You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

721 lines
25 KiB
Python

""" Test cases for misc plot functions """
import os
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
DataFrame,
Index,
Series,
Timestamp,
date_range,
interval_range,
period_range,
plotting,
read_csv,
)
import pandas._testing as tm
from pandas.tests.plotting.common import (
_check_colors,
_check_legend_labels,
_check_plot_works,
_check_text_labels,
_check_ticks_props,
)
mpl = pytest.importorskip("matplotlib")
plt = pytest.importorskip("matplotlib.pyplot")
cm = pytest.importorskip("matplotlib.cm")
@pytest.fixture
def iris(datapath) -> DataFrame:
"""
The iris dataset as a DataFrame.
"""
return read_csv(datapath("io", "data", "csv", "iris.csv"))
@td.skip_if_installed("matplotlib")
def test_import_error_message():
# GH-19810
df = DataFrame({"A": [1, 2]})
with pytest.raises(ImportError, match="matplotlib is required for plotting"):
df.plot()
def test_get_accessor_args():
func = plotting._core.PlotAccessor._get_call_args
msg = "Called plot accessor for type list, expected Series or DataFrame"
with pytest.raises(TypeError, match=msg):
func(backend_name="", data=[], args=[], kwargs={})
msg = "should not be called with positional arguments"
with pytest.raises(TypeError, match=msg):
func(backend_name="", data=Series(dtype=object), args=["line", None], kwargs={})
x, y, kind, kwargs = func(
backend_name="",
data=DataFrame(),
args=["x"],
kwargs={"y": "y", "kind": "bar", "grid": False},
)
assert x == "x"
assert y == "y"
assert kind == "bar"
assert kwargs == {"grid": False}
x, y, kind, kwargs = func(
backend_name="pandas.plotting._matplotlib",
data=Series(dtype=object),
args=[],
kwargs={},
)
assert x is None
assert y is None
assert kind == "line"
assert len(kwargs) == 24
@pytest.mark.parametrize("kind", plotting.PlotAccessor._all_kinds)
@pytest.mark.parametrize(
"data", [DataFrame(np.arange(15).reshape(5, 3)), Series(range(5))]
)
@pytest.mark.parametrize(
"index",
[
Index(range(5)),
date_range("2020-01-01", periods=5),
period_range("2020-01-01", periods=5),
],
)
def test_savefig(kind, data, index):
fig, ax = plt.subplots()
data.index = index
kwargs = {}
if kind in ["hexbin", "scatter", "pie"]:
if isinstance(data, Series):
pytest.skip(f"{kind} not supported with Series")
kwargs = {"x": 0, "y": 1}
data.plot(kind=kind, ax=ax, **kwargs)
fig.savefig(os.devnull)
class TestSeriesPlots:
def test_autocorrelation_plot(self):
from pandas.plotting import autocorrelation_plot
ser = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)
# Ensure no UserWarning when making plot
with tm.assert_produces_warning(None):
_check_plot_works(autocorrelation_plot, series=ser)
_check_plot_works(autocorrelation_plot, series=ser.values)
ax = autocorrelation_plot(ser, label="Test")
_check_legend_labels(ax, labels=["Test"])
@pytest.mark.parametrize("kwargs", [{}, {"lag": 5}])
def test_lag_plot(self, kwargs):
from pandas.plotting import lag_plot
ser = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)
_check_plot_works(lag_plot, series=ser, **kwargs)
def test_bootstrap_plot(self):
from pandas.plotting import bootstrap_plot
ser = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)
_check_plot_works(bootstrap_plot, series=ser, size=10)
class TestDataFramePlots:
@pytest.mark.parametrize("pass_axis", [False, True])
def test_scatter_matrix_axis(self, pass_axis):
pytest.importorskip("scipy")
scatter_matrix = plotting.scatter_matrix
ax = None
if pass_axis:
_, ax = mpl.pyplot.subplots(3, 3)
df = DataFrame(np.random.default_rng(2).standard_normal((100, 3)))
# we are plotting multiples on a sub-plot
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(
scatter_matrix,
frame=df,
range_padding=0.1,
ax=ax,
)
axes0_labels = axes[0][0].yaxis.get_majorticklabels()
# GH 5662
expected = ["-2", "0", "2"]
_check_text_labels(axes0_labels, expected)
_check_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
@pytest.mark.parametrize("pass_axis", [False, True])
def test_scatter_matrix_axis_smaller(self, pass_axis):
