First part of the data analysis import the files .csv and make a structures for later processing.
parent
c9d05aea23
commit
31c776b1da
@ -0,0 +1,8 @@
|
|||||||
|
#!/home/mgph/Desktop/?/MAESTRIA/HYDROGEN_PROJ/Analysis_Data/py-data-analysis/.venv/bin/python
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
import re
|
||||||
|
import sys
|
||||||
|
from numpy.f2py.f2py2e import main
|
||||||
|
if __name__ == '__main__':
|
||||||
|
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
||||||
|
sys.exit(main())
|
@ -0,0 +1,8 @@
|
|||||||
|
#!/home/mgph/Desktop/?/MAESTRIA/HYDROGEN_PROJ/Analysis_Data/py-data-analysis/.venv/bin/python
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
import re
|
||||||
|
import sys
|
||||||
|
from numpy._configtool import main
|
||||||
|
if __name__ == '__main__':
|
||||||
|
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
||||||
|
sys.exit(main())
|
@ -0,0 +1 @@
|
|||||||
|
pip
|
@ -0,0 +1,971 @@
|
|||||||
|
Copyright (c) 2005-2025, NumPy Developers.
|
||||||
|
All rights reserved.
|
||||||
|
|
||||||
|
Redistribution and use in source and binary forms, with or without
|
||||||
|
modification, are permitted provided that the following conditions are
|
||||||
|
met:
|
||||||
|
|
||||||
|
* Redistributions of source code must retain the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer.
|
||||||
|
|
||||||
|
* Redistributions in binary form must reproduce the above
|
||||||
|
copyright notice, this list of conditions and the following
|
||||||
|
disclaimer in the documentation and/or other materials provided
|
||||||
|
with the distribution.
|
||||||
|
|
||||||
|
* Neither the name of the NumPy Developers nor the names of any
|
||||||
|
contributors may be used to endorse or promote products derived
|
||||||
|
from this software without specific prior written permission.
|
||||||
|
|
||||||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||||
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||||
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||||
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||||
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||||
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||||
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||||
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||||
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||||
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
|
||||||
|
----
|
||||||
|
|
||||||
|
The NumPy repository and source distributions bundle several libraries that are
|
||||||
|
compatibly licensed. We list these here.
|
||||||
|
|
||||||
|
Name: lapack-lite
|
||||||
|
Files: numpy/linalg/lapack_lite/*
|
||||||
|
License: BSD-3-Clause
|
||||||
|
For details, see numpy/linalg/lapack_lite/LICENSE.txt
|
||||||
|
|
||||||
|
Name: dragon4
|
||||||
|
Files: numpy/_core/src/multiarray/dragon4.c
|
||||||
|
License: MIT
|
||||||
|
For license text, see numpy/_core/src/multiarray/dragon4.c
|
||||||
|
|
||||||
|
Name: libdivide
|
||||||
|
Files: numpy/_core/include/numpy/libdivide/*
|
||||||
|
License: Zlib
|
||||||
|
For license text, see numpy/_core/include/numpy/libdivide/LICENSE.txt
|
||||||
|
|
||||||
|
|
||||||
|
Note that the following files are vendored in the repository and sdist but not
|
||||||
|
installed in built numpy packages:
|
||||||
|
|
||||||
|
Name: Meson
|
||||||
|
Files: vendored-meson/meson/*
|
||||||
|
License: Apache 2.0
|
||||||
|
For license text, see vendored-meson/meson/COPYING
|
||||||
|
|
||||||
|
Name: spin
|
||||||
|
Files: .spin/cmds.py
|
||||||
|
License: BSD-3
|
||||||
|
For license text, see .spin/LICENSE
|
||||||
|
|
||||||
|
Name: tempita
|
||||||
|
Files: numpy/_build_utils/tempita/*
|
||||||
|
License: MIT
|
||||||
|
For details, see numpy/_build_utils/tempita/LICENCE.txt
|
||||||
|
|
||||||
|
----
|
||||||
|
|
||||||
|
This binary distribution of NumPy also bundles the following software:
|
||||||
|
|
||||||
|
|
||||||
|
Name: OpenBLAS
|
||||||
|
Files: numpy.libs/libscipy_openblas*.so
|
||||||
|
Description: bundled as a dynamically linked library
|
||||||
|
Availability: https://github.com/OpenMathLib/OpenBLAS/
|
||||||
|
License: BSD-3-Clause
|
||||||
|
Copyright (c) 2011-2014, The OpenBLAS Project
|
||||||
|
All rights reserved.
