You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			349 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			349 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
import io
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
from pandas._config import using_string_dtype
 | 
						|
 | 
						|
from pandas import (
 | 
						|
    DataFrame,
 | 
						|
    date_range,
 | 
						|
    read_csv,
 | 
						|
    read_excel,
 | 
						|
    read_feather,
 | 
						|
    read_json,
 | 
						|
    read_parquet,
 | 
						|
    read_pickle,
 | 
						|
    read_stata,
 | 
						|
    read_table,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
from pandas.util import _test_decorators as td
 | 
						|
 | 
						|
pytestmark = pytest.mark.filterwarnings(
 | 
						|
    "ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def fsspectest():
 | 
						|
    pytest.importorskip("fsspec")
 | 
						|
    from fsspec import register_implementation
 | 
						|
    from fsspec.implementations.memory import MemoryFileSystem
 | 
						|
    from fsspec.registry import _registry as registry
 | 
						|
 | 
						|
    class TestMemoryFS(MemoryFileSystem):
 | 
						|
        protocol = "testmem"
 | 
						|
        test = [None]
 | 
						|
 | 
						|
        def __init__(self, **kwargs) -> None:
 | 
						|
            self.test[0] = kwargs.pop("test", None)
 | 
						|
            super().__init__(**kwargs)
 | 
						|
 | 
						|
    register_implementation("testmem", TestMemoryFS, clobber=True)
 | 
						|
    yield TestMemoryFS()
 | 
						|
    registry.pop("testmem", None)
 | 
						|
    TestMemoryFS.test[0] = None
 | 
						|
    TestMemoryFS.store.clear()
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def df1():
 | 
						|
    return DataFrame(
 | 
						|
        {
 | 
						|
            "int": [1, 3],
 | 
						|
            "float": [2.0, np.nan],
 | 
						|
            "str": ["t", "s"],
 | 
						|
            "dt": date_range("2018-06-18", periods=2),
 | 
						|
        }
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def cleared_fs():
 | 
						|
    fsspec = pytest.importorskip("fsspec")
 | 
						|
 | 
						|
    memfs = fsspec.filesystem("memory")
 | 
						|
    yield memfs
 | 
						|
    memfs.store.clear()
 | 
						|
 | 
						|
 | 
						|
def test_read_csv(cleared_fs, df1):
 | 
						|
    text = str(df1.to_csv(index=False)).encode()
 | 
						|
    with cleared_fs.open("test/test.csv", "wb") as w:
 | 
						|
        w.write(text)
 | 
						|
    df2 = read_csv("memory://test/test.csv", parse_dates=["dt"])
 | 
						|
 | 
						|
    tm.assert_frame_equal(df1, df2)
 | 
						|
 | 
						|
 | 
						|
def test_reasonable_error(monkeypatch, cleared_fs):
 | 
						|
    from fsspec.registry import known_implementations
 | 
						|
 | 
						|
    with pytest.raises(ValueError, match="nosuchprotocol"):
 | 
						|
        read_csv("nosuchprotocol://test/test.csv")
 | 
						|
    err_msg = "test error message"
 | 
						|
    monkeypatch.setitem(
 | 
						|
        known_implementations,
 | 
						|
        "couldexist",
 | 
						|
        {"class": "unimportable.CouldExist", "err": err_msg},
 | 
						|
    )
 | 
						|
    with pytest.raises(ImportError, match=err_msg):
 | 
						|
        read_csv("couldexist://test/test.csv")
 | 
						|
 | 
						|
 | 
						|
def test_to_csv(cleared_fs, df1):
 | 
						|
    df1.to_csv("memory://test/test.csv", index=True)
 | 
						|
 | 
						|