pytest.importorskip("scipy")
scatter_matrix = plotting.scatter_matrix
ax = None
if pass_axis:
_, ax = mpl.pyplot.subplots(3, 3)
df = DataFrame(np.random.default_rng(11).standard_normal((100, 3)))
df[0] = (df[0] - 2) / 3
# we are plotting multiples on a sub-plot
with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
axes = _check_plot_works(
scatter_matrix,
frame=df,
range_padding=0.1,
ax=ax,
)
axes0_labels = axes[0][0].yaxis.get_majorticklabels()
expected = ["-1.0", "-0.5", "0.0"]
_check_text_labels(axes0_labels, expected)
_check_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
@pytest.mark.slow
def test_andrews_curves_no_warning(self, iris):
from pandas.plotting import andrews_curves
df = iris
# Ensure no UserWarning when making plot
with tm.assert_produces_warning(None):
_check_plot_works(andrews_curves, frame=df, class_column="Name")
@pytest.mark.slow
@pytest.mark.parametrize(
"linecolors",
[
("#556270", "#4ECDC4", "#C7F464"),
["dodgerblue", "aquamarine", "seagreen"],
],
)
@pytest.mark.parametrize(
"df",
[
"iris",
DataFrame(
{
"A": np.random.default_rng(2).standard_normal(10),
"B": np.random.default_rng(2).standard_normal(10),
"C": np.random.default_rng(2).standard_normal(10),
"Name": ["A"] * 10,
}
),
],
)
def test_andrews_curves_linecolors(self, request, df, linecolors):
from pandas.plotting import andrews_curves
if isinstance(df, str):
df = request.getfixturevalue(df)
ax = _check_plot_works(
andrews_curves, frame=df, class_column="Name", color=linecolors
)
_check_colors(
ax.get_lines()[:10], linecolors=linecolors, mapping=df["Name"][:10]
)
@pytest.mark.slow
@pytest.mark.parametrize(
"df",
[
"iris",
DataFrame(
{
"A": np.random.default_rng(2).standard_normal(10),
"B": np.random.default_rng(2).standard_normal(10),
"C": np.random.default_rng(2).standard_normal(10),
"Name": ["A"] * 10,
}
),
],
)
def test_andrews_curves_cmap(self, request, df):
from pandas.plotting import andrews_curves
if isinstance(df, str):
df = request.getfixturevalue(df)
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
ax = _check_plot_works(
andrews_curves, frame=df, class_column="Name", color=cmaps
)
_check_colors(ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10])
@pytest.mark.slow
def test_andrews_curves_handle(self):
from pandas.plotting import andrews_curves
colors = ["b", "g", "r"]
df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3], "C": [1, 2, 3], "Name": colors})
ax = andrews_curves(df, "Name", color=colors)
handles, _ = ax.get_legend_handles_labels()
_check_colors(handles, linecolors=colors)
@pytest.mark.slow
@pytest.mark.parametrize(
"color",
[("#556270", "#4ECDC4", "#C7F464"), ["dodgerblue", "aquamarine", "seagreen"]],
)
def test_parallel_coordinates_colors(self, iris, color):
from pandas.plotting import parallel_coordinates
df = iris
ax = _check_plot_works(
parallel_coordinates, frame=df, class_column="Name", color=color
)
_check_colors(ax.get_lines()[:10], linecolors=color, mapping=df["Name"][:10])
@pytest.mark.slow
def test_parallel_coordinates_cmap(self, iris):
from matplotlib import cm
from pandas.plotting import parallel_coordinates
df = iris
ax = _check_plot_works(
parallel_coordinates, frame=df, class_column="Name", colormap=cm.jet
)
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
_check_colors(ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10])
@pytest.mark.slow
def test_parallel_coordinates_line_diff(self, iris):
from pandas.plotting import parallel_coordinates
df = iris
ax = _check_plot_works(parallel_coordinates, frame=df, class_column="Name")
nlines = len(ax.get_lines())
nxticks = len(ax.xaxis.get_ticklabels())
ax = _check_plot_works(
parallel_coordinates, frame=df, class_column="Name", axvlines=False
)
assert len(ax.get_lines()) == (nlines - nxticks)
@pytest.mark.slow
def test_parallel_coordinates_handles(self, iris):
from pandas.plotting import parallel_coordinates
df = iris
colors = ["b", "g", "r"]
df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3], "C": [1, 2, 3], "Name": colors})
ax = parallel_coordinates(df, "Name", color=colors)
