You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			603 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			603 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
from __future__ import annotations
 | 
						|
 | 
						|
from typing import TYPE_CHECKING
 | 
						|
 | 
						|
import numpy as np
 | 
						|
 | 
						|
from pandas._libs import lib
 | 
						|
from pandas._libs.algos import unique_deltas
 | 
						|
from pandas._libs.tslibs import (
 | 
						|
    Timestamp,
 | 
						|
    get_unit_from_dtype,
 | 
						|
    periods_per_day,
 | 
						|
    tz_convert_from_utc,
 | 
						|
)
 | 
						|
from pandas._libs.tslibs.ccalendar import (
 | 
						|
    DAYS,
 | 
						|
    MONTH_ALIASES,
 | 
						|
    MONTH_NUMBERS,
 | 
						|
    MONTHS,
 | 
						|
    int_to_weekday,
 | 
						|
)
 | 
						|
from pandas._libs.tslibs.dtypes import (
 | 
						|
    OFFSET_TO_PERIOD_FREQSTR,
 | 
						|
    freq_to_period_freqstr,
 | 
						|
)
 | 
						|
from pandas._libs.tslibs.fields import (
 | 
						|
    build_field_sarray,
 | 
						|
    month_position_check,
 | 
						|
)
 | 
						|
from pandas._libs.tslibs.offsets import (
 | 
						|
    DateOffset,
 | 
						|
    Day,
 | 
						|
    to_offset,
 | 
						|
)
 | 
						|
from pandas._libs.tslibs.parsing import get_rule_month
 | 
						|
from pandas.util._decorators import cache_readonly
 | 
						|
 | 
						|
from pandas.core.dtypes.common import is_numeric_dtype
 | 
						|
from pandas.core.dtypes.dtypes import (
 | 
						|
    DatetimeTZDtype,
 | 
						|
    PeriodDtype,
 | 
						|
)
 | 
						|
from pandas.core.dtypes.generic import (
 | 
						|
    ABCIndex,
 | 
						|
    ABCSeries,
 | 
						|
)
 | 
						|
 | 
						|
from pandas.core.algorithms import unique
 | 
						|
 | 
						|
if TYPE_CHECKING:
 | 
						|
    from pandas._typing import npt
 | 
						|
 | 
						|
    from pandas import (
 | 
						|
        DatetimeIndex,
 | 
						|
        Series,
 | 
						|
        TimedeltaIndex,
 | 
						|
    )
 | 
						|
    from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin
 | 
						|
# --------------------------------------------------------------------
 | 
						|
# Offset related functions
 | 
						|
 | 
						|
_need_suffix = ["QS", "BQE", "BQS", "YS", "BYE", "BYS"]
 | 
						|
 | 
						|
for _prefix in _need_suffix:
 | 
						|
    for _m in MONTHS:
 | 
						|
        key = f"{_prefix}-{_m}"
 | 
						|
        OFFSET_TO_PERIOD_FREQSTR[key] = OFFSET_TO_PERIOD_FREQSTR[_prefix]
 | 
						|
 | 
						|
for _prefix in ["Y", "Q"]:
 | 
						|
    for _m in MONTHS:
 | 
						|
        _alias = f"{_prefix}-{_m}"
 | 
						|
        OFFSET_TO_PERIOD_FREQSTR[_alias] = _alias
 | 
						|
 | 
						|
for _d in DAYS:
 | 
						|
    OFFSET_TO_PERIOD_FREQSTR[f"W-{_d}"] = f"W-{_d}"
 | 
						|
 | 
						|
 | 
						|
def get_period_alias(offset_str: str) -> str | None:
 | 
						|
    """
 | 
						|
    Alias to closest period strings BQ->Q etc.
 | 
						|
    """
 | 
						|
    return OFFSET_TO_PERIOD_FREQSTR.get(offset_str, None)
 | 
						|
 | 
						|
 | 
						|
# ---------------------------------------------------------------------
 | 
						|
# Period codes
 | 
						|
 | 
						|
 | 
						|
def infer_freq(
 | 
						|
    index: DatetimeIndex | TimedeltaIndex | Series | DatetimeLikeArrayMixin,
 | 
						|
) -> str | None:
 | 
						|
    """
 | 
						|
    Infer the most likely frequency given the input index.
