You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			690 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			690 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
from pandas import (
 | 
						|
    DataFrame,
 | 
						|
    Index,
 | 
						|
    RangeIndex,
 | 
						|
    Series,
 | 
						|
    date_range,
 | 
						|
    period_range,
 | 
						|
    timedelta_range,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
 | 
						|
 | 
						|
def gen_obj(klass, index):
 | 
						|
    if klass is Series:
 | 
						|
        obj = Series(np.arange(len(index)), index=index)
 | 
						|
    else:
 | 
						|
        obj = DataFrame(
 | 
						|
            np.random.default_rng(2).standard_normal((len(index), len(index))),
 | 
						|
            index=index,
 | 
						|
            columns=index,
 | 
						|
        )
 | 
						|
    return obj
 | 
						|
 | 
						|
 | 
						|
class TestFloatIndexers:
 | 
						|
    def check(self, result, original, indexer, getitem):
 | 
						|
        """
 | 
						|
        comparator for results
 | 
						|
        we need to take care if we are indexing on a
 | 
						|
        Series or a frame
 | 
						|
        """
 | 
						|
        if isinstance(original, Series):
 | 
						|
            expected = original.iloc[indexer]
 | 
						|
        elif getitem:
 | 
						|
            expected = original.iloc[:, indexer]
 | 
						|
        else:
 | 
						|
            expected = original.iloc[indexer]
 | 
						|
 | 
						|
        tm.assert_almost_equal(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "index",
 | 
						|
        [
 | 
						|
            Index(list("abcde")),
 | 
						|
            Index(list("abcde"), dtype="category"),
 | 
						|
            date_range("2020-01-01", periods=5),
 | 
						|
            timedelta_range("1 day", periods=5),
 | 
						|
            period_range("2020-01-01", periods=5),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_scalar_non_numeric(self, index, frame_or_series, indexer_sl):
 | 
						|
        # GH 4892
 | 
						|
        # float_indexers should raise exceptions
 | 
						|
        # on appropriate Index types & accessors
 | 
						|
 | 
						|
        s = gen_obj(frame_or_series, index)
 | 
						|
 | 
						|
        # getting
 | 
						|
        with pytest.raises(KeyError, match="^3.0$"):
 | 
						|
            indexer_sl(s)[3.0]
 | 
						|
 | 
						|
        # contains
 | 
						|
        assert 3.0 not in s
 | 
						|
 | 
						|
        s2 = s.copy()
 | 
						|
        indexer_sl(s2)[3.0] = 10
 | 
						|
 | 
						|
        if indexer_sl is tm.setitem:
 | 
						|
            assert 3.0 in s2.axes[-1]
 | 
						|
        elif indexer_sl is tm.loc:
 | 
						|
            assert 3.0 in s2.axes[0]
 | 
						|
        else:
 | 
						|
            assert 3.0 not in s2.axes[0]
 | 
						|
            assert 3.0 not in s2.axes[-1]
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "index",
 | 
						|
        [
 | 
						|
            Index(list("abcde")),
 | 
						|
            Index(list("abcde"), dtype="category"),
 | 
						|
            date_range("2020-01-01", periods=5),
 | 
						|
            timedelta_range("1 day", periods=5),
 | 
						|
            period_range("2020-01-01", periods=5),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_scalar_non_numeric_series_fallback(self, index):
 | 
						|
        # fallsback to position selection, series only
 | 
						|
        s = Series(np.arange(len(index)), index=index)
 | 
						|
 | 
						|
        msg = "Series.__getitem__ treating keys as positions is deprecated"
 | 
						|
        with tm.assert_produces_warning(FutureWarning, match=msg):
 | 
						|
            s[3]
 | 
						|
        with pytest.raises(KeyError, match="^3.0$"):
 | 
						|
            s[3.0]
 | 
						|
 | 
						|
    def test_scalar_with_mixed(self, indexer_sl):
 | 
						|
        s2 = Series([1, 2, 3], index=["a", "b", "c"])
 | 
						|
        s3 = Series([1, 2, 3], index=["a", "b", 1.5])
 | 
						|
 | 
