
						|
            ]
 | 
						|
            expected = df.iloc[indices]
 | 
						|
 | 
						|
        else:
 | 
						|
            expected = grouped.tail(arg)
 | 
						|
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("start", [None, 0, 1, 10, -1, -10])
 | 
						|
@pytest.mark.parametrize("stop", [None, 0, 1, 10, -1, -10])
 | 
						|
@pytest.mark.parametrize("step", [None, 1, 5])
 | 
						|
def test_against_df_iloc(start, stop, step):
 | 
						|
    # Test that a single group gives the same results as DataFrame.iloc
 | 
						|
    n_rows = 30
 | 
						|
 | 
						|
    data = {
 | 
						|
        "group": ["group 0"] * n_rows,
 | 
						|
        "value": list(range(n_rows)),
 | 
						|
    }
 | 
						|
    df = pd.DataFrame(data)
 | 
						|
    grouped = df.groupby("group", as_index=False)
 | 
						|
 | 
						|
    result = grouped._positional_selector[start:stop:step]
 | 
						|
    expected = df.iloc[start:stop:step]
 | 
						|
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
def test_series():
 | 
						|
    # Test grouped Series
 | 
						|
    ser = pd.Series([1, 2, 3, 4, 5], index=["a", "a", "a", "b", "b"])
 | 
						|
    grouped = ser.groupby(level=0)
 | 
						|
    result = grouped._positional_selector[1:2]
 | 
						|
    expected = pd.Series([2, 5], index=["a", "b"])
 | 
						|
 | 
						|
    tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("step", [1, 2, 3, 4, 5])
 | 
						|
def test_step(step):
 | 
						|
    # Test slice with various step values
 | 
						|
    data = [["x", f"x{i}"] for i in range(5)]
 | 
						|
    data += [["y", f"y{i}"] for i in range(4)]
 | 
						|
    data += [["z", f"z{i}"] for i in range(3)]
 | 
						|
    df = pd.DataFrame(data, columns=["A", "B"])
 | 
						|
 | 
						|
    grouped = df.groupby("A", as_index=False)
 | 
						|
 | 
						|
    result = grouped._positional_selector[::step]
 | 
						|
 | 
						|
    data = [["x", f"x{i}"] for i in range(0, 5, step)]
 | 
						|
    data += [["y", f"y{i}"] for i in range(0, 4, step)]
 | 
						|
    data += [["z", f"z{i}"] for i in range(0, 3, step)]
 | 
						|
 | 
						|
    index = [0 + i for i in range(0, 5, step)]
 | 
						|
    index += [5 + i for i in range(0, 4, step)]
 | 
						|
    index += [9 + i for i in range(0, 3, step)]
 | 
						|
 | 
						|
    expected = pd.DataFrame(data, columns=["A", "B"], index=index)
 | 
						|
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture()
 | 
						|
def column_group_df():
 | 
						|
    return pd.DataFrame(
 | 
						|
        [[0, 1, 2, 3, 4, 5, 6], [0, 0, 1, 0, 1, 0, 2]],
 | 
						|
        columns=["A", "B", "C", "D", "E", "F", "G"],
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def test_column_axis(column_group_df):
 | 
						|
    msg = "DataFrame.groupby with axis=1"
 | 
						|
    with tm.assert_produces_warning(FutureWarning, match=msg):
 | 
						|
        g = column_group_df.groupby(column_group_df.iloc[1], axis=1)
 | 
						|
    result = g._positional_selector[1:-1]
 | 
						|
    expected = column_group_df.iloc[:, [1, 3]]
 | 
						|
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
def test_columns_on_iter():
 | 
						|
    # GitHub issue #44821
 | 
						|
    df = pd.DataFrame({k: range(10) for k in "ABC"})
 | 
						|
 | 
						|
    # Group-by and select columns
 | 
						|
    cols = ["A", "B"]
 | 
						|
    for _, dg in df.groupby(df.A < 4)[cols]:
 | 
						|
        tm.assert_index_equal(dg.columns, pd.Index(cols))
 | 
						|
        assert "C" not in dg.columns
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("func", [list, pd.Index, pd.Series, np.array])
 | 
						|
def test_groupby_duplicated_columns(func):
 | 
						|
    # GH#44924
 | 
						|
    df = pd.DataFrame(
 | 
						|
        {
 | 
						|
            "A": [1, 2],
 | 
						|
            "B": [3, 3],
 | 
						|
            "C": ["G", "G"],
 | 
						|
        }
 | 
						|
    )
 | 
						|
    result = df.groupby("C")[func(["A", "B", "A"])].mean()
 | 
						|
    expected = pd.DataFrame(
 | 
						|
        [[1.5, 3.0, 1.5]], columns=["A", "B", "A"], index=pd.Index(["G"], name="C")
 | 
						|
    )
 | 
						|
    tm.assert_frame_equal(result, expected)
 | 
						|
 | 
						|
 | 
						|
def test_groupby_get_nonexisting_groups():
 | 
						|
    # GH#32492
 | 
						|
    df = pd.DataFrame(
 | 
						|
        data={
 | 
						|
            "A": ["a1", "a2", None],
 | 
						|
            "B": ["b1", "b2", "b1"],
 | 
						|
            "val": [1, 2, 3],
 | 
						|
        }
 | 
						|
    )
 | 
						|
    grps = df.groupby(by=["A", "B"])
 | 
						|
 | 
						|
    msg = "('a2', 'b1')"
 | 
						|
    with pytest.raises(KeyError, match=msg):
 | 
						|
        grps.get_group(("a2", "b1"))
 |