|
||||||
|
|
||||||
|
Redistribution and use in source and binary forms, with or without
|
||||||
|
modification, are permitted provided that the following conditions are
|
||||||
|
met:
|
||||||
|
|
||||||
|
1. Redistributions of source code must retain the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer.
|
||||||
|
|
||||||
|
2. Redistributions in binary form must reproduce the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer in
|
||||||
|
the documentation and/or other materials provided with the
|
||||||
|
distribution.
|
||||||
|
3. Neither the name of the OpenBLAS project nor the names of
|
||||||
|
its contributors may be used to endorse or promote products
|
||||||
|
derived from this software without specific prior written
|
||||||
|
permission.
|
||||||
|
|
||||||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||||
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||||
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||||
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||||
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||||
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||||
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||||
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||||
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
||||||
|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
|
||||||
|
|
||||||
|
Name: LAPACK
|
||||||
|
Files: numpy.libs/libscipy_openblas*.so
|
||||||
|
Description: bundled in OpenBLAS
|
||||||
|
Availability: https://github.com/OpenMathLib/OpenBLAS/
|
||||||
|
License: BSD-3-Clause-Open-MPI
|
||||||
|
Copyright (c) 1992-2013 The University of Tennessee and The University
|
||||||
|
of Tennessee Research Foundation. All rights
|
||||||
|
reserved.
|
||||||
|
Copyright (c) 2000-2013 The University of California Berkeley. All
|
||||||
|
rights reserved.
|
||||||
|
Copyright (c) 2006-2013 The University of Colorado Denver. All rights
|
||||||
|
reserved.
|
||||||
|
|
||||||
|
$COPYRIGHT$
|
||||||
|
|
||||||
|
Additional copyrights may follow
|
||||||
|
|
||||||
|
$HEADER$
|
||||||
|
|
||||||
|
Redistribution and use in source and binary forms, with or without
|
||||||
|
modification, are permitted provided that the following conditions are
|
||||||
|
met:
|
||||||
|
|
||||||
|
- Redistributions of source code must retain the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer.
|
||||||
|
|
||||||
|
- Redistributions in binary form must reproduce the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer listed
|
||||||
|
in this license in the documentation and/or other materials
|
||||||
|
provided with the distribution.
|
||||||
|
|
||||||
|
- Neither the name of the copyright holders nor the names of its
|
||||||
|
contributors may be used to endorse or promote products derived from
|
||||||
|
this software without specific prior written permission.
|
||||||
|
|
||||||
|
The copyright holders provide no reassurances that the source code
|
||||||
|
provided does not infringe any patent, copyright, or any other
|
||||||
|
intellectual property rights of third parties. The copyright holders
|
||||||
|
disclaim any liability to any recipient for claims brought against
|
||||||
|
recipient by any third party for infringement of that parties
|
||||||
|
intellectual property rights.
|
||||||
|
|
||||||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||||
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||||
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||||
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||||
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||||
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||||
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||||
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||||
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||||
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
|
||||||
|
|
||||||
|
Name: GCC runtime library
|
||||||
|
Files: numpy.libs/libgfortran*.so
|
||||||
|
Description: dynamically linked to files compiled with gcc
|
||||||
|
Availability: https://gcc.gnu.org/git/?p=gcc.git;a=tree;f=libgfortran
|
||||||
|
License: GPL-3.0-or-later WITH GCC-exception-3.1
|
||||||
|
Copyright (C) 2002-2017 Free Software Foundation, Inc.