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    index : DatetimeIndex, TimedeltaIndex, Series or array-like
 | 
						|
      If passed a Series will use the values of the series (NOT THE INDEX).
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    str or None
 | 
						|
        None if no discernible frequency.
 | 
						|
 | 
						|
    Raises
 | 
						|
    ------
 | 
						|
    TypeError
 | 
						|
        If the index is not datetime-like.
 | 
						|
    ValueError
 | 
						|
        If there are fewer than three values.
 | 
						|
 | 
						|
    Examples
 | 
						|
    --------
 | 
						|
    >>> idx = pd.date_range(start='2020/12/01', end='2020/12/30', periods=30)
 | 
						|
    >>> pd.infer_freq(idx)
 | 
						|
    'D'
 | 
						|
    """
 | 
						|
    from pandas.core.api import DatetimeIndex
 | 
						|
 | 
						|
    if isinstance(index, ABCSeries):
 | 
						|
        values = index._values
 | 
						|
        if not (
 | 
						|
            lib.is_np_dtype(values.dtype, "mM")
 | 
						|
            or isinstance(values.dtype, DatetimeTZDtype)
 | 
						|
            or values.dtype == object
 | 
						|
        ):
 | 
						|
            raise TypeError(
 | 
						|
                "cannot infer freq from a non-convertible dtype "
 | 
						|
                f"on a Series of {index.dtype}"
 | 
						|
            )
 | 
						|
        index = values
 | 
						|
 | 
						|
    inferer: _FrequencyInferer
 | 
						|
 | 
						|
    if not hasattr(index, "dtype"):
 | 
						|
        pass
 | 
						|
    elif isinstance(index.dtype, PeriodDtype):
 | 
						|
        raise TypeError(
 | 
						|
            "PeriodIndex given. Check the `freq` attribute "
 | 
						|
            "instead of using infer_freq."
 | 
						|
        )
 | 
						|
    elif lib.is_np_dtype(index.dtype, "m"):
 | 
						|
        # Allow TimedeltaIndex and TimedeltaArray
 | 
						|
        inferer = _TimedeltaFrequencyInferer(index)
 | 
						|
        return inferer.get_freq()
 | 
						|
 | 
						|
    elif is_numeric_dtype(index.dtype):
 | 
						|
        raise TypeError(
 | 
						|
            f"cannot infer freq from a non-convertible index of dtype {index.dtype}"
 | 
						|
        )
 | 
						|
 | 
						|
    if not isinstance(index, DatetimeIndex):
 | 
						|
        index = DatetimeIndex(index)
 | 
						|
 | 
						|
    inferer = _FrequencyInferer(index)
 | 
						|
    return inferer.get_freq()
 | 
						|
 | 
						|
 | 
						|
class _FrequencyInferer:
 | 
						|
    """
 | 
						|
    Not sure if I can avoid the state machine here
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, index) -> None:
 | 
						|
        self.index = index
 | 
						|
        self.i8values = index.asi8
 | 
						|
 | 
						|
        # For get_unit_from_dtype we need the dtype to the underlying ndarray,
 | 
						|
        #  which for tz-aware is not the same as index.dtype
 | 
						|
        if isinstance(index, ABCIndex):
 | 
						|
            # error: Item "ndarray[Any, Any]" of "Union[ExtensionArray,
 | 
						|
            # ndarray[Any, Any]]" has no attribute "_ndarray"
 | 
						|
            self._creso = get_unit_from_dtype(
 | 
						|
                index._data._ndarray.dtype  # type: ignore[union-attr]
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            # otherwise we have DTA/TDA
 | 
						|
            self._creso = get_unit_from_dtype(index._ndarray.dtype)
 | 
						|
 | 
						|
        # This moves the values, which are implicitly in UTC, to the