handles, _ = ax.get_legend_handles_labels()
_check_colors(handles, linecolors=colors)
# not sure if this is indicative of a problem
@pytest.mark.filterwarnings("ignore:Attempting to set:UserWarning")
def test_parallel_coordinates_with_sorted_labels(self):
"""For #15908"""
from pandas.plotting import parallel_coordinates
df = DataFrame(
{
"feat": list(range(30)),
"class": [2 for _ in range(10)]
+ [3 for _ in range(10)]
+ [1 for _ in range(10)],
}
)
ax = parallel_coordinates(df, "class", sort_labels=True)
polylines, labels = ax.get_legend_handles_labels()
color_label_tuples = zip(
[polyline.get_color() for polyline in polylines], labels
)
ordered_color_label_tuples = sorted(color_label_tuples, key=lambda x: x[1])
prev_next_tupels = zip(
list(ordered_color_label_tuples[0:-1]), list(ordered_color_label_tuples[1:])
)
for prev, nxt in prev_next_tupels:
# labels and colors are ordered strictly increasing
assert prev[1] < nxt[1] and prev[0] < nxt[0]
def test_radviz_no_warning(self, iris):
from pandas.plotting import radviz
df = iris
# Ensure no UserWarning when making plot
with tm.assert_produces_warning(None):
_check_plot_works(radviz, frame=df, class_column="Name")
@pytest.mark.parametrize(
"color",
[("#556270", "#4ECDC4", "#C7F464"), ["dodgerblue", "aquamarine", "seagreen"]],
)
def test_radviz_color(self, iris, color):
from pandas.plotting import radviz
df = iris
ax = _check_plot_works(radviz, frame=df, class_column="Name", color=color)
# skip Circle drawn as ticks
patches = [p for p in ax.patches[:20] if p.get_label() != ""]
_check_colors(patches[:10], facecolors=color, mapping=df["Name"][:10])
def test_radviz_color_cmap(self, iris):
from matplotlib import cm
from pandas.plotting import radviz
df = iris
ax = _check_plot_works(radviz, frame=df, class_column="Name", colormap=cm.jet)
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
patches = [p for p in ax.patches[:20] if p.get_label() != ""]
_check_colors(patches, facecolors=cmaps, mapping=df["Name"][:10])
def test_radviz_colors_handles(self):
from pandas.plotting import radviz
colors = [[0.0, 0.0, 1.0, 1.0], [0.0, 0.5, 1.0, 1.0], [1.0, 0.0, 0.0, 1.0]]
df = DataFrame(
{"A": [1, 2, 3], "B": [2, 1, 3], "C": [3, 2, 1], "Name": ["b", "g", "r"]}
)
ax = radviz(df, "Name", color=colors)
handles, _ = ax.get_legend_handles_labels()
_check_colors(handles, facecolors=colors)
def test_subplot_titles(self, iris):
df = iris.drop("Name", axis=1).head()
# Use the column names as the subplot titles
title = list(df.columns)
# Case len(title) == len(df)
plot = df.plot(subplots=True, title=title)
assert [p.get_title() for p in plot] == title
def test_subplot_titles_too_much(self, iris):
df = iris.drop("Name", axis=1).head()
# Use the column names as the subplot titles
title = list(df.columns)
# Case len(title) > len(df)
msg = (
"The length of `title` must equal the number of columns if "
"using `title` of type `list` and `subplots=True`"
)
with pytest.raises(ValueError, match=msg):
df.plot(subplots=True, title=title + ["kittens > puppies"])
def test_subplot_titles_too_little(self, iris):
df = iris.drop("Name", axis=1).head()
# Use the column names as the subplot titles
title = list(df.columns)
msg = (
"The length of `title` must equal the number of columns if "
"using `title` of type `list` and `subplots=True`"
)
# Case len(title) < len(df)
with pytest.raises(ValueError, match=msg):
df.plot(subplots=True, title=title[:2])
def test_subplot_titles_subplots_false(self, iris):
df = iris.drop("Name", axis=1).head()
# Use the column names as the subplot titles
title = list(df.columns)
# Case subplots=False and title is of type list
msg = (
"Using `title` of type `list` is not supported unless "
"`subplots=True` is passed"
)
with pytest.raises(ValueError, match=msg):
df.plot(subplots=False, title=title)
def test_subplot_titles_numeric_square_layout(self, iris):
df = iris.drop("Name", axis=1).head()
# Use the column names as the subplot titles
title = list(df.columns)
