You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

392 lines
14 KiB
Python

"""Provides functions for the automatic building and shaping of the parse-tree."""
from typing import List
from .exceptions import GrammarError, ConfigurationError
from .lexer import Token
from .tree import Tree
from .visitors import Transformer_InPlace
from .visitors import _vargs_meta, _vargs_meta_inline
###{standalone
from functools import partial, wraps
from itertools import product
class ExpandSingleChild:
def __init__(self, node_builder):
self.node_builder = node_builder
def __call__(self, children):
if len(children) == 1:
return children[0]
else:
return self.node_builder(children)
class PropagatePositions:
def __init__(self, node_builder, node_filter=None):
self.node_builder = node_builder
self.node_filter = node_filter
def __call__(self, children):
res = self.node_builder(children)
if isinstance(res, Tree):
# Calculate positions while the tree is streaming, according to the rule:
# - nodes start at the start of their first child's container,
# and end at the end of their last child's container.
# Containers are nodes that take up space in text, but have been inlined in the tree.
res_meta = res.meta
first_meta = self._pp_get_meta(children)
if first_meta is not None:
if not hasattr(res_meta, 'line'):
# meta was already set, probably because the rule has been inlined (e.g. `?rule`)
res_meta.line = getattr(first_meta, 'container_line', first_meta.line)
res_meta.column = getattr(first_meta, 'container_column', first_meta.column)
res_meta.start_pos = getattr(first_meta, 'container_start_pos', first_meta.start_pos)
res_meta.empty = False
res_meta.container_line = getattr(first_meta, 'container_line', first_meta.line)
res_meta.container_column = getattr(first_meta, 'container_column', first_meta.column)
res_meta.container_start_pos = getattr(first_meta, 'container_start_pos', first_meta.start_pos)
last_meta = self._pp_get_meta(reversed(children))
if last_meta is not None:
if not hasattr(res_meta, 'end_line'):
res_meta.end_line = getattr(last_meta, 'container_end_line', last_meta.end_line)
res_meta.end_column = getattr(last_meta, 'container_end_column', last_meta.end_column)
res_meta.end_pos = getattr(last_meta, 'container_end_pos', last_meta.end_pos)
res_meta.empty = False
res_meta.container_end_line = getattr(last_meta, 'container_end_line', last_meta.end_line)
res_meta.container_end_column = getattr(last_meta, 'container_end_column', last_meta.end_column)
res_meta.container_end_pos = getattr(last_meta, 'container_end_pos', last_meta.end_pos)
return res
def _pp_get_meta(self, children):
for c in children:
if self.node_filter is not None and not self.node_filter(c):
continue
if isinstance(c, Tree):
if not c.meta.empty:
return c.meta
elif isinstance(c, Token):
return c
elif hasattr(c, '__lark_meta__'):
return c.__lark_meta__()
def make_propagate_positions(option):
if callable(option):
return partial(PropagatePositions, node_filter=option)
elif option is True:
return PropagatePositions
elif option is False:
return None
raise ConfigurationError('Invalid option for propagate_positions: %r' % option)
class ChildFilter:
def __init__(self, to_include, append_none, node_builder):
self.node_builder = node_builder
self.to_include = to_include
self.append_none = append_none
def __call__(self, children):
filtered = []
for i, to_expand, add_none in self.to_include:
if add_none:
filtered += [None] * add_none
if to_expand:
filtered += children[i].children
else:
filtered.append(children[i])
if self.append_none:
filtered += [None] * self.append_none
return self.node_builder(filtered)
class ChildFilterLALR(ChildFilter):
"""Optimized childfilter for LALR (assumes no duplication in parse tree, so it's safe to change it)"""
def __call__(self, children):
filtered = []
for i, to_expand, add_none in self.to_include:
if add_none:
filtered += [None] * add_none
if to_expand:
if filtered:
filtered += children[i].children
else: # Optimize for left-recursion
filtered = children[i].children
else:
filtered.append(children[i])
if self.append_none:
filtered += [None] * self.append_none
return self.node_builder(filtered)
class ChildFilterLALR_NoPlaceholders(ChildFilter):
"Optimized childfilter for LALR (assumes no duplication in parse tree, so it's safe to change it)"
def __init__(self, to_include, node_builder):
self.node_builder = node_builder
self.to_include = to_include
def __call__(self, children):
filtered = []
for i, to_expand in self.to_include:
if to_expand:
if filtered:
filtered += children[i].children
else: # Optimize for left-recursion
filtered = children[i].children
else:
filtered.append(children[i])
return self.node_builder(filtered)
def _should_expand(sym):
return not sym.is_term and sym.name.startswith('_')
def maybe_create_child_filter(expansion, keep_all_tokens, ambiguous, _empty_indices: List[bool]):