|
||||||
|
|
||||||
|
Libgfortran is free software; you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation; either version 3, or (at your option)
|
||||||
|
any later version.
|
||||||
|
|
||||||
|
Libgfortran is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
Under Section 7 of GPL version 3, you are granted additional
|
||||||
|
permissions described in the GCC Runtime Library Exception, version
|
||||||
|
3.1, as published by the Free Software Foundation.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License and
|
||||||
|
a copy of the GCC Runtime Library Exception along with this program;
|
||||||
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||||||
|
<http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
----
|
||||||
|
|
||||||
|
Full text of license texts referred to above follows (that they are
|
||||||
|
listed below does not necessarily imply the conditions apply to the
|
||||||
|
present binary release):
|
||||||
|
|
||||||
|
----
|
||||||
|
|
||||||
|
GCC RUNTIME LIBRARY EXCEPTION
|
||||||
|
|
||||||
|
Version 3.1, 31 March 2009
|
||||||
|
|
||||||
|
Copyright (C) 2009 Free Software Foundation, Inc. <https://fsf.org/>
|
||||||
|
|
||||||
|
Everyone is permitted to copy and distribute verbatim copies of this
|
||||||
|
license document, but changing it is not allowed.
|
||||||
|
|
||||||
|
This GCC Runtime Library Exception ("Exception") is an additional
|
||||||
|
permission under section 7 of the GNU General Public License, version
|
||||||
|
3 ("GPLv3"). It applies to a given file (the "Runtime Library") that
|
||||||
|
bears a notice placed by the copyright holder of the file stating that
|
||||||
|
the file is governed by GPLv3 along with this Exception.
|
||||||
|
|
||||||
|
When you use GCC to compile a program, GCC may combine portions of
|
||||||
|
certain GCC header files and runtime libraries with the compiled
|
||||||
|
program. The purpose of this Exception is to allow compilation of
|
||||||
|
non-GPL (including proprietary) programs to use, in this way, the
|
||||||
|
header files and runtime libraries covered by this Exception.
|
||||||
|
|
||||||
|
0. Definitions.
|
||||||
|
|
||||||
|
A file is an "Independent Module" if it either requires the Runtime
|
||||||
|
Library for execution after a Compilation Process, or makes use of an
|
||||||
|
interface provided by the Runtime Library, but is not otherwise based
|
||||||
|
on the Runtime Library.
|
||||||
|
|
||||||
|
"GCC" means a version of the GNU Compiler Collection, with or without
|
||||||
|
modifications, governed by version 3 (or a specified later version) of
|
||||||
|
the GNU General Public License (GPL) with the option of using any
|
||||||
|
subsequent versions published by the FSF.
|
||||||
|
|
||||||
|
"GPL-compatible Software" is software whose conditions of propagation,
|
||||||
|
modification and use would permit combination with GCC in accord with
|
||||||
|
the license of GCC.
|
||||||
|
|
||||||
|
"Target Code" refers to output from any compiler for a real or virtual
|
||||||
|
target processor architecture, in executable form or suitable for
|
||||||
|
input to an assembler, loader, linker and/or execution
|
||||||
|
phase. Notwithstanding that, Target Code does not include data in any
|
||||||
|
format that is used as a compiler intermediate representation, or used
|
||||||
|
for producing a compiler intermediate representation.
|
||||||
|
|
||||||
|
The "Compilation Process" transforms code entirely represented in
|
||||||
|
non-intermediate languages designed for human-written code, and/or in
|
||||||
|
Java Virtual Machine byte code, into Target Code. Thus, for example,
|
||||||
|
use of source code generators and preprocessors need not be considered
|
||||||
|
part of the Compilation Process, since the Compilation Process can be
|
||||||
|
understood as starting with the output of the generators or
|
||||||
|
preprocessors.