						|
        # lookup in a pure string index with an invalid indexer
 | 
						|
 | 
						|
        with pytest.raises(KeyError, match="^1.0$"):
 | 
						|
            indexer_sl(s2)[1.0]
 | 
						|
 | 
						|
        with pytest.raises(KeyError, match=r"^1\.0$"):
 | 
						|
            indexer_sl(s2)[1.0]
 | 
						|
 | 
						|
        result = indexer_sl(s2)["b"]
 | 
						|
        expected = 2
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
        # mixed index so we have label
 | 
						|
        # indexing
 | 
						|
        with pytest.raises(KeyError, match="^1.0$"):
 | 
						|
            indexer_sl(s3)[1.0]
 | 
						|
 | 
						|
        if indexer_sl is not tm.loc:
 | 
						|
            # __getitem__ falls back to positional
 | 
						|
            msg = "Series.__getitem__ treating keys as positions is deprecated"
 | 
						|
            with tm.assert_produces_warning(FutureWarning, match=msg):
 | 
						|
                result = s3[1]
 | 
						|
            expected = 2
 | 
						|
            assert result == expected
 | 
						|
 | 
						|
        with pytest.raises(KeyError, match=r"^1\.0$"):
 | 
						|
            indexer_sl(s3)[1.0]
 | 
						|
 | 
						|
        result = indexer_sl(s3)[1.5]
 | 
						|
        expected = 3
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "index", [Index(np.arange(5), dtype=np.int64), RangeIndex(5)]
 | 
						|
    )
 | 
						|
    def test_scalar_integer(self, index, frame_or_series, indexer_sl):
 | 
						|
        getitem = indexer_sl is not tm.loc
 | 
						|
 | 
						|
        # test how scalar float indexers work on int indexes
 | 
						|
 | 
						|
        # integer index
 | 
						|
        i = index
 | 
						|
        obj = gen_obj(frame_or_series, i)
 | 
						|
 | 
						|
        # coerce to equal int
 | 
						|
 | 
						|
        result = indexer_sl(obj)[3.0]
 | 
						|
        self.check(result, obj, 3, getitem)
 | 
						|
 | 
						|
        if isinstance(obj, Series):
 | 
						|
 | 
						|
            def compare(x, y):
 | 
						|
                assert x == y
 | 
						|
 | 
						|
            expected = 100
 | 
						|
        else:
 | 
						|
            compare = tm.assert_series_equal
 | 
						|
            if getitem:
 | 
						|
                expected = Series(100, index=range(len(obj)), name=3)
 | 
						|
            else:
 | 
						|
                expected = Series(100.0, index=range(len(obj)), name=3)
 | 
						|
 | 
						|
        s2 = obj.copy()
 | 
						|
        indexer_sl(s2)[3.0] = 100
 | 
						|
 | 
						|
        result = indexer_sl(s2)[3.0]
 | 
						|
        compare(result, expected)
 | 
						|
 | 
						|
        result = indexer_sl(s2)[3]
 | 
						|
        compare(result, expected)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "index", [Index(np.arange(5), dtype=np.int64), RangeIndex(5)]
 | 
						|
    )
 | 
						|
    def test_scalar_integer_contains_float(self, index, frame_or_series):
 | 
						|
        # contains
 | 
						|
        # integer index
 | 
						|
        obj = gen_obj(frame_or_series, index)
 | 
						|
 | 
						|
        # coerce to equal int
 | 
						|
        assert 3.0 in obj
 | 
						|
 | 
						|
    def test_scalar_float(self, frame_or_series):
 | 
						|
        # scalar float indexers work on a float index
 | 
						|
        index = Index(np.arange(5.0))
 | 
						|
        s = gen_obj(frame_or_series, index)
 | 
						|
 | 
						|
        # assert all operations except for iloc are ok
 | 
						|
        indexer = index[3]
 | 
						|
        for idxr in [tm.loc, tm.setitem]:
 | 
						|
            getitem = idxr is not tm.loc
 | 
						|
 | 
						|
            # getting
 | 
						|
            result = idxr(s)[indexer]
 | 
						|
            self.check(result, s, 3, getitem)
 | 
						|
 | 
						|
            # setting
 | 
						|
            s2 = s.copy()
 | 
						|
 | 
						|
            result = idxr(s2)[indexer]
 | 
						|
            self.check(result, s, 3, getitem)
 | 
						|
 | 
						|