    df2 = read_csv("memory://test/test.csv", parse_dates=["dt"], index_col=0)
 | 
						|
 | 
						|
    tm.assert_frame_equal(df1, df2)
 | 
						|
 | 
						|
 | 
						|
def test_to_excel(cleared_fs, df1):
 | 
						|
    pytest.importorskip("openpyxl")
 | 
						|
    ext = "xlsx"
 | 
						|
    path = f"memory://test/test.{ext}"
 | 
						|
    df1.to_excel(path, index=True)
 | 
						|
 | 
						|
    df2 = read_excel(path, parse_dates=["dt"], index_col=0)
 | 
						|
 | 
						|
    tm.assert_frame_equal(df1, df2)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("binary_mode", [False, True])
 | 
						|
def test_to_csv_fsspec_object(cleared_fs, binary_mode, df1):
 | 
						|
    fsspec = pytest.importorskip("fsspec")
 | 
						|
 | 
						|
    path = "memory://test/test.csv"
 | 
						|
    mode = "wb" if binary_mode else "w"
 | 
						|
    with fsspec.open(path, mode=mode).open() as fsspec_object:
 | 
						|
        df1.to_csv(fsspec_object, index=True)
 | 
						|
        assert not fsspec_object.closed
 | 
						|
 | 
						|
    mode = mode.replace("w", "r")
 | 
						|
    with fsspec.open(path, mode=mode) as fsspec_object:
 | 
						|
        df2 = read_csv(
 | 
						|
            fsspec_object,
 | 
						|
            parse_dates=["dt"],
 | 
						|
            index_col=0,
 | 
						|
        )
 | 
						|
        assert not fsspec_object.closed
 | 
						|
 | 
						|
    tm.assert_frame_equal(df1, df2)
 | 
						|
 | 
						|
 | 
						|
def test_csv_options(fsspectest):
 | 
						|
    df = DataFrame({"a": [0]})
 | 
						|
    df.to_csv(
 | 
						|
        "testmem://test/test.csv", storage_options={"test": "csv_write"}, index=False
 | 
						|
    )
 | 
						|
    assert fsspectest.test[0] == "csv_write"
 | 
						|
    read_csv("testmem://test/test.csv", storage_options={"test": "csv_read"})
 | 
						|
    assert fsspectest.test[0] == "csv_read"
 | 
						|
 | 
						|
 | 
						|
def test_read_table_options(fsspectest):
 | 
						|
    # GH #39167
 | 
						|
    df = DataFrame({"a": [0]})
 | 
						|
    df.to_csv(
 | 
						|
        "testmem://test/test.csv", storage_options={"test": "csv_write"}, index=False
 | 
						|
    )
 | 
						|
    assert fsspectest.test[0] == "csv_write"
 | 
						|
    read_table("testmem://test/test.csv", storage_options={"test": "csv_read"})
 | 
						|
    assert fsspectest.test[0] == "csv_read"
 | 
						|
 | 
						|
 | 
						|
def test_excel_options(fsspectest):
 | 
						|
    pytest.importorskip("openpyxl")
 | 
						|
    extension = "xlsx"
 | 
						|
 | 
						|
    df = DataFrame({"a": [0]})
 | 
						|
 | 
						|
    path = f"testmem://test/test.{extension}"
 | 
						|
 | 
						|
    df.to_excel(path, storage_options={"test": "write"}, index=False)
 | 
						|
    assert fsspectest.test[0] == "write"
 | 
						|
    read_excel(path, storage_options={"test": "read"})
 | 
						|
    assert fsspectest.test[0] == "read"
 | 
						|
 | 
						|
 | 
						|
def test_to_parquet_new_file(cleared_fs, df1):
 | 
						|
    """Regression test for writing to a not-yet-existent GCS Parquet file."""
 | 
						|
    pytest.importorskip("fastparquet")
 | 
						|
 | 
						|
    df1.to_parquet(
 | 
						|
        "memory://test/test.csv", index=True, engine="fastparquet", compression=None
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def test_arrowparquet_options(fsspectest):
 | 
						|
    """Regression test for writing to a not-yet-existent GCS Parquet file."""