|
||||||
|
|
||||||
|
A Compilation Process is "Eligible" if it is done using GCC, alone or
|
||||||
|
with other GPL-compatible software, or if it is done without using any
|
||||||
|
work based on GCC. For example, using non-GPL-compatible Software to
|
||||||
|
optimize any GCC intermediate representations would not qualify as an
|
||||||
|
Eligible Compilation Process.
|
||||||
|
|
||||||
|
1. Grant of Additional Permission.
|
||||||
|
|
||||||
|
You have permission to propagate a work of Target Code formed by
|
||||||
|
combining the Runtime Library with Independent Modules, even if such
|
||||||
|
propagation would otherwise violate the terms of GPLv3, provided that
|
||||||
|
all Target Code was generated by Eligible Compilation Processes. You
|
||||||
|
may then convey such a combination under terms of your choice,
|
||||||
|
consistent with the licensing of the Independent Modules.
|
||||||
|
|
||||||
|
2. No Weakening of GCC Copyleft.
|
||||||
|
|
||||||
|
The availability of this Exception does not imply any general
|
||||||
|
presumption that third-party software is unaffected by the copyleft
|
||||||
|
requirements of the license of GCC.
|
||||||
|
|
||||||
|
----
|
||||||
|
|
||||||
|
GNU GENERAL PUBLIC LICENSE
|
||||||
|
Version 3, 29 June 2007
|
||||||
|
|
||||||
|
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
||||||
|
Everyone is permitted to copy and distribute verbatim copies
|
||||||
|
of this license document, but changing it is not allowed.
|
||||||
|
|
||||||
|
Preamble
|
||||||
|
|
||||||
|
The GNU General Public License is a free, copyleft license for
|
||||||
|
software and other kinds of works.
|
||||||
|
|
||||||
|
The licenses for most software and other practical works are designed
|
||||||
|
to take away your freedom to share and change the works. By contrast,
|
||||||
|
the GNU General Public License is intended to guarantee your freedom to
|
||||||
|
share and change all versions of a program--to make sure it remains free
|
||||||
|
software for all its users. We, the Free Software Foundation, use the
|
||||||
|
GNU General Public License for most of our software; it applies also to
|
||||||
|
any other work released this way by its authors. You can apply it to
|
||||||
|
your programs, too.
|
||||||
|
|
||||||
|
When we speak of free software, we are referring to freedom, not
|
||||||
|
price. Our General Public Licenses are designed to make sure that you
|
||||||
|
have the freedom to distribute copies of free software (and charge for
|
||||||
|
them if you wish), that you receive source code or can get it if you
|
||||||
|
want it, that you can change the software or use pieces of it in new
|
||||||
|
free programs, and that you know you can do these things.
|
||||||
|
|
||||||
|
To protect your rights, we need to prevent others from denying you
|
||||||
|
these rights or asking you to surrender the rights. Therefore, you have
|
||||||
|
certain responsibilities if you distribute copies of the software, or if
|
||||||
|
you modify it: responsibilities to respect the freedom of others.
|
||||||
|
|
||||||
|
For example, if you distribute copies of such a program, whether
|
||||||
|
gratis or for a fee, you must pass on to the recipients the same
|
||||||
|
freedoms that you received. You must make sure that they, too, receive
|
||||||
|
or can get the source code. And you must show them these terms so they
|
||||||
|
know their rights.
|
||||||
|
|
||||||
|
Developers that use the GNU GPL protect your rights with two steps:
|
||||||
|
(1) assert copyright on the software, and (2) offer you this License
|
||||||
|
giving you legal permission to copy, distribute and/or modify it.
|
||||||
|
|
||||||
|
For the developers' and authors' protection, the GPL clearly explains
|
||||||
|
that there is no warranty for this free software. For both users' and
|
||||||
|
authors' sake, the GPL requires that modified versions be marked as
|
||||||
|
changed, so that their problems will not be attributed erroneously to
|
||||||
|
authors of previous versions.
