You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			229 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			229 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Python
		
	
from io import BytesIO
 | 
						|
import os
 | 
						|
import pathlib
 | 
						|
import tarfile
 | 
						|
import zipfile
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pytest
 | 
						|
 | 
						|
from pandas.compat.pyarrow import pa_version_under17p0
 | 
						|
 | 
						|
from pandas import (
 | 
						|
    DataFrame,
 | 
						|
    Index,
 | 
						|
    date_range,
 | 
						|
    read_csv,
 | 
						|
    read_excel,
 | 
						|
    read_json,
 | 
						|
    read_parquet,
 | 
						|
)
 | 
						|
import pandas._testing as tm
 | 
						|
from pandas.util import _test_decorators as td
 | 
						|
 | 
						|
pytestmark = pytest.mark.filterwarnings(
 | 
						|
    "ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def gcs_buffer():
 | 
						|
    """Emulate GCS using a binary buffer."""
 | 
						|
    pytest.importorskip("gcsfs")
 | 
						|
    fsspec = pytest.importorskip("fsspec")
 | 
						|
 | 
						|
    gcs_buffer = BytesIO()
 | 
						|
    gcs_buffer.close = lambda: True
 | 
						|
 | 
						|
    class MockGCSFileSystem(fsspec.AbstractFileSystem):
 | 
						|
        @staticmethod
 | 
						|
        def open(*args, **kwargs):
 | 
						|
            gcs_buffer.seek(0)
 | 
						|
            return gcs_buffer
 | 
						|
 | 
						|
        def ls(self, path, **kwargs):
 | 
						|
            # needed for pyarrow
 | 
						|
            return [{"name": path, "type": "file"}]
 | 
						|
 | 
						|
    # Overwrites the default implementation from gcsfs to our mock class
 | 
						|
    fsspec.register_implementation("gs", MockGCSFileSystem, clobber=True)
 | 
						|
 | 
						|
    return gcs_buffer
 | 
						|
 | 
						|
 | 
						|
# Patches pyarrow; other processes should not pick up change
 | 
						|
@pytest.mark.single_cpu
 | 
						|
@pytest.mark.parametrize("format", ["csv", "json", "parquet", "excel", "markdown"])
 | 
						|
def test_to_read_gcs(gcs_buffer, format, monkeypatch, capsys, request):
 | 
						|
    """
 | 
						|
    Test that many to/read functions support GCS.
 | 
						|
 | 
						|
    GH 33987
 | 
						|
    """
 | 
						|
 | 
						|
    df1 = DataFrame(
 | 
						|
        {
 | 
						|
            "int": [1, 3],
 | 
						|
            "float": [2.0, np.nan],
 | 
						|
            "str": ["t", "s"],
 | 
						|
            "dt": date_range("2018-06-18", periods=2),
 | 
						|
        }
 | 
						|
    )
 | 
						|
 | 
						|
    path = f"gs://test/test.{format}"
 | 
						|
 | 
						|
    if format == "csv":
 | 
						|
        df1.to_csv(path, index=True)
 | 
						|
        df2 = read_csv(path, parse_dates=["dt"], index_col=0)
 | 
						|
    elif format == "excel":
 | 
						|
        path = "gs://test/test.xlsx"
 | 
						|
        df1.to_excel(path)
 | 
						|
        df2 = read_excel(path, parse_dates=["dt"], index_col=0)
 | 
						|
    elif format == "json":
 | 
						|
        df1.to_json(path)
 | 
						|
        df2 = read_json(path, convert_dates=["dt"])
 | 
						|
    elif format == "parquet":
 | 
						|
        pytest.importorskip("pyarrow")
 | 
						|
        pa_fs = pytest.importorskip("pyarrow.fs")
 | 
						|
 | 
						|
        class MockFileSystem(pa_fs.FileSystem):
 | 
						|
            @staticmethod
 | 
						|
            def from_uri(path):
 | 
						|
                print("Using pyarrow filesystem")
 | 
						|
                to_local = pathlib.Path(path.replace("gs://", "")).absolute().as_uri()
 | 
						|
                return pa_fs.LocalFileSystem(to_local)
 | 
						|
 | 
						|
        request.applymarker(
 | 
						|
            pytest.mark.xfail(
 | 
						|
                not pa_version_under17p0,
 | 
						|
                raises=TypeError,
 | 
						|
                reason="pyarrow 17 broke the mocked filesystem",
 | 
						|
            )
 | 
						|
        )
 | 
						|
        with monkeypatch.context() as m:
 | 
						|
            m.setattr(pa_fs, "FileSystem", MockFileSystem)
 | 
						|
            df1.to_parquet(path)
 | 
						|
            df2 = read_parquet(path)
 | 
						|
        captured = capsys.readouterr()
 | 
						|
        assert captured.out == "Using pyarrow filesystem\nUsing pyarrow filesystem\n"
 | 
						|
    elif format == "markdown":
 | 
						|
        pytest.importorskip("tabulate")
 | 
						|
        df1.to_markdown(path)
 | 
						|
        df2 = df1
 | 
						|
 | 
						|
    tm.assert_frame_equal(df1, df2)
 | 
						|
 | 
						|
 | 
						|
def assert_equal_zip_safe(result: bytes, expected: bytes, compression: str):
 | 
						|
    """
 | 
						|
    For zip compression, only compare the CRC-32 checksum of the file contents
 | 
						|
    to avoid checking the time-dependent last-modified timestamp which
 | 
						|
    in some CI builds is off-by-one
 | 
						|
 | 
						|
    See https://en.wikipedia.org/wiki/ZIP_(file_format)#File_headers
 | 
						|
    """
 | 
						|
    if compression == "zip":
 | 
						|
        # Only compare the CRC checksum of the file contents
 | 
						|
        with zipfile.ZipFile(BytesIO(result)) as exp, zipfile.ZipFile(
 | 
						|
            BytesIO(expected)
 | 
						|
        ) as res:
 | 
						|
            for res_info, exp_info in zip(res.infolist(), exp.infolist()):
 | 
						|
                assert res_info.CRC == exp_info.CRC
 | 
						|
    elif compression == "tar":
 | 
						|
        with tarfile.open(fileobj=BytesIO(result)) as tar_exp, tarfile.open(
 | 
						|
            fileobj=BytesIO(expected)
 | 
						|
        ) as tar_res:
 | 
						|
            for tar_res_info, tar_exp_info in zip(
 | 
						|
                tar_res.getmembers(), tar_exp.getmembers()
 | 
						|
            ):
 | 
						|
                actual_file = tar_res.extractfile(tar_res_info)
 | 
						|
                expected_file = tar_exp.extractfile(tar_exp_info)
 | 
						|
                assert (actual_file is None) == (expected_file is None)
 | 
						|
                if actual_file is not None and expected_file is not None:
 | 
						|
                    assert actual_file.read() == expected_file.read()
 | 
						|
    else:
 | 
						|
        assert result == expected
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("encoding", ["utf-8", "cp1251"])
 | 
						|
def test_to_csv_compression_encoding_gcs(
 | 
						|
    gcs_buffer, compression_only, encoding, compression_to_extension
 | 
						|
):
 | 
						|
    """
 | 
						|
    Compression and encoding should with GCS.