# Prepare empty_indices as: How many Nones to insert at each index?
if _empty_indices:
assert _empty_indices.count(False) == len(expansion)
s = ''.join(str(int(b)) for b in _empty_indices)
empty_indices = [len(ones) for ones in s.split('0')]
assert len(empty_indices) == len(expansion)+1, (empty_indices, len(expansion))
else:
empty_indices = [0] * (len(expansion)+1)
to_include = []
nones_to_add = 0
for i, sym in enumerate(expansion):
nones_to_add += empty_indices[i]
if keep_all_tokens or not (sym.is_term and sym.filter_out):
to_include.append((i, _should_expand(sym), nones_to_add))
nones_to_add = 0
nones_to_add += empty_indices[len(expansion)]
if _empty_indices or len(to_include) < len(expansion) or any(to_expand for i, to_expand,_ in to_include):
if _empty_indices or ambiguous:
return partial(ChildFilter if ambiguous else ChildFilterLALR, to_include, nones_to_add)
else:
# LALR without placeholders
return partial(ChildFilterLALR_NoPlaceholders, [(i, x) for i,x,_ in to_include])
class AmbiguousExpander:
"""Deal with the case where we're expanding children ('_rule') into a parent but the children
are ambiguous. i.e. (parent->_ambig->_expand_this_rule). In this case, make the parent itself
ambiguous with as many copies as there are ambiguous children, and then copy the ambiguous children
into the right parents in the right places, essentially shifting the ambiguity up the tree."""
def __init__(self, to_expand, tree_class, node_builder):
self.node_builder = node_builder
self.tree_class = tree_class
self.to_expand = to_expand
def __call__(self, children):
def _is_ambig_tree(t):
return hasattr(t, 'data') and t.data == '_ambig'
# -- When we're repeatedly expanding ambiguities we can end up with nested ambiguities.
# All children of an _ambig node should be a derivation of that ambig node, hence
# it is safe to assume that if we see an _ambig node nested within an ambig node
# it is safe to simply expand it into the parent _ambig node as an alternative derivation.
ambiguous = []
for i, child in enumerate(children):
if _is_ambig_tree(child):
if i in self.to_expand:
ambiguous.append(i)
child.expand_kids_by_data('_ambig')
if not ambiguous:
return self.node_builder(children)
expand = [child.children if i in ambiguous else (child,) for i, child in enumerate(children)]
return self.tree_class('_ambig', [self.node_builder(list(f)) for f in product(*expand)])
def maybe_create_ambiguous_expander(tree_class, expansion, keep_all_tokens):
to_expand = [i for i, sym in enumerate(expansion)
if keep_all_tokens or ((not (sym.is_term and sym.filter_out)) and _should_expand(sym))]
if to_expand:
return partial(AmbiguousExpander, to_expand, tree_class)
class AmbiguousIntermediateExpander:
"""
Propagate ambiguous intermediate nodes and their derivations up to the
current rule.
In general, converts
rule
_iambig
_inter
someChildren1
...