|
||||||
|
|
||||||
|
Some devices are designed to deny users access to install or run
|
||||||
|
modified versions of the software inside them, although the manufacturer
|
||||||
|
can do so. This is fundamentally incompatible with the aim of
|
||||||
|
protecting users' freedom to change the software. The systematic
|
||||||
|
pattern of such abuse occurs in the area of products for individuals to
|
||||||
|
use, which is precisely where it is most unacceptable. Therefore, we
|
||||||
|
have designed this version of the GPL to prohibit the practice for those
|
||||||
|
products. If such problems arise substantially in other domains, we
|
||||||
|
stand ready to extend this provision to those domains in future versions
|
||||||
|
of the GPL, as needed to protect the freedom of users.
|
||||||
|
|
||||||
|
Finally, every program is threatened constantly by software patents.
|
||||||
|
States should not allow patents to restrict development and use of
|
||||||
|
software on general-purpose computers, but in those that do, we wish to
|
||||||
|
avoid the special danger that patents applied to a free program could
|
||||||
|
make it effectively proprietary. To prevent this, the GPL assures that
|
||||||
|
patents cannot be used to render the program non-free.
|
||||||
|
|
||||||
|
The precise terms and conditions for copying, distribution and
|
||||||
|
modification follow.
|
||||||
|
|
||||||
|
TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
0. Definitions.
|
||||||
|
|
||||||
|
"This License" refers to version 3 of the GNU General Public License.
|
||||||
|
|
||||||
|
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||||
|
works, such as semiconductor masks.
|
||||||
|
|
||||||
|
"The Program" refers to any copyrightable work licensed under this
|
||||||
|
License. Each licensee is addressed as "you". "Licensees" and
|
||||||
|
"recipients" may be individuals or organizations.
|
||||||
|
|
||||||
|
To "modify" a work means to copy from or adapt all or part of the work
|
||||||
|
in a fashion requiring copyright permission, other than the making of an
|
||||||
|
exact copy. The resulting work is called a "modified version" of the
|
||||||
|
earlier work or a work "based on" the earlier work.
|
||||||
|
|
||||||
|
A "covered work" means either the unmodified Program or a work based
|
||||||
|
on the Program.
|
||||||
|
|
||||||
|
To "propagate" a work means to do anything with it that, without
|
||||||
|
permission, would make you directly or secondarily liable for
|
||||||
|
infringement under applicable copyright law, except executing it on a
|
||||||
|
computer or modifying a private copy. Propagation includes copying,
|
||||||
|
distribution (with or without modification), making available to the
|
||||||
|
public, and in some countries other activities as well.
|
||||||
|
|
||||||
|
To "convey" a work means any kind of propagation that enables other
|
||||||
|
parties to make or receive copies. Mere interaction with a user through
|
||||||
|
a computer network, with no transfer of a copy, is not conveying.
|
||||||
|
|
||||||
|
An interactive user interface displays "Appropriate Legal Notices"
|
||||||
|
to the extent that it includes a convenient and prominently visible
|
||||||
|
feature that (1) displays an appropriate copyright notice, and (2)
|
||||||
|
tells the user that there is no warranty for the work (except to the
|
||||||
|
extent that warranties are provided), that licensees may convey the
|
||||||
|
work under this License, and how to view a copy of this License. If
|
||||||
|
the interface presents a list of user commands or options, such as a
|
||||||
|
menu, a prominent item in the list meets this criterion.
|
||||||
|
|
||||||
|
1. Source Code.
|
||||||
|
|
||||||
|
The "source code" for a work means the preferred form of the work
|
||||||
|
for making modifications to it. "Object code" means any non-source
|
||||||
|
form of a work.
|
||||||
|
|
||||||
|
A "Standard Interface" means an interface that either is an official
|
||||||
|
standard defined by a recognized standards body, or, in the case of
|
||||||
|
interfaces specified for a particular programming language, one that
|
||||||
|
is widely used among developers working in that language.