# Case df with 3 numeric columns but layout of (2,2)
plot = df.drop("SepalWidth", axis=1).plot(
subplots=True, layout=(2, 2), title=title[:-1]
)
title_list = [ax.get_title() for sublist in plot for ax in sublist]
assert title_list == title[:3] + [""]
def test_get_standard_colors_random_seed(self):
# GH17525
df = DataFrame(np.zeros((10, 10)))
# Make sure that the random seed isn't reset by get_standard_colors
plotting.parallel_coordinates(df, 0)
rand1 = np.random.default_rng(None).random()
plotting.parallel_coordinates(df, 0)
rand2 = np.random.default_rng(None).random()
assert rand1 != rand2
def test_get_standard_colors_consistency(self):
# GH17525
# Make sure it produces the same colors every time it's called
from pandas.plotting._matplotlib.style import get_standard_colors
color1 = get_standard_colors(1, color_type="random")
color2 = get_standard_colors(1, color_type="random")
assert color1 == color2
def test_get_standard_colors_default_num_colors(self):
from pandas.plotting._matplotlib.style import get_standard_colors
# Make sure the default color_types returns the specified amount
color1 = get_standard_colors(1, color_type="default")
color2 = get_standard_colors(9, color_type="default")
color3 = get_standard_colors(20, color_type="default")
assert len(color1) == 1
assert len(color2) == 9
assert len(color3) == 20
def test_plot_single_color(self):
# Example from #20585. All 3 bars should have the same color
df = DataFrame(
{
"account-start": ["2017-02-03", "2017-03-03", "2017-01-01"],
"client": ["Alice Anders", "Bob Baker", "Charlie Chaplin"],
"balance": [-1432.32, 10.43, 30000.00],
"db-id": [1234, 2424, 251],
"proxy-id": [525, 1525, 2542],
"rank": [52, 525, 32],
}
)
ax = df.client.value_counts().plot.bar()
colors = [rect.get_facecolor() for rect in ax.get_children()[0:3]]
assert all(color == colors[0] for color in colors)
def test_get_standard_colors_no_appending(self):
# GH20726
# Make sure not to add more colors so that matplotlib can cycle
# correctly.
from matplotlib import cm
from pandas.plotting._matplotlib.style import get_standard_colors
color_before = cm.gnuplot(range(5))
color_after = get_standard_colors(1, color=color_before)
assert len(color_after) == len(color_before)
df = DataFrame(
np.random.default_rng(2).standard_normal((48, 4)), columns=list("ABCD")
)
color_list = cm.gnuplot(np.linspace(0, 1, 16))
p = df.A.plot.bar(figsize=(16, 7), color=color_list)
assert p.patches[1].get_facecolor() == p.patches[17].get_facecolor()
@pytest.mark.parametrize("kind", ["bar", "line"])
def test_dictionary_color(self, kind):
# issue-8193
# Test plot color dictionary format
data_files = ["a", "b"]
expected = [(0.5, 0.24, 0.6), (0.3, 0.7, 0.7)]
df1 = DataFrame(np.random.default_rng(2).random((2, 2)), columns=data_files)
dic_color = {"b": (0.3, 0.7, 0.7), "a": (0.5, 0.24, 0.6)}
ax = df1.plot(kind=kind, color=dic_color)
if kind == "bar":
colors = [rect.get_facecolor()[0:-1] for rect in ax.get_children()[0:3:2]]
else:
colors = [rect.get_color() for rect in ax.get_lines()[0:2]]
assert all(color == expected[index] for index, color in enumerate(colors))
def test_bar_plot(self):
# GH38947
# Test bar plot with string and int index
from matplotlib.text import Text
expected = [Text(0, 0, "0"), Text(1, 0, "Total")]
df = DataFrame(
{
"a": [1, 2],
},
index=Index([0, "Total"]),
)
plot_bar = df.plot.bar()
assert all(
(a.get_text() == b.get_text())
for a, b in zip(plot_bar.get_xticklabels(), expected)
)
def test_barh_plot_labels_mixed_integer_string(self):
# GH39126
# Test barh plot with string and integer at the same column
from matplotlib.text import Text
df = DataFrame([{"word": 1, "value": 0}, {"word": "knowledge", "value": 2}])
plot_barh = df.plot.barh(x="word", legend=None)
expected_yticklabels = [Text(0, 0, "1"), Text(0, 1, "knowledge")]
assert all(
actual.get_text() == expected.get_text()
for actual, expected in zip(
plot_barh.get_yticklabels(), expected_yticklabels
)
)
def test_has_externally_shared_axis_x_axis(self):
# GH33819
# Test _has_externally_shared_axis() works for x-axis
func = plotting._matplotlib.tools._has_externally_shared_axis
