This is the last practice
You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
Israel Herrera 2dba212863 Images 4 days ago
bmp180-library Code 4 days ago
data Code 4 days ago
htu21d-library Code 4 days ago
ui Code 4 days ago
BMP180 Code 4 days ago
HTU21D Code 4 days ago
Prueba.png Images 4 days ago
README.md Readme finish 4 days ago
circuito.jpeg Images 4 days ago
sistema.jpeg Images 4 days ago

README.md

Air Quality Monitor

Air Quality Monitor is a lightweight web interface that displays real-time data from two environmental sensors: HTU21D and BMP180. The system uses NGINX to serve an HTML page that reads live data from JSON files. All the system is runing on a beagle bone black.

Project Description

This project was designed to visualize environmental parameters in a simple, fast, and efficient way using an embedded graphical interface. The data is obtained from the following sensors:

  • HTU21D: Temperature and relative humidity.
  • BMP180: Atmospheric pressure and temperature.

The data is stored in two JSON files, updated by the embedded system and displayed through an HTML/JavaScript-based frontend.


Project Structure

UI directory

  • BMP180.json # Pressure and temperature data from BMP180
  • HTU21D.json # Temperature and humidity data from HTU21D
  • index.html # Main web interface
  • index.js # JavaScript logic to fetch and display JSON data
  • style.css # Custom CSS styles

The .json files are automatically updated by C programs that communicate with the sensors via I2C witch the librarys integrated on the repository.


Both sensors that we are using are conected to the I2C port 2 of the beagle bone

🚀 Installation & Deployment with NGINX

Requirements

  • Linux server with nginx installed.
  • Root access or permission to modify NGINX configuration.

Steps

  1. Install NGINX (if not already installed):
sudo apt update
sudo apt install nginx
  1. Copy the project files to NGINXs public directory (e.g., /var/www/html):

  1. Redirect the configuration file to our repository folder:
sudo vi /etc/nginx/sites-available/default
  1. Replace the line:
root /var/www/html;

with:

root /home/debian/path/to/your/repository;
  1. Apply chages with:
sudo systemctl restart nginx

User interface

This is a simple web page that displays real-time sensor data from two devices:

  • BMP180: Shows temperature and pressure.
  • HTU21D: Shows humidity and temperature.

Its styled with a separate CSS file (style.css) and fetches live data using JavaScript (index.js), which likely reads values from two JSON files (BMP180.json and HTU21D.json).

HTML

Complete code

<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
  <title>Sensor Dashboard</title>
  <link rel="stylesheet" href="style.css" />
</head>
<body>
  <div class="background"></div>
  <div class="container">
    <h1>Sensor Dashboard</h1>
    
    <div class="sensor-card">
      <img src="https://cdn-icons-png.flaticon.com/512/1126/1126741.png" alt="Temperature & Pressure Icon">
      <h2>BMP180</h2>
      <div class="data">
        <span id="temperature">Temperature: -- °C</span>
        <span id="pressure">Pressure: -- hPa</span>
      </div>
    </div>

    <div class="sensor-card">
      <img src="https://cdn-icons-png.flaticon.com/512/728/728093.png" alt="Humidity Icon">
      <h2>HTU21D</h2>
      <div class="data">
        <span id="humidity">Humidity: -- %</span>
        <span id="tempHTU">Temperature: -- °C</span>
      </div>
    </div>
  </div>