|
||||||
|
|
||||||
|
The "System Libraries" of an executable work include anything, other
|
||||||
|
than the work as a whole, that (a) is included in the normal form of
|
||||||
|
packaging a Major Component, but which is not part of that Major
|
||||||
|
Component, and (b) serves only to enable use of the work with that
|
||||||
|
Major Component, or to implement a Standard Interface for which an
|
||||||
|
implementation is available to the public in source code form. A
|
||||||
|
"Major Component", in this context, means a major essential component
|
||||||
|
(kernel, window system, and so on) of the specific operating system
|
||||||
|
(if any) on which the executable work runs, or a compiler used to
|
||||||
|
produce the work, or an object code interpreter used to run it.
|
||||||
|
|
||||||
|
The "Corresponding Source" for a work in object code form means all
|
||||||
|
the source code needed to generate, install, and (for an executable
|
||||||
|
work) run the object code and to modify the work, including scripts to
|
||||||
|
control those activities. However, it does not include the work's
|
||||||
|
System Libraries, or general-purpose tools or generally available free
|
||||||
|
programs which are used unmodified in performing those activities but
|
||||||
|
which are not part of the work. For example, Corresponding Source
|
||||||
|
includes interface definition files associated with source files for
|
||||||
|
the work, and the source code for shared libraries and dynamically
|
||||||
|
linked subprograms that the work is specifically designed to require,
|
||||||
|
such as by intimate data communication or control flow between those
|
||||||
|
subprograms and other parts of the work.
|
||||||
|
|
||||||
|
The Corresponding Source need not include anything that users
|
||||||
|
can regenerate automatically from other parts of the Corresponding
|
||||||
|
Source.
|
||||||
|
|
||||||
|
The Corresponding Source for a work in source code form is that
|
||||||
|
same work.
|
||||||
|
|
||||||
|
2. Basic Permissions.
|
||||||
|
|
||||||
|
All rights granted under this License are granted for the term of
|
||||||
|
copyright on the Program, and are irrevocable provided the stated
|
||||||
|
conditions are met. This License explicitly affirms your unlimited
|
||||||
|
permission to run the unmodified Program. The output from running a
|
||||||
|
covered work is covered by this License only if the output, given its
|
||||||
|
content, constitutes a covered work. This License acknowledges your
|
||||||
|
rights of fair use or other equivalent, as provided by copyright law.
|
||||||
|
|
||||||
|
You may make, run and propagate covered works that you do not
|
||||||
|
convey, without conditions so long as your license otherwise remains
|
||||||
|
in force. You may convey covered works to others for the sole purpose
|
||||||
|
of having them make modifications exclusively for you, or provide you
|
||||||
|
with facilities for running those works, provided that you comply with
|
||||||
|
the terms of this License in conveying all material for which you do
|
||||||
|
not control copyright. Those thus making or running the covered works
|
||||||
|
for you must do so exclusively on your behalf, under your direction
|
||||||
|
and control, on terms that prohibit them from making any copies of
|
||||||
|
your copyrighted material outside their relationship with you.
|
||||||
|
|
||||||
|
Conveying under any other circumstances is permitted solely under
|
||||||
|
the conditions stated below. Sublicensing is not allowed; section 10
|
||||||
|
makes it unnecessary.
|
||||||
|
|
||||||
|
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||||
|
|
||||||
|
No covered work shall be deemed part of an effective technological
|
||||||
|
measure under any applicable law fulfilling obligations under article
|
||||||
|
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||||
|
similar laws prohibiting or restricting circumvention of such
|
||||||
|
measures.
|
||||||
|
|
||||||
|
When you convey a covered work, you waive any legal power to forbid
|
||||||
|
circumvention of technological measures to the extent such circumvention
|
||||||
|
is effected by exercising rights under this License with respect to
|
||||||
|
the covered work, and you disclaim any intention to limit operation or
|
||||||
|
modification of the work as a means of enforcing, against the work's
|
||||||
|
users, your or third parties' legal rights to forbid circumvention of
|
||||||
|
technological measures.