            # random float is a KeyError
 | 
						|
            with pytest.raises(KeyError, match=r"^3\.5$"):
 | 
						|
                idxr(s)[3.5]
 | 
						|
 | 
						|
        # contains
 | 
						|
        assert 3.0 in s
 | 
						|
 | 
						|
        # iloc succeeds with an integer
 | 
						|
        expected = s.iloc[3]
 | 
						|
        s2 = s.copy()
 | 
						|
 | 
						|
        s2.iloc[3] = expected
 | 
						|
        result = s2.iloc[3]
 | 
						|
        self.check(result, s, 3, False)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "index",
 | 
						|
        [
 | 
						|
            Index(list("abcde"), dtype=object),
 | 
						|
            date_range("2020-01-01", periods=5),
 | 
						|
            timedelta_range("1 day", periods=5),
 | 
						|
            period_range("2020-01-01", periods=5),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    @pytest.mark.parametrize("idx", [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)])
 | 
						|
    def test_slice_non_numeric(self, index, idx, frame_or_series, indexer_sli):
 | 
						|
        # GH 4892
 | 
						|
        # float_indexers should raise exceptions
 | 
						|
        # on appropriate Index types & accessors
 | 
						|
 | 
						|
        s = gen_obj(frame_or_series, index)
 | 
						|
 | 
						|
        # getitem
 | 
						|
        if indexer_sli is tm.iloc:
 | 
						|
            msg = (
 | 
						|
                "cannot do positional indexing "
 | 
						|
                rf"on {type(index).__name__} with these indexers \[(3|4)\.0\] of "
 | 
						|
                "type float"
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            msg = (
 | 
						|
                "cannot do slice indexing "
 | 
						|
                rf"on {type(index).__name__} with these indexers "
 | 
						|
                r"\[(3|4)(\.0)?\] "
 | 
						|
                r"of type (float|int)"
 | 
						|
            )
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            indexer_sli(s)[idx]
 | 
						|
 | 
						|
        # setitem
 | 
						|
        if indexer_sli is tm.iloc:
 | 
						|
            # otherwise we keep the same message as above
 | 
						|
            msg = "slice indices must be integers or None or have an __index__ method"
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            indexer_sli(s)[idx] = 0
 | 
						|
 | 
						|
    def test_slice_integer(self):
 | 
						|
        # same as above, but for Integer based indexes
 | 
						|
        # these coerce to a like integer
 | 
						|
        # oob indicates if we are out of bounds
 | 
						|
        # of positional indexing
 | 
						|
        for index, oob in [
 | 
						|
            (Index(np.arange(5, dtype=np.int64)), False),
 | 
						|
            (RangeIndex(5), False),
 | 
						|
            (Index(np.arange(5, dtype=np.int64) + 10), True),
 | 
						|
        ]:
 | 
						|
            # s is an in-range index
 | 
						|
            s = Series(range(5), index=index)
 | 
						|
 | 
						|
            # getitem
 | 
						|
            for idx in [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)]:
 | 
						|
                result = s.loc[idx]
 | 
						|
 | 
						|
                # these are all label indexing
 | 
						|
                # except getitem which is positional
 | 
						|
                # empty
 | 
						|
                if oob:
 | 
						|
                    indexer = slice(0, 0)
 | 
						|
                else:
 | 
						|
                    indexer = slice(3, 5)
 | 
						|
                self.check(result, s, indexer, False)
 | 
						|
 | 
						|
            # getitem out-of-bounds
 | 
						|
            for idx in [slice(-6, 6), slice(-6.0, 6.0)]:
 | 
						|
                result = s.loc[idx]
 | 
						|
 | 
						|
                # these are all label indexing
 | 
						|
                # except getitem which is positional
 | 
						|
                # empty
 | 
						|
                if oob:
 | 
						|
                    indexer = slice(0, 0)
