You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
gmarx 8efa75920b | 9 months ago | |
---|---|---|
main_files | 9 months ago | |
Readme.md | 9 months ago | |
main.ipynb | 9 months ago | |
newsletter.md | 9 months ago |
Readme.md
OLS Ordinary Least Squares
The OLS general model \hat{y}
is defined by:
\hat{y} = \theta_0+\theta_1 x_1
Applying the partial derivatives with rescpect \theta_0
and equaliting to zero:
\frac{\partial SSR}{\partial \theta_0}=0
here SSR is defined as:
\sum_{i=1}^n (y^i - \hat{y}^i)^2
Resulting in:
\theta_0 = \frac{\sum_{i=1}^n y^i}{n} - \frac{\theta_1 \sum_{i=1}^n x^i}{n}
or
\theta_0 = \bar{y} -\theta_1 \bar{x}
In a similar way, the partial derivative of SSR with respect of \theta_1
will result in:
\theta_1 = \frac{\sum_{i=1}^n x^i(y^i-\bar{y}) }{\sum_{i=1}^n x^i(x^i-\bar{x})}
Implementing OLS in Python
import numpy as np
x = np.linspace(0,4,20)
theta0 = 3.9654
theta1 = 2.5456
y = theta0+theta1*x
y
array([ 3.9654 , 4.50131579, 5.03723158, 5.57314737, 6.10906316,
6.64497895, 7.18089474, 7.71681053, 8.25272632, 8.78864211,
9.32455789, 9.86047368, 10.39638947, 10.93230526, 11.46822105,
12.00413684, 12.54005263, 13.07596842, 13.61188421, 14.1478 ])
import matplotlib.pyplot as plt
plt.plot(x,y, '.k')
plt.show()
x = 4*np.random.rand(50, 1)
y = theta0 + theta1*x+0.5*np.random.randn(50, 1)
plt.plot(x,y, '*k')
plt.show()
Implementing with for
\theta_1 = \frac{\sum_{i=1}^n x^i(y^i-\bar{y}) }{\sum_{i=1}^n x^i(x^i-\bar{x})}
# for implementation for computing theta1:
xAve = x.mean()
yAve = y.mean()
num = 0
den = 0
for i in range(len(x)):
num = num + x[i]*(y[i]-yAve)
den = den + x[i]*(x[i]-xAve)
theta1Hat = num/den
print(theta1Hat)
[2.4717291]
# for implementation for theta0:
# $$ \theta_0 = \bar{y} -\theta_1 \bar{x} $$
theta0Hat = yAve - theta1Hat*xAve
print(theta0Hat)
#real values are
#theta0 = 3.9654
#theta1 = 2.5456
[4.18459936]
total = 0
for i in range(len(x)):
total = total + x[i]
total/len(x)
array([2.27654582])
Implementing OLS by numpy methods
# For theta1:
# $$\theta_1 = \frac{\sum_{i=1}^n x^i(y^i-\bar{y}) }{\sum_{i=1}^n x^i(x^i-\bar{x})}$$
num2 = np.sum(x*(y-y.mean()))
den2 = np.sum(x*(x-x.mean()))
theta1Hat2 = num2/den2
print(theta1Hat2)
# Efficacy --> time
2.4717291029649546
theta0Hat2 = yAve-theta1Hat2*xAve
theta0Hat2
4.184599360470533
Comparing Model and Data
xNew = np.linspace(0,4,20)
yHat = theta0Hat + theta1Hat*xNew
plt.plot(xNew, yHat, '-*r', label="$\hat{y}$")
plt.plot(x,y,'.k', label="data")
plt.legend()
plt.show()
Functions for data and OLS
def DataGen(xn: float,n: int, disp,theta0=3.9654,theta1=2.5456):
x = xn*np.random.rand(n, 1)
#theta0 = 3.9654
#theta1 = 2.5456
y = theta0+theta1*x+disp*np.random.randn(n,1)
return x,y
x,y = DataGen(9, 100, 1, 0,1)
plt.plot(x,y,'.k')
plt.show()
def MyOLS(x,y):
# for implementation for computing theta1:
xAve = x.mean()
yAve = y.mean()
num = 0
den = 0
for i in range(len(x)):
num = num + x[i]*(y[i]-yAve)
den = den + x[i]*(x[i]-xAve)
theta1Hat = num/den
theta0Hat = yAve - theta1Hat*xAve
return theta0Hat, theta1Hat
the0, the1 = MyOLS(x,y)
the1
array([1.12539439])
TODO - Students
- Efficacy --> time: For method Vs. Numpy