|
||||||
|
|
||||||
|
4. Conveying Verbatim Copies.
|
||||||
|
|
||||||
|
You may convey verbatim copies of the Program's source code as you
|
||||||
|
receive it, in any medium, provided that you conspicuously and
|
||||||
|
appropriately publish on each copy an appropriate copyright notice;
|
||||||
|
keep intact all notices stating that this License and any
|
||||||
|
non-permissive terms added in accord with section 7 apply to the code;
|
||||||
|
keep intact all notices of the absence of any warranty; and give all
|
||||||
|
recipients a copy of this License along with the Program.
|
||||||
|
|
||||||
|
You may charge any price or no price for each copy that you convey,
|
||||||
|
and you may offer support or warranty protection for a fee.
|
||||||
|
|
||||||
|
5. Conveying Modified Source Versions.
|
||||||
|
|
||||||
|
You may convey a work based on the Program, or the modifications to
|
||||||
|
produce it from the Program, in the form of source code under the
|
||||||
|
terms of section 4, provided that you also meet all of these conditions:
|
||||||
|
|
||||||
|
a) The work must carry prominent notices stating that you modified
|
||||||
|
it, and giving a relevant date.
|
||||||
|
|
||||||
|
b) The work must carry prominent notices stating that it is
|
||||||
|
released under this License and any conditions added under section
|
||||||
|
7. This requirement modifies the requirement in section 4 to
|
||||||
|
"keep intact all notices".
|
||||||
|
|
||||||
|
c) You must license the entire work, as a whole, under this
|
||||||
|
License to anyone who comes into possession of a copy. This
|
||||||
|
License will therefore apply, along with any applicable section 7
|
||||||
|
additional terms, to the whole of the work, and all its parts,
|
||||||
|
regardless of how they are packaged. This License gives no
|
||||||
|
permission to license the work in any other way, but it does not
|
||||||
|
invalidate such permission if you have separately received it.
|
||||||
|
|
||||||
|
d) If the work has interactive user interfaces, each must display
|
||||||
|
Appropriate Legal Notices; however, if the Program has interactive
|
||||||
|
interfaces that do not display Appropriate Legal Notices, your
|
||||||
|
work need not make them do so.
|
||||||
|
|
||||||
|
A compilation of a covered work with other separate and independent
|
||||||
|
works, which are not by their nature extensions of the covered work,
|
||||||
|
and which are not combined with it such as to form a larger program,
|
||||||
|
in or on a volume of a storage or distribution medium, is called an
|
||||||
|
"aggregate" if the compilation and its resulting copyright are not
|
||||||
|
used to limit the access or legal rights of the compilation's users
|
||||||
|
beyond what the individual works permit. Inclusion of a covered work
|
||||||
|
in an aggregate does not cause this License to apply to the other
|
||||||
|
parts of the aggregate.
|
||||||
|
|
||||||
|
6. Conveying Non-Source Forms.
|
||||||
|
|
||||||
|
You may convey a covered work in object code form under the terms
|
||||||
|
of sections 4 and 5, provided that you also convey the
|
||||||
|
machine-readable Corresponding Source under the terms of this License,
|
||||||
|
in one of these ways:
|
||||||
|
|
||||||
|
a) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by the
|
||||||
|
Corresponding Source fixed on a durable physical medium
|
||||||
|
customarily used for software interchange.
|
||||||
|
|
||||||
|
b) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by a
|
||||||
|
written offer, valid for at least three years and valid for as
|
||||||
|
long as you offer spare parts or customer support for that product
|
||||||
|
model, to give anyone who possesses the object code either (1) a
|
||||||
|
copy of the Corresponding Source for all the software in the
|
||||||
|
product that is covered by this License, on a durable physical
|
||||||
|
medium customarily used for software interchange, for a price no
|
||||||
|
more than your reasonable cost of physically performing this
|
||||||
|
conveying of source, or (2) access to copy the
|
||||||
|
Corresponding Source from a network server at no charge.