 | 
						|
                else:
 | 
						|
                    indexer = slice(-6, 6)
 | 
						|
                self.check(result, s, indexer, False)
 | 
						|
 | 
						|
            # positional indexing
 | 
						|
            msg = (
 | 
						|
                "cannot do slice indexing "
 | 
						|
                rf"on {type(index).__name__} with these indexers \[-6\.0\] of "
 | 
						|
                "type float"
 | 
						|
            )
 | 
						|
            with pytest.raises(TypeError, match=msg):
 | 
						|
                s[slice(-6.0, 6.0)]
 | 
						|
 | 
						|
            # getitem odd floats
 | 
						|
            for idx, res1 in [
 | 
						|
                (slice(2.5, 4), slice(3, 5)),
 | 
						|
                (slice(2, 3.5), slice(2, 4)),
 | 
						|
                (slice(2.5, 3.5), slice(3, 4)),
 | 
						|
            ]:
 | 
						|
                result = s.loc[idx]
 | 
						|
                if oob:
 | 
						|
                    res = slice(0, 0)
 | 
						|
                else:
 | 
						|
                    res = res1
 | 
						|
 | 
						|
                self.check(result, s, res, False)
 | 
						|
 | 
						|
                # positional indexing
 | 
						|
                msg = (
 | 
						|
                    "cannot do slice indexing "
 | 
						|
                    rf"on {type(index).__name__} with these indexers \[(2|3)\.5\] of "
 | 
						|
                    "type float"
 | 
						|
                )
 | 
						|
                with pytest.raises(TypeError, match=msg):
 | 
						|
                    s[idx]
 | 
						|
 | 
						|
    @pytest.mark.parametrize("idx", [slice(2, 4.0), slice(2.0, 4), slice(2.0, 4.0)])
 | 
						|
    def test_integer_positional_indexing(self, idx):
 | 
						|
        """make sure that we are raising on positional indexing
 | 
						|
        w.r.t. an integer index
 | 
						|
        """
 | 
						|
        s = Series(range(2, 6), index=range(2, 6))
 | 
						|
 | 
						|
        result = s[2:4]
 | 
						|
        expected = s.iloc[2:4]
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        klass = RangeIndex
 | 
						|
        msg = (
 | 
						|
            "cannot do (slice|positional) indexing "
 | 
						|
            rf"on {klass.__name__} with these indexers \[(2|4)\.0\] of "
 | 
						|
            "type float"
 | 
						|
        )
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            s[idx]
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            s.iloc[idx]
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "index", [Index(np.arange(5), dtype=np.int64), RangeIndex(5)]
 | 
						|
    )
 | 
						|
    def test_slice_integer_frame_getitem(self, index):
 | 
						|
        # similar to above, but on the getitem dim (of a DataFrame)
 | 
						|
        s = DataFrame(np.random.default_rng(2).standard_normal((5, 2)), index=index)
 | 
						|
 | 
						|
        # getitem
 | 
						|
        for idx in [slice(0.0, 1), slice(0, 1.0), slice(0.0, 1.0)]:
 | 
						|
            result = s.loc[idx]
 | 
						|
            indexer = slice(0, 2)
 | 
						|
            self.check(result, s, indexer, False)
 | 
						|
 | 
						|
            # positional indexing
 | 
						|
            msg = (
 | 
						|
                "cannot do slice indexing "
 | 
						|
                rf"on {type(index).__name__} with these indexers \[(0|1)\.0\] of "
 | 
						|
                "type float"
 | 
						|
            )
 | 
						|
            with pytest.raises(TypeError, match=msg):
 | 
						|
                s[idx]
 | 
						|
 | 
						|
        # getitem out-of-bounds
 | 
						|
        for idx in [slice(-10, 10), slice(-10.0, 10.0)]:
 | 
						|
            result = s.loc[idx]
 | 
						|
            self.check(result, s, slice(-10, 10), True)
 | 
						|
 | 
						|
        # positional indexing
 | 
						|
        msg = (
 | 
						|
            "cannot do slice indexing "
 | 
						|
            rf"on {type(index).__name__} with these indexers \[-10\.0\] of "