 | 
						|
        # the timezone so they are in local time
 | 
						|
        if hasattr(index, "tz"):
 | 
						|
            if index.tz is not None:
 | 
						|
                self.i8values = tz_convert_from_utc(
 | 
						|
                    self.i8values, index.tz, reso=self._creso
 | 
						|
                )
 | 
						|
 | 
						|
        if len(index) < 3:
 | 
						|
            raise ValueError("Need at least 3 dates to infer frequency")
 | 
						|
 | 
						|
        self.is_monotonic = (
 | 
						|
            self.index._is_monotonic_increasing or self.index._is_monotonic_decreasing
 | 
						|
        )
 | 
						|
 | 
						|
    @cache_readonly
 | 
						|
    def deltas(self) -> npt.NDArray[np.int64]:
 | 
						|
        return unique_deltas(self.i8values)
 | 
						|
 | 
						|
    @cache_readonly
 | 
						|
    def deltas_asi8(self) -> npt.NDArray[np.int64]:
 | 
						|
        # NB: we cannot use self.i8values here because we may have converted
 | 
						|
        #  the tz in __init__
 | 
						|
        return unique_deltas(self.index.asi8)
 | 
						|
 | 
						|
    @cache_readonly
 | 
						|
    def is_unique(self) -> bool:
 | 
						|
        return len(self.deltas) == 1
 | 
						|
 | 
						|
    @cache_readonly
 | 
						|
    def is_unique_asi8(self) -> bool:
 | 
						|
        return len(self.deltas_asi8) == 1
 | 
						|
 | 
						|
    def get_freq(self) -> str | None:
 | 
						|
        """
 | 
						|
        Find the appropriate frequency string to describe the inferred
 | 
						|
        frequency of self.i8values
 | 
						|
 | 
						|
        Returns
 | 
						|
        -------
 | 
						|
        str or None
 | 
						|
        """
 | 
						|
        if not self.is_monotonic or not self.index._is_unique:
 | 
						|
            return None
 | 
						|
 | 
						|
        delta = self.deltas[0]
 | 
						|
        ppd = periods_per_day(self._creso)
 | 
						|
        if delta and _is_multiple(delta, ppd):
 | 
						|
            return self._infer_daily_rule()
 | 
						|
 | 
						|
        # Business hourly, maybe. 17: one day / 65: one weekend
 | 
						|
        if self.hour_deltas in ([1, 17], [1, 65], [1, 17, 65]):
 | 
						|
            return "bh"
 | 
						|
 | 
						|
        # Possibly intraday frequency.  Here we use the
 | 
						|
        # original .asi8 values as the modified values
 | 
						|
        # will not work around DST transitions.  See #8772
 | 
						|
        if not self.is_unique_asi8:
 | 
						|
            return None
 | 
						|
 | 
						|
        delta = self.deltas_asi8[0]
 | 
						|
        pph = ppd // 24
 | 
						|
        ppm = pph // 60
 | 
						|
        pps = ppm // 60
 | 
						|
        if _is_multiple(delta, pph):
 | 
						|
            # Hours
 | 
						|
            return _maybe_add_count("h", delta / pph)
 | 
						|
        elif _is_multiple(delta, ppm):
 | 
						|
            # Minutes
 | 
						|
            return _maybe_add_count("min", delta / ppm)
 | 
						|
        elif _is_multiple(delta, pps):
 | 
						|
            # Seconds
 | 
						|
            return _maybe_add_count("s", delta / pps)
 | 
						|
        elif _is_multiple(delta, (pps // 1000)):
 | 
						|
            # Milliseconds
 | 
						|
            return _maybe_add_count("ms", delta / (pps // 1000))
 | 
						|
        elif _is_multiple(delta, (pps // 1_000_000)):
 | 
						|
            # Microseconds
 | 
						|
            return _maybe_add_count("us", delta / (pps // 1_000_000))
 | 
						|