  <script src="index.js"></script>
</body>
</html>

Explanation

<!DOCTYPE html>
<html lang="en">
  • Declares this document as HTML5.
  • lang="en" sets the document language to English, which is useful for accessibility and SEO.
HEAD
<head>
  <meta charset="UTF-8" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
  <title>Sensor Dashboard</title>
  <link rel="stylesheet" href="style.css" />
</head>
  • charset="UTF-8" ensures proper text encoding.
  • viewport makes the layout responsive on mobile devices.
  • title is what appears in the browser tab.
  • link imports the external CSS file (style.css) for styling.
BODY
<body>
  <div class="background"></div>
  <div class="container">
    ...
  </div>
  <script src="index.js"></script>
</body>
  • The background div might be used for a visual effect like a background image or color gradient (defined in your CSS).
  • container holds the main content (dashboard).
  • index.js is loaded at the end to ensure the DOM is ready before scripts run.
Dashboard Title
<h1>Sensor Dashboard</h1>
  • This is the main heading of your web page.
Sensor Card: BMP180
<div class="sensor-card">
  <img src="https://cdn-icons-png.flaticon.com/512/1126/1126741.png" alt="Temperature & Pressure Icon">
  <h2>BMP180</h2>
  <div class="data">
    <span id="temperature">Temperature: -- °C</span>
    <span id="pressure">Pressure: -- hPa</span>
  </div>
</div>
  • This block represents the BMP180 sensor.
  • The icon (from flaticon.com) visually represents pressure/temperature.
  • The id attributes (temperature, pressure) are hooks used by JavaScript to insert real values from BMP180.json.
Sensor Card: HTU21D
<div class="sensor-card">
  <img src="https://cdn-icons-png.flaticon.com/512/728/728093.png" alt="Humidity Icon">
  <h2>HTU21D</h2>
  <div class="data">
    <span id="humidity">Humidity: -- %</span>
    <span id="tempHTU">Temperature: -- °C</span>
  </div>
</div>
  • This block represents the HTU21D sensor.
  • The image is a humidity icon.
  • The id attributes (humidity, tempHTU) are also updated by JavaScript using HTU21D.json.
JavaScript Integration
<script src="index.js"></script>
  • This line loads your script, which is responsible for:
  • Fetching the JSON files.
  • Parsing their content.
  • Replacing the placeholder values (-- °C, -- hPa, etc.) with live sensor data.

Index.js

The script fetches data from two local JSON files:

  • BMP180.json — contains temperature and pressure.
  • HTU21D.json — contains temperature and humidity.

Then it updates the HTML every 3 seconds so the page always shows live sensor values.

Full code

function updateBMP180() {
  fetch('BMP180.json')
    .then(res => res.json())
    .then(data => {
      document.getElementById('temperature').textContent = `Temperature: ${data.temperature.toFixed(2)} °C`;
      document.getElementById('pressure').textContent = `Pressure: ${data.pressure.toFixed(2)} hPa`;
    })
    .catch(err => console.error("Error BMP180:", err));
}

function updateHTU21D() {
  fetch('HTU21D.json')
    .then(res => res.json())
    .then(data => {
      document.getElementById('humidity').textContent = `Humidity: ${data.humidity.toFixed(1)} %`;
      document.getElementById('tempHTU').textContent = `Temperature: ${data.temperature.toFixed(1)} °C`;
    })
    .catch(err => console.error("Error HTU21D:", err));
}

setInterval(() => {
  updateBMP180();
  updateHTU21D();
}, 3000);

// Carga inicial
updateBMP180();
updateHTU21D();

Code explanation

Function: updateBMP180

function updateBMP180() {
  fetch('BMP180.json')
    .then(res => res.json())
    .then(data => {
      document.getElementById('temperature').textContent = `Temperature: ${data.temperature.toFixed(2)} °C`;
      document.getElementById('pressure').textContent = `Pressure: ${data.pressure.toFixed(2)} hPa`;
    })
    .catch(err => console.error("Error BMP180:", err));
}
  • This defines a new function named updateBMP180. Youll call this function when you want to update the BMP180 sensor data on the page.
  • fetch('BMP180.json'): Loads the JSON file from the same directory.
  • .then(res =>json()): Parses the response as JSON
  • .then(data +> {}): Accesses the data inside the file.
  • document.getElementById(...) updates the corresponding elements in your HTML.

Function: updateHTU21D

function updateHTU21D() {
  fetch('HTU21D.json')
    .then(res => res.json())
    .then(data => {
      document.getElementById('humidity').textContent = `Humidity: ${data.humidity.toFixed(1)} %`;
      document.getElementById('tempHTU').textContent = `Temperature: ${data.temperature.toFixed(1)} °C`;
    })
    .catch(err => console.error("Error HTU21D:", err));
}

Works the same way as updateBMP180(), but:

  • Fetches from HTU21D.json.
  • Displays humidity and temperature.
  • Uses .toFixed(1) for 1 decimal place (common for humidity values).