 | 
						|
            "type float"
 | 
						|
        )
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            s[slice(-10.0, 10.0)]
 | 
						|
 | 
						|
        # getitem odd floats
 | 
						|
        for idx, res in [
 | 
						|
            (slice(0.5, 1), slice(1, 2)),
 | 
						|
            (slice(0, 0.5), slice(0, 1)),
 | 
						|
            (slice(0.5, 1.5), slice(1, 2)),
 | 
						|
        ]:
 | 
						|
            result = s.loc[idx]
 | 
						|
            self.check(result, s, res, False)
 | 
						|
 | 
						|
            # positional indexing
 | 
						|
            msg = (
 | 
						|
                "cannot do slice indexing "
 | 
						|
                rf"on {type(index).__name__} with these indexers \[0\.5\] of "
 | 
						|
                "type float"
 | 
						|
            )
 | 
						|
            with pytest.raises(TypeError, match=msg):
 | 
						|
                s[idx]
 | 
						|
 | 
						|
    @pytest.mark.parametrize("idx", [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)])
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "index", [Index(np.arange(5), dtype=np.int64), RangeIndex(5)]
 | 
						|
    )
 | 
						|
    def test_float_slice_getitem_with_integer_index_raises(self, idx, index):
 | 
						|
        # similar to above, but on the getitem dim (of a DataFrame)
 | 
						|
        s = DataFrame(np.random.default_rng(2).standard_normal((5, 2)), index=index)
 | 
						|
 | 
						|
        # setitem
 | 
						|
        sc = s.copy()
 | 
						|
        sc.loc[idx] = 0
 | 
						|
        result = sc.loc[idx].values.ravel()
 | 
						|
        assert (result == 0).all()
 | 
						|
 | 
						|
        # positional indexing
 | 
						|
        msg = (
 | 
						|
            "cannot do slice indexing "
 | 
						|
            rf"on {type(index).__name__} with these indexers \[(3|4)\.0\] of "
 | 
						|
            "type float"
 | 
						|
        )
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            s[idx] = 0
 | 
						|
 | 
						|
        with pytest.raises(TypeError, match=msg):
 | 
						|
            s[idx]
 | 
						|
 | 
						|
    @pytest.mark.parametrize("idx", [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)])
 | 
						|
    def test_slice_float(self, idx, frame_or_series, indexer_sl):
 | 
						|
        # same as above, but for floats
 | 
						|
        index = Index(np.arange(5.0)) + 0.1
 | 
						|
        s = gen_obj(frame_or_series, index)
 | 
						|
 | 
						|
        expected = s.iloc[3:4]
 | 
						|
 | 
						|
        # getitem
 | 
						|
        result = indexer_sl(s)[idx]
 | 
						|
        assert isinstance(result, type(s))
 | 
						|
        tm.assert_equal(result, expected)
 | 
						|
 | 
						|
        # setitem
 | 
						|
        s2 = s.copy()
 | 
						|
        indexer_sl(s2)[idx] = 0
 | 
						|
        result = indexer_sl(s2)[idx].values.ravel()
 | 
						|
        assert (result == 0).all()
 | 
						|
 | 
						|
    def test_floating_index_doc_example(self):
 | 
						|
        index = Index([1.5, 2, 3, 4.5, 5])
 | 
						|
        s = Series(range(5), index=index)
 | 
						|
        assert s[3] == 2
 | 
						|
        assert s.loc[3] == 2
 | 
						|
        assert s.iloc[3] == 3
 | 
						|
 | 
						|
    def test_floating_misc(self, indexer_sl):
 | 
						|
        # related 236
 | 
						|
        # scalar/slicing of a float index
 | 
						|
        s = Series(np.arange(5), index=np.arange(5) * 2.5, dtype=np.int64)
 | 
						|
 | 
						|
        # label based slicing
 | 
						|
        result = indexer_sl(s)[1.0:3.0]
 | 
						|
        expected = Series(1, index=[2.5])
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        # exact indexing when found
 | 
						|
 | 
						|
        result = indexer_sl(s)[5.0]
 | 
						|
        assert result == 2
 | 
						|
 | 
						|
        result = indexer_sl(s)[5]
 | 
						|
        assert result == 2
 | 
						|
 | 
						|
        # value not found (and no fallbacking at all)
 | 
						|