 | 
						|
    pytest.importorskip("pyarrow")
 | 
						|
    df = DataFrame({"a": [0]})
 | 
						|
    df.to_parquet(
 | 
						|
        "testmem://test/test.csv",
 | 
						|
        engine="pyarrow",
 | 
						|
        compression=None,
 | 
						|
        storage_options={"test": "parquet_write"},
 | 
						|
    )
 | 
						|
    assert fsspectest.test[0] == "parquet_write"
 | 
						|
    read_parquet(
 | 
						|
        "testmem://test/test.csv",
 | 
						|
        engine="pyarrow",
 | 
						|
        storage_options={"test": "parquet_read"},
 | 
						|
    )
 | 
						|
    assert fsspectest.test[0] == "parquet_read"
 | 
						|
 | 
						|
 | 
						|
@td.skip_array_manager_not_yet_implemented  # TODO(ArrayManager) fastparquet
 | 
						|
def test_fastparquet_options(fsspectest):
 | 
						|
    """Regression test for writing to a not-yet-existent GCS Parquet file."""
 | 
						|
    pytest.importorskip("fastparquet")
 | 
						|
 | 
						|
    df = DataFrame({"a": [0]})
 | 
						|
    df.to_parquet(
 | 
						|
        "testmem://test/test.csv",
 | 
						|
        engine="fastparquet",
 | 
						|
        compression=None,
 | 
						|
        storage_options={"test": "parquet_write"},
 | 
						|
    )
 | 
						|
    assert fsspectest.test[0] == "parquet_write"
 | 
						|
    read_parquet(
 | 
						|
        "testmem://test/test.csv",
 | 
						|
        engine="fastparquet",
 | 
						|
        storage_options={"test": "parquet_read"},
 | 
						|
    )
 | 
						|
    assert fsspectest.test[0] == "parquet_read"
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.single_cpu
 | 
						|
def test_from_s3_csv(s3_public_bucket_with_data, tips_file, s3so):
 | 
						|
    pytest.importorskip("s3fs")
 | 
						|
    tm.assert_equal(
 | 
						|
        read_csv(
 | 
						|
            f"s3://{s3_public_bucket_with_data.name}/tips.csv", storage_options=s3so
 | 
						|
        ),
 | 
						|
        read_csv(tips_file),
 | 
						|
    )
 | 
						|
    # the following are decompressed by pandas, not fsspec
 | 
						|
    tm.assert_equal(
 | 
						|
        read_csv(
 | 
						|
            f"s3://{s3_public_bucket_with_data.name}/tips.csv.gz", storage_options=s3so
 | 
						|
        ),
 | 
						|
        read_csv(tips_file),
 | 
						|
    )
 | 
						|
    tm.assert_equal(
 | 
						|
        read_csv(
 | 
						|
            f"s3://{s3_public_bucket_with_data.name}/tips.csv.bz2", storage_options=s3so
 | 
						|
        ),
 | 
						|
        read_csv(tips_file),
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.single_cpu
 | 
						|
@pytest.mark.parametrize("protocol", ["s3", "s3a", "s3n"])
 | 
						|
def test_s3_protocols(s3_public_bucket_with_data, tips_file, protocol, s3so):
 | 
						|
    pytest.importorskip("s3fs")
 | 
						|
    tm.assert_equal(
 | 
						|
        read_csv(
 | 
						|
            f"{protocol}://{s3_public_bucket_with_data.name}/tips.csv",
 | 
						|
            storage_options=s3so,
 | 
						|
        ),
 | 
						|
        read_csv(tips_file),
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string) fastparquet")
 | 
						|
@pytest.mark.single_cpu
 | 
						|
@td.skip_array_manager_not_yet_implemented  # TODO(ArrayManager) fastparquet
 | 
						|
def test_s3_parquet(s3_public_bucket, s3so, df1):
 | 
						|
    pytest.importorskip("fastparquet")
 | 
						|
    pytest.importorskip("s3fs")
 | 
						|
 | 
						|
    fn = f"s3://{s3_public_bucket.name}/test.parquet"
 | 
						|
    df1.to_parquet(
 | 
						|
        fn, index=False, engine="fastparquet", compression=None, storage_options=s3so
 | 
						|
    )
 | 
						|
    df2 = read_parquet(fn, engine="fastparquet", storage_options=s3so)
 | 
						|
    tm.assert_equal(df1, df2)
 | 