Auto-update every 3 seconds

setInterval(() => {
  updateBMP180();
  updateHTU21D();
}, 3000);
  • Calls both update functions every 3,000 milliseconds (3 seconds).
  • Keeps the UI in sync with new sensor readings, assuming the .json files are being updated continuously.

Initial load

updateBMP180();
updateHTU21D();
  • Ensures the data is shown immediately on page load, before the 3-second interval kicks in.

CSS

Full code

* {
  margin: 0;
  padding: 0;
  box-sizing: border-box;
  font-family: "Segoe UI", sans-serif;
}

body, html {
  height: 100%;
  background-color: #0d1117;
  color: #ffffff;
  position: relative;
  overflow: hidden;
}

.background {
  background-image: url('https://wallpapers.com/images/hd/blue-circuit-board-traces-zn0xezd4t8axj9r6.webp');
  background-size: cover;
  background-position: center;
  opacity: 0.1;
  filter: blur(3px);
  position: absolute;
  top: 0; left: 0;
  width: 100%;
  height: 100%;
  z-index: -1;
}

.container {
  max-width: 800px;
  margin: 40px auto;
  background-color: #161b22;
  padding: 30px;
  border-radius: 20px;
  box-shadow: 0 0 30px rgba(0, 255, 255, 0.2);
  animation: fadeIn 1s ease-in;
}

h1 {
  text-align: center;
  margin-bottom: 30px;
  font-size: 2.5rem;
  color: #58a6ff;
}

.sensor-card {
  background-color: #1f2937;
  padding: 20px;
  border-radius: 15px;
  margin-bottom: 20px;
  box-shadow: 0 0 20px rgba(100, 255, 255, 0.1);
  animation: slideIn 1s ease;
  display: flex;
  flex-direction: column;
  align-items: center;
  text-align: center;
}

.sensor-card img {
  width: 64px;
  height: 64px;
  margin-bottom: 10px;
}

.sensor-card h2 {
  margin-bottom: 10px;
  color: #90cdf4;
}

.data span {
  display: block;
  margin: 5px 0;
  font-size: 1.2rem;
  color: #ffffff;
}

@keyframes fadeIn {
  from { opacity: 0; transform: translateY(-20px); }
  to { opacity: 1; transform: translateY(0); }
}

@keyframes slideIn {
  from { opacity: 0; transform: scale(0.9); }
  to { opacity: 1; transform: scale(1); }
}

Explaining

Global Styling

  • *: Resets default browser spacing (margin, padding) and sets a consistent font and box model across the entire page.
  • body, html:
  • Sets full height layout.
  • Applies a dark background (#0d1117) with white text.
  • Hides overflow and enables positioning for internal layers.

Background Layer

  • .background:
  • Adds a faint, blurred circuit board image as the background.
  • Uses opacity: 0.1 and filter: blur(3px) to give it a soft tech feel.
  • Positioned absolutely behind everything (z-index: -1).

Main Container

  • .container:
  • A centered, card-like section with:
  • A dark background (#161b22)
  • Rounded corners and soft glowing shadow.
  • Padding and a fade-in animation on load.

Title

  • h1:
  • Large, centered header in light blue (#58a6ff).
  • Styled to stand out at the top of the dashboard.

Sensor Cards

  • .sensor-card:
  • Styled boxes for each sensor.
  • Darker background (#1f2937) with a soft shadow.
  • Rounded corners, padding, and a slide-in animation when they load.
  • Contents are centered vertically and horizontally.
  • .sensor-card img:
  • Sensor icons sized to 64×64 pixels with margin for spacing.
  • .sensor-card h2:
  • Sub-headers for each sensor card in a soft blue (#90cdf4).

Data Text

  • .data span:
  • Each line of sensor data (e.g., temperature, humidity).
  • Displayed as blocks with spacing and larger font for visibility.

Animations

  • @keyframes fadeIn:
  • Smooth slide-down + fade-in for the container.
  • @keyframes slideIn:
  • Subtle zoom-in effect for each sensor card.