 | 
						|
        # scalar integers
 | 
						|
        with pytest.raises(KeyError, match=r"^4$"):
 | 
						|
            indexer_sl(s)[4]
 | 
						|
 | 
						|
        # fancy floats/integers create the correct entry (as nan)
 | 
						|
        # fancy tests
 | 
						|
        expected = Series([2, 0], index=Index([5.0, 0.0], dtype=np.float64))
 | 
						|
        for fancy_idx in [[5.0, 0.0], np.array([5.0, 0.0])]:  # float
 | 
						|
            tm.assert_series_equal(indexer_sl(s)[fancy_idx], expected)
 | 
						|
 | 
						|
        expected = Series([2, 0], index=Index([5, 0], dtype="float64"))
 | 
						|
        for fancy_idx in [[5, 0], np.array([5, 0])]:
 | 
						|
            tm.assert_series_equal(indexer_sl(s)[fancy_idx], expected)
 | 
						|
 | 
						|
        warn = FutureWarning if indexer_sl is tm.setitem else None
 | 
						|
        msg = r"The behavior of obj\[i:j\] with a float-dtype index"
 | 
						|
 | 
						|
        # all should return the same as we are slicing 'the same'
 | 
						|
        with tm.assert_produces_warning(warn, match=msg):
 | 
						|
            result1 = indexer_sl(s)[2:5]
 | 
						|
        result2 = indexer_sl(s)[2.0:5.0]
 | 
						|
        result3 = indexer_sl(s)[2.0:5]
 | 
						|
        result4 = indexer_sl(s)[2.1:5]
 | 
						|
        tm.assert_series_equal(result1, result2)
 | 
						|
        tm.assert_series_equal(result1, result3)
 | 
						|
        tm.assert_series_equal(result1, result4)
 | 
						|
 | 
						|
        expected = Series([1, 2], index=[2.5, 5.0])
 | 
						|
        with tm.assert_produces_warning(warn, match=msg):
 | 
						|
            result = indexer_sl(s)[2:5]
 | 
						|
 | 
						|
        tm.assert_series_equal(result, expected)
 | 
						|
 | 
						|
        # list selection
 | 
						|
        result1 = indexer_sl(s)[[0.0, 5, 10]]
 | 
						|
        result2 = s.iloc[[0, 2, 4]]
 | 
						|
        tm.assert_series_equal(result1, result2)
 | 
						|
 | 
						|
        with pytest.raises(KeyError, match="not in index"):
 | 
						|
            indexer_sl(s)[[1.6, 5, 10]]
 | 
						|
 | 
						|
        with pytest.raises(KeyError, match="not in index"):
 | 
						|
            indexer_sl(s)[[0, 1, 2]]
 | 
						|
 | 
						|
        result = indexer_sl(s)[[2.5, 5]]
 | 
						|
        tm.assert_series_equal(result, Series([1, 2], index=[2.5, 5.0]))
 | 
						|
 | 
						|
        result = indexer_sl(s)[[2.5]]
 | 
						|
        tm.assert_series_equal(result, Series([1], index=[2.5]))
 | 
						|
 | 
						|
    def test_floatindex_slicing_bug(self, float_numpy_dtype):
 | 
						|
        # GH 5557, related to slicing a float index
 | 
						|
        dtype = float_numpy_dtype
 | 
						|
        ser = {
 | 
						|
            256: 2321.0,
 | 
						|
            1: 78.0,
 | 
						|
            2: 2716.0,
 | 
						|
            3: 0.0,
 | 
						|
            4: 369.0,
 | 
						|
            5: 0.0,
 | 
						|
            6: 269.0,
 | 
						|
            7: 0.0,
 | 
						|
            8: 0.0,
 | 
						|
            9: 0.0,
 | 
						|
            10: 3536.0,
 | 
						|
            11: 0.0,
 | 
						|
            12: 24.0,
 | 
						|
            13: 0.0,
 | 
						|
            14: 931.0,
 | 
						|
            15: 0.0,
 | 
						|
            16: 101.0,
 | 
						|
            17: 78.0,
 | 
						|
            18: 9643.0,
 | 
						|
            19: 0.0,
 | 
						|
            20: 0.0,
 | 
						|
            21: 0.0,
 | 
						|
            22: 63761.0,
 | 
						|
            23: 0.0,
 | 
						|
            24: 446.0,
 | 
						|
            25: 0.0,
 | 
						|
            26: 34773.0,
 | 
						|
            27: 0.0,
 | 
						|
            28: 729.0,
 | 
						|
            29: 78.0,
 | 
						|
            30: 0.0,
 | 
						|
            31: 0.0,
 | 
						|
            32: 3374.0,
 | 
						|
            33: 0.0,
 | 
						|
            34: 1391.0,
 | 
						|
            35: 0.0,
 | 
						|
            36: 361.0,
 | 
						|
            37: 0.0,
 | 
						|