fig = mpl.pyplot.figure()
plots = fig.subplots(2, 4)
# Create *externally* shared axes for first and third columns
plots[0][0] = fig.add_subplot(231, sharex=plots[1][0])
plots[0][2] = fig.add_subplot(233, sharex=plots[1][2])
# Create *internally* shared axes for second and third columns
plots[0][1].twinx()
plots[0][2].twinx()
# First column is only externally shared
# Second column is only internally shared
# Third column is both
# Fourth column is neither
assert func(plots[0][0], "x")
assert not func(plots[0][1], "x")
assert func(plots[0][2], "x")
assert not func(plots[0][3], "x")
def test_has_externally_shared_axis_y_axis(self):
# GH33819
# Test _has_externally_shared_axis() works for y-axis
func = plotting._matplotlib.tools._has_externally_shared_axis
fig = mpl.pyplot.figure()
plots = fig.subplots(4, 2)
# Create *externally* shared axes for first and third rows
plots[0][0] = fig.add_subplot(321, sharey=plots[0][1])
plots[2][0] = fig.add_subplot(325, sharey=plots[2][1])
# Create *internally* shared axes for second and third rows
plots[1][0].twiny()
plots[2][0].twiny()
# First row is only externally shared
# Second row is only internally shared
# Third row is both
# Fourth row is neither
assert func(plots[0][0], "y")
assert not func(plots[1][0], "y")
assert func(plots[2][0], "y")
assert not func(plots[3][0], "y")
def test_has_externally_shared_axis_invalid_compare_axis(self):
# GH33819
# Test _has_externally_shared_axis() raises an exception when
# passed an invalid value as compare_axis parameter
func = plotting._matplotlib.tools._has_externally_shared_axis
fig = mpl.pyplot.figure()
plots = fig.subplots(4, 2)
# Create arbitrary axes
plots[0][0] = fig.add_subplot(321, sharey=plots[0][1])
# Check that an invalid compare_axis value triggers the expected exception
msg = "needs 'x' or 'y' as a second parameter"
with pytest.raises(ValueError, match=msg):
func(plots[0][0], "z")
def test_externally_shared_axes(self):
# Example from GH33819
# Create data
df = DataFrame(
{
"a": np.random.default_rng(2).standard_normal(1000),
"b": np.random.default_rng(2).standard_normal(1000),
}
)
# Create figure
fig = mpl.pyplot.figure()
plots = fig.subplots(2, 3)
# Create *externally* shared axes
plots[0][0] = fig.add_subplot(231, sharex=plots[1][0])
# note: no plots[0][1] that's the twin only case
plots[0][2] = fig.add_subplot(233, sharex=plots[1][2])
# Create *internally* shared axes
# note: no plots[0][0] that's the external only case
twin_ax1 = plots[0][1].twinx()
twin_ax2 = plots[0][2].twinx()
# Plot data to primary axes
df["a"].plot(ax=plots[0][0], title="External share only").set_xlabel(
"this label should never be visible"
)
df["a"].plot(ax=plots[1][0])
df["a"].plot(ax=plots[0][1], title="Internal share (twin) only").set_xlabel(
"this label should always be visible"
)
df["a"].plot(ax=plots[1][1])
df["a"].plot(ax=plots[0][2], title="Both").set_xlabel(
"this label should never be visible"
)
df["a"].plot(ax=plots[1][2])
# Plot data to twinned axes
df["b"].plot(ax=twin_ax1, color="green")
df["b"].plot(ax=twin_ax2, color="yellow")
assert not plots[0][0].xaxis.get_label().get_visible()
assert plots[0][1].xaxis.get_label().get_visible()
assert not plots[0][2].xaxis.get_label().get_visible()
def test_plot_bar_axis_units_timestamp_conversion(self):
# GH 38736
# Ensure string x-axis from the second plot will not be converted to datetime
# due to axis data from first plot
df = DataFrame(
[1.0],
index=[Timestamp("2022-02-22 22:22:22")],
)
_check_plot_works(df.plot)
s = Series({"A": 1.0})
_check_plot_works(s.plot.bar)
def test_bar_plt_xaxis_intervalrange(self):
# GH 38969
# Ensure IntervalIndex x-axis produces a bar plot as expected
from matplotlib.text import Text
expected = [Text(0, 0, "([0, 1],)"), Text(1, 0, "([1, 2],)")]
s = Series(
[1, 2],
index=[interval_range(0, 2, closed="both")],
)
_check_plot_works(s.plot.bar)
assert all(
(a.get_text() == b.get_text())
for a, b in zip(s.plot.bar().get_xticklabels(), expected)
)