Sensor library

HTU21D library

The library contains 3 files, HTU21D.c, htu21d.h and main.c

htu21d.h

#ifndef HTU21D_H
#define HTU21D_H

// HTU21D i2c address
#define HTU21D_ADDR 0x40

//commands for readings
#define HTU21D_TEMP 0xE3
#define HTU21D_HUM 0xE5
#define HTU21D_RESET 0xFE

//funtion declarations

//Temp:
int getTemp(int fd, double *temp);
//HUM
int getHum(int fd, double *hum);
//RESET
int getReset(int fd);
#endif
Explanation
  • HTU21D_ADDR: The I2C address of the sensor (0x40).
  • HTU21D_TEMP: Command to read temperature (0xE3).
  • HTU21D_HUM: Command to read humidity (0xE5).
  • HTU21D_RESET: Command to reset the sensor (0xFE).
  • Declares three functions:
  1. getTemp() for reading temperature,
  2. getHum() for reading humidity,
  3. getReset() for resetting the sensor.

HTU21D.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
//Aditional librarys
#include <errno.h>
#include <fcntl.h> 
#include "htu21d.h"

#define I2C_PATH "/dev/i2c-%d"
#define I2C_PORT 2
int main(){
	char filePath[20];
	snprintf(filePath, sizeof(filePath), I2C_PATH, I2C_PORT );
	int fd = open(filePath, O_RDWR);

	if(fd<0){
		fprintf(stderr, "Error: Unable to access HTU21D sensor: %s",strerror(errno));
		exit(-1);
	}
	//measurements
	double temperature=0;
	double humidity=0;
	if((getTemp(fd, &temperature)<0)||(getHum(fd, &humidity)<0)){
		fprintf(stderr,"Error -404: Measurments not read");
		exit(-1);
	}

	
	//printf("HTU21D Module \n");
	//printf("%5.2fC \n", temperature);
	//printf("%5.2fC \n", humidity);
	printf("{");
	printf("\"temperature\": %5.2f,", temperature);
	printf("\"humidity\": %5.2f", humidity);
	printf("}");
	return 0;

}
Explanation
Librarys
#include <unistd.h>
#include <sys/ioctl.h>
#include <linux/i2c-dev.h>
#include <i2c/smbus.h>
#include <stdio.h>
#include "htu21d.h"

These headers provide:

  • unistd.h: basic system calls (like read, write, etc.)
  • sys/ioctl.h: lets you control devices (e.g., set I2C slave address)
  • linux/i2c-dev.h: allows interaction with the I2C bus
  • i2c/smbus.h: provides high-level SMBus/I2C functions like i2c_smbus_read_i2c_block_data
  • stdio.h: for printing error messages
  • "htu21d.h": includes your own header file (constants and function declarations)
getTemp() Function
int getTemp(int fd, double *temp) {
    getReset(fd);  // Resets the sensor before reading

    char buffer[3];  // Buffer to hold 3 bytes of data from sensor
    __s32 res = i2c_smbus_read_i2c_block_data(fd, HTU21D_TEMP, 3, buffer);
  • Calls getReset(fd) to ensure the sensor is in a clean state before reading.
  • Uses i2c_smbus_read_i2c_block_data to read 3 bytes from the sensor using the temperature command 0xE3.
  • These 3 bytes contain raw temperature data + CRC (which you ignore here).
    if (res < 0) {
        perror("ERROR-1: Failed to read Temperature");
        return -1;
    }
  • If the read fails (e.g., I2C communication issue), it prints an error and returns -1.
    *temp = -46.85 + 175.72 * (buffer[0] * 256 + buffer[1]) / 65536.0;
    return 0;
}
  • The first two bytes in buffer are combined to make a 16-bit raw temperature.
  • The formula from the HTU21D datasheet is applied to convert raw data into actual temperature in Celsius.
  • The result is stored in the variable pointed to by *temp.
  • Returns 0 to indicate success.
getHum() Function

This function is nearly identical to getTemp(), but it reads humidity instead.