            38: 61808.0,
 | 
						|
            39: 0.0,
 | 
						|
            40: 0.0,
 | 
						|
            41: 0.0,
 | 
						|
            42: 6677.0,
 | 
						|
            43: 0.0,
 | 
						|
            44: 802.0,
 | 
						|
            45: 0.0,
 | 
						|
            46: 2691.0,
 | 
						|
            47: 0.0,
 | 
						|
            48: 3582.0,
 | 
						|
            49: 0.0,
 | 
						|
            50: 734.0,
 | 
						|
            51: 0.0,
 | 
						|
            52: 627.0,
 | 
						|
            53: 70.0,
 | 
						|
            54: 2584.0,
 | 
						|
            55: 0.0,
 | 
						|
            56: 324.0,
 | 
						|
            57: 0.0,
 | 
						|
            58: 605.0,
 | 
						|
            59: 0.0,
 | 
						|
            60: 0.0,
 | 
						|
            61: 0.0,
 | 
						|
            62: 3989.0,
 | 
						|
            63: 10.0,
 | 
						|
            64: 42.0,
 | 
						|
            65: 0.0,
 | 
						|
            66: 904.0,
 | 
						|
            67: 0.0,
 | 
						|
            68: 88.0,
 | 
						|
            69: 70.0,
 | 
						|
            70: 8172.0,
 | 
						|
            71: 0.0,
 | 
						|
            72: 0.0,
 | 
						|
            73: 0.0,
 | 
						|
            74: 64902.0,
 | 
						|
            75: 0.0,
 | 
						|
            76: 347.0,
 | 
						|
            77: 0.0,
 | 
						|
            78: 36605.0,
 | 
						|
            79: 0.0,
 | 
						|
            80: 379.0,
 | 
						|
            81: 70.0,
 | 
						|
            82: 0.0,
 | 
						|
            83: 0.0,
 | 
						|
            84: 3001.0,
 | 
						|
            85: 0.0,
 | 
						|
            86: 1630.0,
 | 
						|
            87: 7.0,
 | 
						|
            88: 364.0,
 | 
						|
            89: 0.0,
 | 
						|
            90: 67404.0,
 | 
						|
            91: 9.0,
 | 
						|
            92: 0.0,
 | 
						|
            93: 0.0,
 | 
						|
            94: 7685.0,
 | 
						|
            95: 0.0,
 | 
						|
            96: 1017.0,
 | 
						|
            97: 0.0,
 | 
						|
            98: 2831.0,
 | 
						|
            99: 0.0,
 | 
						|
            100: 2963.0,
 | 
						|
            101: 0.0,
 | 
						|
            102: 854.0,
 | 
						|
            103: 0.0,
 | 
						|
            104: 0.0,
 | 
						|
            105: 0.0,
 | 
						|
            106: 0.0,
 | 
						|
            107: 0.0,
 | 
						|
            108: 0.0,
 | 
						|
            109: 0.0,
 | 
						|
            110: 0.0,
 | 
						|
            111: 0.0,
 | 
						|
            112: 0.0,
 | 
						|
            113: 0.0,
 | 
						|
            114: 0.0,
 | 
						|
            115: 0.0,
 | 
						|
            116: 0.0,
 | 
						|
            117: 0.0,
 | 
						|
            118: 0.0,
 | 
						|
            119: 0.0,
 | 
						|
            120: 0.0,
 | 
						|
            121: 0.0,
 | 
						|
            122: 0.0,
 | 
						|
            123: 0.0,
 | 
						|
            124: 0.0,
 | 
						|
            125: 0.0,
 | 
						|
            126: 67744.0,
 | 
						|
            127: 22.0,
 | 
						|
            128: 264.0,
 | 
						|
            129: 0.0,
 | 
						|
            260: 197.0,
 | 
						|
            268: 0.0,
 | 
						|
            265: 0.0,
 | 
						|
            269: 0.0,
 | 
						|
            261: 0.0,
 | 
						|
            266: 1198.0,
 | 
						|
            267: 0.0,
 | 
						|
            262: 2629.0,
 | 
						|
            258: 775.0,
 | 
						|
            257: 0.0,
 | 
						|
            263: 0.0,
 | 
						|
            259: 0.0,
 | 
						|
            264: 163.0,
 | 
						|
            250: 10326.0,
 | 
						|
            251: 0.0,
 | 
						|
            252: 1228.0,
 | 
						|
            253: 0.0,
 | 
						|
            254: 2769.0,
 | 
						|
            255: 0.0,
 | 
						|
        }
 | 
						|
 | 
						|
        # smoke test for the repr
 | 
						|
        s = Series(ser, dtype=dtype)
 | 
						|
        result = s.value_counts()
 | 
						|
        assert result.index.dtype == dtype
 | 
						|
        str(result)
 |