        else:
 | 
						|
            # Nanoseconds
 | 
						|
            return _maybe_add_count("ns", delta)
 | 
						|
 | 
						|
    @cache_readonly
 | 
						|
    def day_deltas(self) -> list[int]:
 | 
						|
        ppd = periods_per_day(self._creso)
 | 
						|
        return [x / ppd for x in self.deltas]
 | 
						|
 | 
						|
    @cache_readonly
 | 
						|
    def hour_deltas(self) -> list[int]:
 | 
						|
        pph = periods_per_day(self._creso) // 24
 | 
						|
        return [x / pph for x in self.deltas]
 | 
						|
 | 
						|
    @cache_readonly
 | 
						|
    def fields(self) -> np.ndarray:  # structured array of fields
 | 
						|
        return build_field_sarray(self.i8values, reso=self._creso)
 | 
						|
 | 
						|
    @cache_readonly
 | 
						|
    def rep_stamp(self) -> Timestamp:
 | 
						|
        return Timestamp(self.i8values[0], unit=self.index.unit)
 | 
						|
 | 
						|
    def month_position_check(self) -> str | None:
 | 
						|
        return month_position_check(self.fields, self.index.dayofweek)
 | 
						|
 | 
						|
    @cache_readonly
 | 
						|
    def mdiffs(self) -> npt.NDArray[np.int64]:
 | 
						|
        nmonths = self.fields["Y"] * 12 + self.fields["M"]
 | 
						|
        return unique_deltas(nmonths.astype("i8"))
 | 
						|
 | 
						|
    @cache_readonly
 | 
						|
    def ydiffs(self) -> npt.NDArray[np.int64]:
 | 
						|
        return unique_deltas(self.fields["Y"].astype("i8"))
 | 
						|
 | 
						|
    def _infer_daily_rule(self) -> str | None:
 | 
						|
        annual_rule = self._get_annual_rule()
 | 
						|
        if annual_rule:
 | 
						|
            nyears = self.ydiffs[0]
 | 
						|
            month = MONTH_ALIASES[self.rep_stamp.month]
 | 
						|
            alias = f"{annual_rule}-{month}"
 | 
						|
            return _maybe_add_count(alias, nyears)
 | 
						|
 | 
						|
        quarterly_rule = self._get_quarterly_rule()
 | 
						|
        if quarterly_rule:
 | 
						|
            nquarters = self.mdiffs[0] / 3
 | 
						|
            mod_dict = {0: 12, 2: 11, 1: 10}
 | 
						|
            month = MONTH_ALIASES[mod_dict[self.rep_stamp.month % 3]]
 | 
						|
            alias = f"{quarterly_rule}-{month}"
 | 
						|
            return _maybe_add_count(alias, nquarters)
 | 
						|
 | 
						|
        monthly_rule = self._get_monthly_rule()
 | 
						|
        if monthly_rule:
 | 
						|
            return _maybe_add_count(monthly_rule, self.mdiffs[0])
 | 
						|
 | 
						|
        if self.is_unique:
 | 
						|
            return self._get_daily_rule()
 | 
						|
 | 
						|
        if self._is_business_daily():
 | 
						|
            return "B"
 | 
						|
 | 
						|
        wom_rule = self._get_wom_rule()
 | 
						|
        if wom_rule:
 | 
						|
            return wom_rule
 | 
						|
 | 
						|
        return None
 | 
						|
 | 
						|
    def _get_daily_rule(self) -> str | None:
 | 
						|
        ppd = periods_per_day(self._creso)
 | 
						|
        days = self.deltas[0] / ppd
 | 
						|
        if days % 7 == 0:
 | 
						|
            # Weekly
 | 
						|
            wd = int_to_weekday[self.rep_stamp.weekday()]
 | 
						|
            alias = f"W-{wd}"
 | 
						|
            return _maybe_add_count(alias, days / 7)
 | 
						|
        else:
 | 
						|
            return _maybe_add_count("D", days)
 | 
						|
 | 
						|
    def _get_annual_rule(self) -> str | None:
 | 
						|
        if len(self.ydiffs) > 1:
 | 
						|
            return None
 | 
						|
 | 
						|