int getHum(int fd, double *hum) {
    getReset(fd);
    char buffer[3];
    __s32 res = i2c_smbus_read_i2c_block_data(fd, HTU21D_HUM, 3, buffer);
  • Uses the command HTU21D_HUM (value 0xE5) to read humidity data.
    if (res < 0) {
        perror("ERROR -3: Failed to read Humidity");
        return -1;
    }
    *hum = -6 + 125 * (buffer[0] * 256 + buffer[1]) / 65536.0;
    return 0;
}
  • Applies the formula from the datasheet to convert the raw bytes to % humidity.
getReset() Function
int getReset(int fd) {
    if (0 > ioctl(fd, I2C_SLAVE, HTU21D_ADDR)) {
        perror("ERROR -2: Failed in reset");
        return -2;
    }
    i2c_smbus_write_byte(fd, HTU21D_RESET);
    return 0;
}
  • ioctl() tells the I2C driver which slave device you want to talk to (address 0x40).
  • Then i2c_smbus_write_byte() sends the reset command 0xFE to the HTU21D.
  • Resets the sensor, which is sometimes necessary to avoid bad reads or stuck states.

BMP180 library

The library contains 3 files, bmp180.c, bmp180.h and main.c

bmp180.c

#include "bmp180.h"
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/i2c-dev.h>
#include <stdio.h>

#define BMP180_ADDR 0x77

// Lectura de 16 bits de un registro (dos bytes)
static int read16(int fd, uint8_t reg, int16_t *value) {
    uint8_t buf[2];
    if (write(fd, &reg, 1) != 1) return -1;
    if (read(fd, buf, 2) != 2) return -1;
    *value = (buf[0] << 8) | buf[1];
    return 0;
}

// Escritura de 8 bits a un registro
static int write8(int fd, uint8_t reg, uint8_t value) {
    uint8_t buf[2] = {reg, value};
    if (write(fd, buf, 2) != 2) return -1;
    return 0;
}

// Leer calibración desde el sensor
int bmp180_init(int fd, bmp180_calib_data_t *calib) {
    if (read16(fd, 0xAA, &calib->AC1) < 0) return -1;
    if (read16(fd, 0xAC, &calib->AC2) < 0) return -1;
    if (read16(fd, 0xAE, &calib->AC3) < 0) return -1;
    if (read16(fd, 0xB0, (int16_t*)&calib->AC4) < 0) return -1;
    if (read16(fd, 0xB2, (int16_t*)&calib->AC5) < 0) return -1;
    if (read16(fd, 0xB4, (int16_t*)&calib->AC6) < 0) return -1;
    if (read16(fd, 0xB6, &calib->B1) < 0) return -1;
    if (read16(fd, 0xB8, &calib->B2) < 0) return -1;
    if (read16(fd, 0xBA, &calib->MB) < 0) return -1;
    if (read16(fd, 0xBC, &calib->MC) < 0) return -1;
    if (read16(fd, 0xBE, &calib->MD) < 0) return -1;
    return 0;
}

// Leer temperatura sin procesar (raw temp)
static int bmp180_read_raw_temperature(int fd, int32_t *raw_temp) {
    if (write8(fd, 0xF4, 0x2E) < 0) return -1; // start temp measurement
    usleep(4500); // esperar 4.5 ms
    int16_t value;
    if (read16(fd, 0xF6, &value) < 0) return -1;
    *raw_temp = value;
    return 0;
}

// Leer presión sin procesar (raw pressure)
static int bmp180_read_raw_pressure(int fd, int32_t *raw_press, int oss) {
    if (write8(fd, 0xF4, 0x34 + (oss << 6)) < 0) return -1; // start pressure measurement
    usleep(25000); // esperar 25 ms para oss=0 (simple oversampling)
    uint8_t buf[3];
    uint8_t reg = 0xF6;
    if (write(fd, &reg, 1) != 1) return -1;
    if (read(fd, buf, 3) != 3) return -1;
    *raw_press = ((buf[0] << 16) | (buf[1] << 8) | buf[2]) >> (8 - oss);
    return 0;
}

int bmp180_read_temperature(int fd, bmp180_calib_data_t *calib, double *temperature) {
    int32_t UT;
    if (bmp180_read_raw_temperature(fd, &UT) < 0) return -1;

    int32_t X1 = ((UT - calib->AC6) * calib->AC5) >> 15;
    int32_t X2 = (calib->MC << 11) / (X1 + calib->MD);
    int32_t B5 = X1 + X2;
    *temperature = ((B5 + 8) >> 4) / 10.0;
    return 0;
}

int bmp180_read_pressure(int fd, bmp180_calib_data_t *calib, double *pressure) {
    int oss = 0; // oversampling setting 0..3
    int32_t UP;
    if (bmp180_read_raw_pressure(fd, &UP, oss) < 0) return -1;

