You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

118 KiB

None <html lang="en"> <head> </head>

Data exploration and visualization

In [80]:
!pip3 install scikit-learn
Requirement already satisfied: scikit-learn in /Users/gmarx/lwc/courses/aia/lab-sessions-25b/.venv/lib/python3.13/site-packages (1.7.2)
Requirement already satisfied: numpy>=1.22.0 in /Users/gmarx/lwc/courses/aia/lab-sessions-25b/.venv/lib/python3.13/site-packages (from scikit-learn) (2.3.2)
Requirement already satisfied: scipy>=1.8.0 in /Users/gmarx/lwc/courses/aia/lab-sessions-25b/.venv/lib/python3.13/site-packages (from scikit-learn) (1.16.2)
Requirement already satisfied: joblib>=1.2.0 in /Users/gmarx/lwc/courses/aia/lab-sessions-25b/.venv/lib/python3.13/site-packages (from scikit-learn) (1.5.2)
Requirement already satisfied: threadpoolctl>=3.1.0 in /Users/gmarx/lwc/courses/aia/lab-sessions-25b/.venv/lib/python3.13/site-packages (from scikit-learn) (3.6.0)

[notice] A new release of pip is available: 25.1.1 -> 25.2
[notice] To update, run: pip install --upgrade pip
In [81]:
from sklearn import datasets
iris = datasets.load_iris()
print(iris.DESCR)
.. _iris_dataset:

Iris plants dataset
--------------------

**Data Set Characteristics:**

:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:
    - sepal length in cm
    - sepal width in cm
    - petal length in cm
    - petal width in cm
    - class:
            - Iris-Setosa
            - Iris-Versicolour
            - Iris-Virginica

:Summary Statistics:

============== ==== ==== ======= ===== ====================
                Min  Max   Mean    SD   Class Correlation
============== ==== ==== ======= ===== ====================
sepal length:   4.3  7.9   5.84   0.83    0.7826
sepal width:    2.0  4.4   3.05   0.43   -0.4194
petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)
petal width:    0.1  2.5   1.20   0.76    0.9565  (high!)
============== ==== ==== ======= ===== ====================

:Missing Attribute Values: None
:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
:Date: July, 1988

The famous Iris database, first used by Sir R.A. Fisher. The dataset is taken
from Fisher's paper. Note that it's the same as in R, but not as in the UCI
Machine Learning Repository, which has two wrong data points.

This is perhaps the best known database to be found in the
pattern recognition literature.  Fisher's paper is a classic in the field and
is referenced frequently to this day.  (See Duda & Hart, for example.)  The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant.  One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.

.. dropdown:: References

  - Fisher, R.A. "The use of multiple measurements in taxonomic problems"
    Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
    Mathematical Statistics" (John Wiley, NY, 1950).
  - Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.
    (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.
  - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
    Structure and Classification Rule for Recognition in Partially Exposed
    Environments".  IEEE Transactions on Pattern Analysis and Machine
    Intelligence, Vol. PAMI-2, No. 1, 67-71.
  - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE Transactions
    on Information Theory, May 1972, 431-433.
  - See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al"s AUTOCLASS II
    conceptual clustering system finds 3 classes in the data.
  - Many, many more ...

In [82]:
import numpy as np
import matplotlib.pyplot as plt
sl = iris.data[:,0].reshape(-1,1)
sw = iris.data[:,1].reshape(-1,1)
plt.plot(sl, sw, 'ok')
plt.show()
sl.shape
No description has been provided for this image
Out[82]:
(150, 1)
In [83]:
tg = iris.target
tg.shape
plt.plot(sl[tg==0,0], sw[tg==0,0], 'og', label="Seto")
plt.plot(sl[tg==1,0], sw[tg==1,0], 'or', label="Versi")
plt.plot(sl[tg==2,0], sw[tg==2,0], 'ob', label="Virgi")
plt.legend()
plt.show()
No description has been provided for this image

Binary classifier with one parameter

In [ ]:
z = np.linspace(-10, 10, 100)
sig = 1/(1+np.exp(-z-4)) + 1/(1+np.exp(-z+4))
plt.plot(z, sig, 'ob')
plt.show()
No description has been provided for this image