_inter
someChildren2
...
someChildren3
...
to
_ambig
rule
someChildren1
...
someChildren3
...
rule
someChildren2
...
someChildren3
...
rule
childrenFromNestedIambigs
...
someChildren3
...
...
propagating up any nested '_iambig' nodes along the way.
"""
def __init__(self, tree_class, node_builder):
self.node_builder = node_builder
self.tree_class = tree_class
def __call__(self, children):
def _is_iambig_tree(child):
return hasattr(child, 'data') and child.data == '_iambig'
def _collapse_iambig(children):
"""
Recursively flatten the derivations of the parent of an '_iambig'
node. Returns a list of '_inter' nodes guaranteed not
to contain any nested '_iambig' nodes, or None if children does
not contain an '_iambig' node.
"""
# Due to the structure of the SPPF,
# an '_iambig' node can only appear as the first child
if children and _is_iambig_tree(children[0]):
iambig_node = children[0]
result = []
for grandchild in iambig_node.children:
collapsed = _collapse_iambig(grandchild.children)
if collapsed:
for child in collapsed:
child.children += children[1:]
result += collapsed
else:
new_tree = self.tree_class('_inter', grandchild.children + children[1:])
result.append(new_tree)
return result
collapsed = _collapse_iambig(children)
if collapsed:
processed_nodes = [self.node_builder(c.children) for c in collapsed]
return self.tree_class('_ambig', processed_nodes)
return self.node_builder(children)
def inplace_transformer(func):
@wraps(func)
def f(children):
# function name in a Transformer is a rule name.
tree = Tree(func.__name__, children)
return func(tree)
return f
def apply_visit_wrapper(func, name, wrapper):
if wrapper is _vargs_meta or wrapper is _vargs_meta_inline:
raise NotImplementedError("Meta args not supported for internal transformer; use YourTransformer().transform(parser.parse()) instead")
@wraps(func)
def f(children):
return wrapper(func, name, children, None)
return f
class ParseTreeBuilder:
def __init__(self, rules, tree_class, propagate_positions=False, ambiguous=False, maybe_placeholders=False):
self.tree_class = tree_class
self.propagate_positions = propagate_positions
self.ambiguous = ambiguous
self.maybe_placeholders = maybe_placeholders
self.rule_builders = list(self._init_builders(rules))
def _init_builders(self, rules):
propagate_positions = make_propagate_positions(self.propagate_positions)
for rule in rules:
options = rule.options
keep_all_tokens = options.keep_all_tokens
expand_single_child = options.expand1
wrapper_chain = list(filter(None, [
(expand_single_child and not rule.alias) and ExpandSingleChild,
maybe_create_child_filter(rule.expansion, keep_all_tokens, self.ambiguous, options.empty_indices if self.maybe_placeholders else None),
propagate_positions,
self.ambiguous and maybe_create_ambiguous_expander(self.tree_class, rule.expansion, keep_all_tokens),
self.ambiguous and partial(AmbiguousIntermediateExpander, self.tree_class)
]))
yield rule, wrapper_chain
def create_callback(self, transformer=None):
callbacks = {}
default_handler = getattr(transformer, '__default__', None)
if default_handler:
def default_callback(data, children):
return default_handler(data, children, None)
else:
default_callback = self.tree_class
for rule, wrapper_chain in self.rule_builders:
user_callback_name = rule.alias or rule.options.template_source or rule.origin.name
try:
f = getattr(transformer, user_callback_name)
wrapper = getattr(f, 'visit_wrapper', None)
if wrapper is not None:
f = apply_visit_wrapper(f, user_callback_name, wrapper)
elif isinstance(transformer, Transformer_InPlace):
f = inplace_transformer(f)
except AttributeError:
f = partial(default_callback, user_callback_name)
for w in wrapper_chain:
f = w(f)
if rule in callbacks:
raise GrammarError("Rule '%s' already exists" % (rule,))
callbacks[rule] = f
return callbacks
###}