    // Recalcular B5 para temperatura, necesario para presión
    int32_t UT;
    if (bmp180_read_raw_temperature(fd, &UT) < 0) return -1;

    int32_t X1 = ((UT - calib->AC6) * calib->AC5) >> 15;
    int32_t X2 = (calib->MC << 11) / (X1 + calib->MD);
    int32_t B5 = X1 + X2;

    int32_t B6 = B5 - 4000;
    X1 = (calib->B2 * ((B6 * B6) >> 12)) >> 11;
    X2 = (calib->AC2 * B6) >> 11;
    int32_t X3 = X1 + X2;
    int32_t B3 = (((calib->AC1 * 4 + X3) << oss) + 2) >> 2;

    X1 = (calib->AC3 * B6) >> 13;
    X2 = (calib->B1 * ((B6 * B6) >> 12)) >> 16;
    X3 = ((X1 + X2) + 2) >> 2;

    uint32_t B4 = (calib->AC4 * (uint32_t)(X3 + 32768)) >> 15;
    uint32_t B7 = ((uint32_t)UP - B3) * (50000 >> oss);

    int32_t p;
    if (B7 < 0x80000000) {
        p = (B7 << 1) / B4;
    } else {
        p = (B7 / B4) << 1;
    }

    X1 = (p >> 8) * (p >> 8);
    X1 = (X1 * 3038) >> 16;
    X2 = (-7357 * p) >> 16;

    p = p + ((X1 + X2 + 3791) >> 4);

    *pressure = p / 100.0; // Pa a hPa (mbar)
    return 0;
}
explanation
Headers and defines
#include "bmp180.h"
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/i2c-dev.h>
#include <stdio.h>

#define BMP180_ADDR 0x77
  • Includes standard and I2C Linux headers.
  • Defines the I2C address of the BMP180 sensor.
read16() Read 16-bit (2-byte) value from a register
static int read16(int fd, uint8_t reg, int16_t *value)
  • Sends the register address via write().
  • Reads 2 bytes and stores the result as a big-endian 16-bit signed integer.
  • Used to read calibration values and sensor data.
write8() Write 8-bit value to a register
static int write8(int fd, uint8_t reg, uint8_t value)
  • Sends 2 bytes: register address and value.
  • Used to trigger temperature or pressure measurements by writing command codes to control register 0xF4
bmp180_init() Read all calibration data from sensor
int bmp180_init(int fd, bmp180_calib_data_t *calib)
  • Reads 11 calibration values from registers 0xAA to 0xBF.
  • These are factory-set and unique to each sensor.
  • Needed to apply temperature and pressure compensation formulas correctly.
bmp180_read_raw_temperature() Trigger and read unprocessed temperature
static int bmp180_read_raw_temperature(int fd, int32_t *raw_temp)
  • Writes 0x2E to control register 0xF4 to start temperature conversion.
  • Waits 4.5 ms (conversion time).
  • Reads result from 0xF6 and 0xF7.
bmp180_read_raw_pressure() Trigger and read unprocessed pressure
static int bmp180_read_raw_pressure(int fd, int32_t *raw_press, int oss)
  • Writes 0x34 + (oss << 6) to register 0xF4 to start pressure conversion.
  • Waits 25 ms for conversion (OSS=0).
  • Reads 3 bytes from 0xF6, 0xF7, 0xF8 and shifts them to get a 19-bit value.
  • oss (oversampling setting) affects resolution and delay.
bmp180_read_temperature() Convert raw temperature to °C
int bmp180_read_temperature(int fd, bmp180_calib_data_t *calib, double *temperature)
  • Uses raw temperature and calibration data.
  • Follows Boschs datasheet compensation formula: X1 = ((UT - AC6) * AC5) >> 15 X2 = (MC << 11) / (X1 + MD) B5 = X1 + X2 T = (B5 + 8) >> 4 → gives temperature in 0.1°C
  • Final result is divided by 10.0 to get °C.
bmp180_read_pressure() Convert raw pressure to hPa
int bmp180_read_pressure(int fd, bmp180_calib_data_t *calib, double *pressure)
  • Uses raw pressure and temperature (needed for B5).
  • Applies long compensation formula from datasheet:
  1. Many intermediate steps using calibration values.
  2. Computes B3, B4, B6, B7, X1, X2, X3, and finally p.
  • Final pressure p is in Pa; divide by 100.0 to get hPa (mbar).