        if len(unique(self.fields["M"])) > 1:
 | 
						|
            return None
 | 
						|
 | 
						|
        pos_check = self.month_position_check()
 | 
						|
 | 
						|
        if pos_check is None:
 | 
						|
            return None
 | 
						|
        else:
 | 
						|
            return {"cs": "YS", "bs": "BYS", "ce": "YE", "be": "BYE"}.get(pos_check)
 | 
						|
 | 
						|
    def _get_quarterly_rule(self) -> str | None:
 | 
						|
        if len(self.mdiffs) > 1:
 | 
						|
            return None
 | 
						|
 | 
						|
        if not self.mdiffs[0] % 3 == 0:
 | 
						|
            return None
 | 
						|
 | 
						|
        pos_check = self.month_position_check()
 | 
						|
 | 
						|
        if pos_check is None:
 | 
						|
            return None
 | 
						|
        else:
 | 
						|
            return {"cs": "QS", "bs": "BQS", "ce": "QE", "be": "BQE"}.get(pos_check)
 | 
						|
 | 
						|
    def _get_monthly_rule(self) -> str | None:
 | 
						|
        if len(self.mdiffs) > 1:
 | 
						|
            return None
 | 
						|
        pos_check = self.month_position_check()
 | 
						|
 | 
						|
        if pos_check is None:
 | 
						|
            return None
 | 
						|
        else:
 | 
						|
            return {"cs": "MS", "bs": "BMS", "ce": "ME", "be": "BME"}.get(pos_check)
 | 
						|
 | 
						|
    def _is_business_daily(self) -> bool:
 | 
						|
        # quick check: cannot be business daily
 | 
						|
        if self.day_deltas != [1, 3]:
 | 
						|
            return False
 | 
						|
 | 
						|
        # probably business daily, but need to confirm
 | 
						|
        first_weekday = self.index[0].weekday()
 | 
						|
        shifts = np.diff(self.i8values)
 | 
						|
        ppd = periods_per_day(self._creso)
 | 
						|
        shifts = np.floor_divide(shifts, ppd)
 | 
						|
        weekdays = np.mod(first_weekday + np.cumsum(shifts), 7)
 | 
						|
 | 
						|
        return bool(
 | 
						|
            np.all(
 | 
						|
                ((weekdays == 0) & (shifts == 3))
 | 
						|
                | ((weekdays > 0) & (weekdays <= 4) & (shifts == 1))
 | 
						|
            )
 | 
						|
        )
 | 
						|
 | 
						|
    def _get_wom_rule(self) -> str | None:
 | 
						|
        weekdays = unique(self.index.weekday)
 | 
						|
        if len(weekdays) > 1:
 | 
						|
            return None
 | 
						|
 | 
						|
        week_of_months = unique((self.index.day - 1) // 7)
 | 
						|
        # Only attempt to infer up to WOM-4. See #9425
 | 
						|
        week_of_months = week_of_months[week_of_months < 4]
 | 
						|
        if len(week_of_months) == 0 or len(week_of_months) > 1:
 | 
						|
            return None
 | 
						|
 | 
						|
        # get which week
 | 
						|
        week = week_of_months[0] + 1
 | 
						|
        wd = int_to_weekday[weekdays[0]]
 | 
						|
 | 
						|
        return f"WOM-{week}{wd}"
 | 
						|
 | 
						|
 | 
						|
class _TimedeltaFrequencyInferer(_FrequencyInferer):
 | 
						|
    def _infer_daily_rule(self):
 | 
						|
        if self.is_unique:
 | 
						|
            return self._get_daily_rule()
 | 
						|
 | 
						|
 | 
						|
def _is_multiple(us, mult: int) -> bool:
 | 
						|
    return us % mult == 0
 | 
						|
 | 
						|
 | 
						|
def _maybe_add_count(base: str, count: float) -> str:
 | 
						|
    if count != 1:
 | 
						|
        assert count == int(count)
 | 
						|
        count = int(count)
 | 
						|
        return f"{count}{base}"
 | 
						|
    else:
 | 