						|
 | 
						|
 | 
						|
@td.skip_if_installed("fsspec")
 | 
						|
def test_not_present_exception():
 | 
						|
    msg = "Missing optional dependency 'fsspec'|fsspec library is required"
 | 
						|
    with pytest.raises(ImportError, match=msg):
 | 
						|
        read_csv("memory://test/test.csv")
 | 
						|
 | 
						|
 | 
						|
def test_feather_options(fsspectest):
 | 
						|
    pytest.importorskip("pyarrow")
 | 
						|
    df = DataFrame({"a": [0]})
 | 
						|
    df.to_feather("testmem://mockfile", storage_options={"test": "feather_write"})
 | 
						|
    assert fsspectest.test[0] == "feather_write"
 | 
						|
    out = read_feather("testmem://mockfile", storage_options={"test": "feather_read"})
 | 
						|
    assert fsspectest.test[0] == "feather_read"
 | 
						|
    tm.assert_frame_equal(df, out)
 | 
						|
 | 
						|
 | 
						|
def test_pickle_options(fsspectest):
 | 
						|
    df = DataFrame({"a": [0]})
 | 
						|
    df.to_pickle("testmem://mockfile", storage_options={"test": "pickle_write"})
 | 
						|
    assert fsspectest.test[0] == "pickle_write"
 | 
						|
    out = read_pickle("testmem://mockfile", storage_options={"test": "pickle_read"})
 | 
						|
    assert fsspectest.test[0] == "pickle_read"
 | 
						|
    tm.assert_frame_equal(df, out)
 | 
						|
 | 
						|
 | 
						|
def test_json_options(fsspectest, compression):
 | 
						|
    df = DataFrame({"a": [0]})
 | 
						|
    df.to_json(
 | 
						|
        "testmem://mockfile",
 | 
						|
        compression=compression,
 | 
						|
        storage_options={"test": "json_write"},
 | 
						|
    )
 | 
						|
    assert fsspectest.test[0] == "json_write"
 | 
						|
    out = read_json(
 | 
						|
        "testmem://mockfile",
 | 
						|
        compression=compression,
 | 
						|
        storage_options={"test": "json_read"},
 | 
						|
    )
 | 
						|
    assert fsspectest.test[0] == "json_read"
 | 
						|
    tm.assert_frame_equal(df, out)
 | 
						|
 | 
						|
 | 
						|
def test_stata_options(fsspectest):
 | 
						|
    df = DataFrame({"a": [0]})
 | 
						|
    df.to_stata(
 | 
						|
        "testmem://mockfile", storage_options={"test": "stata_write"}, write_index=False
 | 
						|
    )
 | 
						|
    assert fsspectest.test[0] == "stata_write"
 | 
						|
    out = read_stata("testmem://mockfile", storage_options={"test": "stata_read"})
 | 
						|
    assert fsspectest.test[0] == "stata_read"
 | 
						|
    tm.assert_frame_equal(df, out.astype("int64"))
 | 
						|
 | 
						|
 | 
						|
def test_markdown_options(fsspectest):
 | 
						|
    pytest.importorskip("tabulate")
 | 
						|
    df = DataFrame({"a": [0]})
 | 
						|
    df.to_markdown("testmem://mockfile", storage_options={"test": "md_write"})
 | 
						|
    assert fsspectest.test[0] == "md_write"
 | 
						|
    assert fsspectest.cat("testmem://mockfile")
 | 
						|
 | 
						|
 | 
						|
def test_non_fsspec_options():
 | 
						|
    pytest.importorskip("pyarrow")
 | 
						|
    with pytest.raises(ValueError, match="storage_options"):
 | 
						|
        read_csv("localfile", storage_options={"a": True})
 | 
						|
    with pytest.raises(ValueError, match="storage_options"):
 | 
						|
        # separate test for parquet, which has a different code path
 | 
						|
        read_parquet("localfile", storage_options={"a": True})
 | 
						|
    by = io.BytesIO()
 | 
						|
 | 
						|
    with pytest.raises(ValueError, match="storage_options"):
 | 
						|
        read_csv(by, storage_options={"a": True})
 | 
						|
 | 
						|
    df = DataFrame({"a": [0]})
 | 
						|
    with pytest.raises(ValueError, match="storage_options"):
 | 
						|
        df.to_parquet("nonfsspecpath", storage_options={"a": True})
 |