First classifier

$$z = \theta_1\times x_1 + \theta_0$$

In [149]:
pw = iris.data[:, 3].reshape(-1,1)
X = np.c_[np.ones_like(pw), pw]
y = (iris.target==0).astype(int).reshape(-1,1) #Setosa 
In [150]:
def sigmoid(z):
    #z = np.clip(z, -50, 50)
    sig = 1/(1+np.exp(-z))
    return sig
In [151]:
def logLoss(y, yModel):
    #yModel = np.clip(yModel, 1e-12, 1-1e-12)
    loss = -np.mean(y*np.log(yModel)+(1-y)*np.log(1-yModel))
    return loss
In [172]:
# Gradient descent
lr = 0.1
epochs = 5000
m = X.shape[0]
np.random.seed(10)
theta = np.random.rand(2,1)
theta
Out[172]:
array([[0.77132064],
       [0.02075195]])
In [173]:
xNew = np.linspace(-1,3, m)
Xnew = np.c_[np.ones_like(xNew), xNew]
losses = []

for i in range(epochs):
    z = X@theta
    h = sigmoid(z)
    grad = (X.T@(h-y))/m
    theta = theta - lr*grad
    lossValue = logLoss(y, h)
    losses.append(lossValue)
    if(i%100==0):
        print(f"Epoch {i:4d}, Loss: {lossValue:.6f}")
theta
Epoch    0, Loss: 0.909705
Epoch  100, Loss: 0.262854
Epoch  200, Loss: 0.194549
Epoch  300, Loss: 0.154778
Epoch  400, Loss: 0.128995
Epoch  500, Loss: 0.110967
Epoch  600, Loss: 0.097650
Epoch  700, Loss: 0.087403
Epoch  800, Loss: 0.079264
Epoch  900, Loss: 0.072636
Epoch 1000, Loss: 0.067129
Epoch 1100, Loss: 0.062475
Epoch 1200, Loss: 0.058488
Epoch 1300, Loss: 0.055030
Epoch 1400, Loss: 0.052002
Epoch 1500, Loss: 0.049325
Epoch 1600, Loss: 0.046941
Epoch 1700, Loss: 0.044803
Epoch 1800, Loss: 0.042874
Epoch 1900, Loss: 0.041124
Epoch 2000, Loss: 0.039528
Epoch 2100, Loss: 0.038066
Epoch 2200, Loss: 0.036723
Epoch 2300, Loss: 0.035482
Epoch 2400, Loss: 0.034334
Epoch 2500, Loss: 0.033267
Epoch 2600, Loss: 0.032273
Epoch 2700, Loss: 0.031345
Epoch 2800, Loss: 0.030475
Epoch 2900, Loss: 0.029660
Epoch 3000, Loss: 0.028892
Epoch 3100, Loss: 0.028169
Epoch 3200, Loss: 0.027486
Epoch 3300, Loss: 0.026840
Epoch 3400, Loss: 0.026227
Epoch 3500, Loss: 0.025647
Epoch 3600, Loss: 0.025094
Epoch 3700, Loss: 0.024569
Epoch 3800, Loss: 0.024068
Epoch 3900, Loss: 0.023591
Epoch 4000, Loss: 0.023134
Epoch 4100, Loss: 0.022698
Epoch 4200, Loss: 0.022280
Epoch 4300, Loss: 0.021879
Epoch 4400, Loss: 0.021495
Epoch 4500, Loss: 0.021126
Epoch 4600, Loss: 0.020771
Epoch 4700, Loss: 0.020430
Epoch 4800, Loss: 0.020102
Epoch 4900, Loss: 0.019785
Out[173]:
array([[ 5.73789762],
       [-7.93887721]])
In [174]:
plt.plot(losses)
Out[174]:
[<matplotlib.lines.Line2D at 0x11cfb3750>]
No description has been provided for this image
In [175]:
xNew = np.linspace(-0.5,3, m)
Xnew = np.c_[np.ones_like(xNew), xNew]
yMod = sigmoid(Xnew@theta)
yJitter = y+np.random.uniform(-0.1, 0.1, size=y.shape)
logloss = logLoss(y, sigmoid(X@theta))
print(logloss)
0.019479899336526857
In [169]:
plt.plot(pw, yJitter, 'og', alpha=0.3)
plt.plot(xNew, yMod, ':r')
plt.show()
No description has been provided for this image
In [176]:
p_train = sigmoid(X @ theta)
y_hat = (p_train >= 0.5).astype(int)  # 0.5 is default; tune if needed
acc = (y_hat == y).mean()
print(f"Train accuracy: {acc:.3f}")
Train accuracy: 1.000
In [ ]:
 
</html>