						|
        return base
 | 
						|
 | 
						|
 | 
						|
# ----------------------------------------------------------------------
 | 
						|
# Frequency comparison
 | 
						|
 | 
						|
 | 
						|
def is_subperiod(source, target) -> bool:
 | 
						|
    """
 | 
						|
    Returns True if downsampling is possible between source and target
 | 
						|
    frequencies
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    source : str or DateOffset
 | 
						|
        Frequency converting from
 | 
						|
    target : str or DateOffset
 | 
						|
        Frequency converting to
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    bool
 | 
						|
    """
 | 
						|
    if target is None or source is None:
 | 
						|
        return False
 | 
						|
    source = _maybe_coerce_freq(source)
 | 
						|
    target = _maybe_coerce_freq(target)
 | 
						|
 | 
						|
    if _is_annual(target):
 | 
						|
        if _is_quarterly(source):
 | 
						|
            return _quarter_months_conform(
 | 
						|
                get_rule_month(source), get_rule_month(target)
 | 
						|
            )
 | 
						|
        return source in {"D", "C", "B", "M", "h", "min", "s", "ms", "us", "ns"}
 | 
						|
    elif _is_quarterly(target):
 | 
						|
        return source in {"D", "C", "B", "M", "h", "min", "s", "ms", "us", "ns"}
 | 
						|
    elif _is_monthly(target):
 | 
						|
        return source in {"D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
 | 
						|
    elif _is_weekly(target):
 | 
						|
        return source in {target, "D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
 | 
						|
    elif target == "B":
 | 
						|
        return source in {"B", "h", "min", "s", "ms", "us", "ns"}
 | 
						|
    elif target == "C":
 | 
						|
        return source in {"C", "h", "min", "s", "ms", "us", "ns"}
 | 
						|
    elif target == "D":
 | 
						|
        return source in {"D", "h", "min", "s", "ms", "us", "ns"}
 | 
						|
    elif target == "h":
 | 
						|
        return source in {"h", "min", "s", "ms", "us", "ns"}
 | 
						|
    elif target == "min":
 | 
						|
        return source in {"min", "s", "ms", "us", "ns"}
 | 
						|
    elif target == "s":
 | 
						|
        return source in {"s", "ms", "us", "ns"}
 | 
						|
    elif target == "ms":
 | 
						|
        return source in {"ms", "us", "ns"}
 | 
						|
    elif target == "us":
 | 
						|
        return source in {"us", "ns"}
 | 
						|
    elif target == "ns":
 | 
						|
        return source in {"ns"}
 | 
						|
    else:
 | 
						|
        return False
 | 
						|
 | 
						|
 | 
						|
def is_superperiod(source, target) -> bool:
 | 
						|
    """
 | 
						|
    Returns True if upsampling is possible between source and target
 | 
						|
    frequencies
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    source : str or DateOffset
 | 
						|
        Frequency converting from
 | 
						|
    target : str or DateOffset
 | 
						|
        Frequency converting to
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    bool
 | 
						|
    """
 | 
						|
    if target is None or source is None:
 | 
						|
        return False
 | 
						|
    source = _maybe_coerce_freq(source)
 | 
						|
    target = _maybe_coerce_freq(target)
 | 
						|
 | 
						|
    if _is_annual(source):
 | 
						|
        if _is_annual(target):
 | 
						|
            return get_rule_month(source) == get_rule_month(target)
 | 
						|
 | 
						|
        if _is_quarterly(target):
 | 
						|
