| 
						
						
							
								
							
						
						
					 | 
				
			
			 | 
			 | 
			
				@ -30,6 +30,53 @@ def FilteringData(b,e):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    return luxesf, tempf, humf, powf
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				# Pearson and Spearman correlation
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				def Correlation(l,t,h,p,c):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    # Empty 4x4 array
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    arr = np.empty((4,4))
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    # Joints luxesf, tempf, humf, powf in one array
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    l=np.array(l).reshape(-1,1)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    t=np.array(t).reshape(-1,1)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    h=np.array(h).reshape(-1,1)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    p=np.array(p).reshape(-1,1)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    aa=np.hstack((l,t,h,p))
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    for a in range(0,4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        for t in range (0,4):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            if c=='p':corr, j = pearsonr(aa[:,a],aa[:,t]) # If c iquals s, pearson correlation is calculated
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            elif c=='s': corr, j = spearmanr(aa[:,a],aa[:,t]) # If c iquals s, pearson correlation is calculated
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            else: print("Elija un tipo de correlacion valida: pearson(p) o spearman(s)")
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            arr[a][t]=corr
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    return arr
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				# Table of correlation Function
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				def Tablecorrelation(data,title):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    fig, ax = plt.subplots()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    table = ax.table(cellText=np.around(data, decimals=4),
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                     rowLabels=['Lux','Temp','Hum','Pow'],
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                     colLabels=['Lux','Temp','Hum','Pow'],
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                     loc='center')
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    table.set_fontsize(10)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    table.scale(1.2,1.2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    ax.axis('off')
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    plt.title(title)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    plt.savefig(f'{title}.png')
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    plt.show()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#Filtered data from 9Hrs to 16Hrs
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				l, t, h, p = FilteringData(9,16)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#Importing scipy library
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				from scipy.stats import pearsonr
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				from scipy.stats import spearmanr
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#Correlation calculation
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#SPEARMAN
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				Spearmancorrelation = Correlation(l, t, h, p,'s')
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				print('Spearman correlation')
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				print(Spearmancorrelation)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				Tablecorrelation(Spearmancorrelation,'Spearman correlation')
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#PEARSON
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				pearsoncorreltaion = Correlation(l, t, h, p,'p')
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				print('Pearson correlation')
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				print(pearsoncorreltaion)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				Tablecorrelation(pearsoncorreltaion,'Pearson correltaion')
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				############## PLOTTING DATA FUNCTION ##############
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#Inputs: Luxes, Temperature, Humidity and Power
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#Output: Vs graph 4x4
 | 
			
		
		
	
	
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
				
			
			 | 
			 | 
			
				
 
 |