 | 
						|
 | 
						|
    GH 35677 (to_csv, compression), GH 26124 (to_csv, encoding), and
 | 
						|
    GH 32392 (read_csv, encoding)
 | 
						|
    """
 | 
						|
    df = DataFrame(
 | 
						|
        1.1 * np.arange(120).reshape((30, 4)),
 | 
						|
        columns=Index(list("ABCD")),
 | 
						|
        index=Index([f"i-{i}" for i in range(30)]),
 | 
						|
    )
 | 
						|
 | 
						|
    # reference of compressed and encoded file
 | 
						|
    compression = {"method": compression_only}
 | 
						|
    if compression_only == "gzip":
 | 
						|
        compression["mtime"] = 1  # be reproducible
 | 
						|
    buffer = BytesIO()
 | 
						|
    df.to_csv(buffer, compression=compression, encoding=encoding, mode="wb")
 | 
						|
 | 
						|
    # write compressed file with explicit compression
 | 
						|
    path_gcs = "gs://test/test.csv"
 | 
						|
    df.to_csv(path_gcs, compression=compression, encoding=encoding)
 | 
						|
    res = gcs_buffer.getvalue()
 | 
						|
    expected = buffer.getvalue()
 | 
						|
    assert_equal_zip_safe(res, expected, compression_only)
 | 
						|
 | 
						|
    read_df = read_csv(
 | 
						|
        path_gcs, index_col=0, compression=compression_only, encoding=encoding
 | 
						|
    )
 | 
						|
    tm.assert_frame_equal(df, read_df)
 | 
						|
 | 
						|
    # write compressed file with implicit compression
 | 
						|
    file_ext = compression_to_extension[compression_only]
 | 
						|
    compression["method"] = "infer"
 | 
						|
    path_gcs += f".{file_ext}"
 | 
						|
    df.to_csv(path_gcs, compression=compression, encoding=encoding)
 | 
						|
 | 
						|
    res = gcs_buffer.getvalue()
 | 
						|
    expected = buffer.getvalue()
 | 
						|
    assert_equal_zip_safe(res, expected, compression_only)
 | 
						|
 | 
						|
    read_df = read_csv(path_gcs, index_col=0, compression="infer", encoding=encoding)
 | 
						|
    tm.assert_frame_equal(df, read_df)
 | 
						|
 | 
						|
 | 
						|
def test_to_parquet_gcs_new_file(monkeypatch, tmpdir):
 | 
						|
    """Regression test for writing to a not-yet-existent GCS Parquet file."""
 | 
						|
    pytest.importorskip("fastparquet")
 | 
						|
    pytest.importorskip("gcsfs")
 | 
						|
 | 
						|
    from fsspec import AbstractFileSystem
 | 
						|
 | 
						|
    df1 = DataFrame(
 | 
						|
        {
 | 
						|
            "int": [1, 3],
 | 
						|
            "float": [2.0, np.nan],
 | 
						|
            "str": ["t", "s"],
 | 
						|
            "dt": date_range("2018-06-18", periods=2),
 | 
						|
        }
 | 
						|
    )
 | 
						|
 | 
						|
    class MockGCSFileSystem(AbstractFileSystem):
 | 
						|
        def open(self, path, mode="r", *args):
 | 
						|
            if "w" not in mode:
 | 
						|
                raise FileNotFoundError
 | 
						|
            return open(os.path.join(tmpdir, "test.parquet"), mode, encoding="utf-8")
 | 
						|
 | 
						|
    monkeypatch.setattr("gcsfs.GCSFileSystem", MockGCSFileSystem)
 | 
						|
    df1.to_parquet(
 | 
						|
        "gs://test/test.csv", index=True, engine="fastparquet", compression=None
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
@td.skip_if_installed("gcsfs")
 | 
						|
def test_gcs_not_present_exception():
 | 
						|
    with tm.external_error_raised(ImportError):
 | 
						|
        read_csv("gs://test/test.csv")
 |