bmp180.h

#ifndef BMP180_H
#define BMP180_H

#include <stdint.h>

typedef struct {
    int16_t AC1, AC2, AC3;
    uint16_t AC4, AC5, AC6;
    int16_t B1, B2;
    int16_t MB, MC, MD;
} bmp180_calib_data_t;

int bmp180_init(int fd, bmp180_calib_data_t *calib);
int bmp180_read_temperature(int fd, bmp180_calib_data_t *calib, double *temperature);
int bmp180_read_pressure(int fd, bmp180_calib_data_t *calib, double *pressure);

#endif
Explanation
Header
#ifndef BMP180_H
#define BMP180_H

#include <stdint.h>
  • Header guard to prevent multiple inclusion.
  • Includes standard integer types (uint8_t, int16_t, etc.).
Structure: bmp180_calib_data_t
typedef struct {
    int16_t AC1, AC2, AC3;
    uint16_t AC4, AC5, AC6;
    int16_t B1, B2;
    int16_t MB, MC, MD;
} bmp180_calib_data_t;
  • Holds all calibration constants (11 total).
  • Types match datasheet: some are signed, others unsigned.
Function declarations
int bmp180_init(int fd, bmp180_calib_data_t *calib);
int bmp180_read_temperature(int fd, bmp180_calib_data_t *calib, double *temperature);
int bmp180_read_pressure(int fd, bmp180_calib_data_t *calib, double *pressure);

main.c

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <linux/i2c-dev.h>
#include <sys/ioctl.h>
#include "bmp180.h"

#define I2C_BUS "/dev/i2c-2"
#define BMP180_ADDR 0x77

int main() {
    int fd = open(I2C_BUS, O_RDWR);
    if (fd < 0) {
        perror("Error abriendo el bus I2C");
        return 1;
    }

    if (ioctl(fd, I2C_SLAVE, BMP180_ADDR) < 0) {
        perror("Error configurando la dirección I2C");
        close(fd);
        return 1;
    }

    bmp180_calib_data_t calib;
    if (bmp180_init(fd, &calib) < 0) {
        fprintf(stderr, "Error leyendo datos de calibración BMP180\n");
        close(fd);
        return 1;
    }

    double temperature, pressure;

    if (bmp180_read_temperature(fd, &calib, &temperature) < 0) {
        fprintf(stderr, "Error leyendo temperatura BMP180\n");
        close(fd);
        return 1;
    }

    if (bmp180_read_pressure(fd, &calib, &pressure) < 0) {
        fprintf(stderr, "Error leyendo presión BMP180\n");
        close(fd);
        return 1;
    }

    printf("{\"temperature\": %.2f, \"pressure\": %.2f}\n", temperature, pressure);

    close(fd);
    return 0;
}

Explanation
Open I2C Bus
int fd = open("/dev/i2c-2", O_RDWR);
  • Opens I2C device for read/write.
Set I2C Slave Address
ioctl(fd, I2C_SLAVE, BMP180_ADDR);
  • Tells the kernel which I2C device address (0x77) to communicate with.
Initialize BMP180
bmp180_init(fd, &calib);
  • Reads calibration constants from the sensor.
Read Temperature and Pressure
bmp180_read_temperature(fd, &calib, &temperature);
bmp180_read_pressure(fd, &calib, &pressure);
  • Uses previously stored calibration values to read and convert real temperature and pressure values.
Output in JSON Format
printf("{\"temperature\": %.2f, \"pressure\": %.2f}\n", temperature, pressure);
  • Very useful becouse we are integrating with a frontend (e.g. web UI or logger).
Cleanup
close(fd);
  • Closes the I2C device after finishing communication.

Results

Here are some screenshots to prove the functionality of the UI.