            smonth = get_rule_month(source)
 | 
						|
            tmonth = get_rule_month(target)
 | 
						|
            return _quarter_months_conform(smonth, tmonth)
 | 
						|
        return target in {"D", "C", "B", "M", "h", "min", "s", "ms", "us", "ns"}
 | 
						|
    elif _is_quarterly(source):
 | 
						|
        return target in {"D", "C", "B", "M", "h", "min", "s", "ms", "us", "ns"}
 | 
						|
    elif _is_monthly(source):
 | 
						|
        return target in {"D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
 | 
						|
    elif _is_weekly(source):
 | 
						|
        return target in {source, "D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
 | 
						|
    elif source == "B":
 | 
						|
        return target in {"D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
 | 
						|
    elif source == "C":
 | 
						|
        return target in {"D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
 | 
						|
    elif source == "D":
 | 
						|
        return target in {"D", "C", "B", "h", "min", "s", "ms", "us", "ns"}
 | 
						|
    elif source == "h":
 | 
						|
        return target in {"h", "min", "s", "ms", "us", "ns"}
 | 
						|
    elif source == "min":
 | 
						|
        return target in {"min", "s", "ms", "us", "ns"}
 | 
						|
    elif source == "s":
 | 
						|
        return target in {"s", "ms", "us", "ns"}
 | 
						|
    elif source == "ms":
 | 
						|
        return target in {"ms", "us", "ns"}
 | 
						|
    elif source == "us":
 | 
						|
        return target in {"us", "ns"}
 | 
						|
    elif source == "ns":
 | 
						|
        return target in {"ns"}
 | 
						|
    else:
 | 
						|
        return False
 | 
						|
 | 
						|
 | 
						|
def _maybe_coerce_freq(code) -> str:
 | 
						|
    """we might need to coerce a code to a rule_code
 | 
						|
    and uppercase it
 | 
						|
 | 
						|
    Parameters
 | 
						|
    ----------
 | 
						|
    source : str or DateOffset
 | 
						|
        Frequency converting from
 | 
						|
 | 
						|
    Returns
 | 
						|
    -------
 | 
						|
    str
 | 
						|
    """
 | 
						|
    assert code is not None
 | 
						|
    if isinstance(code, DateOffset):
 | 
						|
        code = freq_to_period_freqstr(1, code.name)
 | 
						|
    if code in {"h", "min", "s", "ms", "us", "ns"}:
 | 
						|
        return code
 | 
						|
    else:
 | 
						|
        return code.upper()
 | 
						|
 | 
						|
 | 
						|
def _quarter_months_conform(source: str, target: str) -> bool:
 | 
						|
    snum = MONTH_NUMBERS[source]
 | 
						|
    tnum = MONTH_NUMBERS[target]
 | 
						|
    return snum % 3 == tnum % 3
 | 
						|
 | 
						|
 | 
						|
def _is_annual(rule: str) -> bool:
 | 
						|
    rule = rule.upper()
 | 
						|
    return rule == "Y" or rule.startswith("Y-")
 | 
						|
 | 
						|
 | 
						|
def _is_quarterly(rule: str) -> bool:
 | 
						|
    rule = rule.upper()
 | 
						|
    return rule == "Q" or rule.startswith(("Q-", "BQ"))
 | 
						|
 | 
						|
 | 
						|
def _is_monthly(rule: str) -> bool:
 | 
						|
    rule = rule.upper()
 | 
						|
    return rule in ("M", "BM")
 | 
						|
 | 
						|
 | 
						|
def _is_weekly(rule: str) -> bool:
 | 
						|
    rule = rule.upper()
 | 
						|
    return rule == "W" or rule.startswith("W-")
 | 
						|
 | 
						|
 | 
						|
__all__ = [
 | 
						|
    "Day",
 | 
						|
    "get_period_alias",
 | 
						|
    "infer_freq",
 | 
						|
    "is_subperiod",
 | 
						|
    "is_superperiod",
 | 
						|
    "to_offset",
 | 
						|
]
 |