|
||||||
|
|
||||||
|
c) Convey individual copies of the object code with a copy of the
|
||||||
|
written offer to provide the Corresponding Source. This
|
||||||
|
alternative is allowed only occasionally and noncommercially, and
|
||||||
|
only if you received the object code with such an offer, in accord
|
||||||
|
with subsection 6b.
|
||||||
|
|
||||||
|
d) Convey the object code by offering access from a designated
|
||||||
|
place (gratis or for a charge), and offer equivalent access to the
|
||||||
|
Corresponding Source in the same way through the same place at no
|
||||||
|
further charge. You need not require recipients to copy the
|
||||||
|
Corresponding Source along with the object code. If the place to
|
||||||
|
copy the object code is a network server, the Corresponding Source
|
||||||
|
may be on a different server (operated by you or a third party)
|
||||||
|
that supports equivalent copying facilities, provided you maintain
|
||||||
|
clear directions next to the object code saying where to find the
|
||||||
|
Corresponding Source. Regardless of what server hosts the
|
||||||
|
Corresponding Source, you remain obligated to ensure that it is
|
||||||
|
available for as long as needed to satisfy these requirements.
|
||||||
|
|
||||||
|
e) Convey the object code using peer-to-peer transmission, provided
|
||||||
|
you inform other peers where the object code and Corresponding
|
||||||
|
Source of the work are being offered to the general public at no
|
||||||
|
charge under subsection 6d.
|
||||||
|
|
||||||
|
A separable portion of the object code, whose source code is excluded
|
||||||
|
from the Corresponding Source as a System Library, need not be
|
||||||
|
included in conveying the object code work.
|
||||||
|
|
||||||
|
A "User Product" is either (1) a "consumer product", which means any
|
||||||
|
tangible personal property which is normally used for personal, family,
|
||||||
|
or household purposes, or (2) anything designed or sold for incorporation
|
||||||
|
into a dwelling. In determining whether a product is a consumer product,
|
||||||
|
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||||
|
product received by a particular user, "normally used" refers to a
|
||||||
|
typical or common use of that class of product, regardless of the status
|
||||||
|
of the particular user or of the way in which the particular user
|
||||||
|
actually uses, or expects or is expected to use, the product. A product
|
||||||
|
is a consumer product regardless of whether the product has substantial
|
||||||
|
commercial, industrial or non-consumer uses, unless such uses represent
|
||||||
|
the only significant mode of use of the product.
|
||||||
|
|
||||||
|
"Installation Information" for a User Product means any methods,
|
||||||
|
procedures, authorization keys, or other information required to install
|
||||||
|
and execute modified versions of a covered work in that User Product from
|
||||||
|
a modified version of its Corresponding Source. The information must
|
||||||
|
suffice to ensure that the continued functioning of the modified object
|
||||||
|
code is in no case prevented or interfered with solely because
|
||||||
|
modification has been made.
|
||||||
|
|
||||||
|
If you convey an object code work under this section in, or with, or
|
||||||
|
specifically for use in, a User Product, and the conveying occurs as
|
||||||
|
part of a transaction in which the right of possession and use of the
|
||||||
|
User Product is transferred to the recipient in perpetuity or for a
|
||||||
|
fixed term (regardless of how the transaction is characterized), the
|
||||||
|
Corresponding Source conveyed under this section must be accompanied
|
||||||
|
by the Installation Information. But this requirement does not apply
|
||||||
|
if neither you nor any third party retains the ability to install
|
||||||
|
modified object code on the User Product (for example, the work has
|
||||||
|
been installed in ROM).
|
||||||
|
|
||||||
|
The requirement to provide Installation Information does not include a
|
||||||
|
requirement to continue to provide support service, warranty, or updates
|
||||||
|
for a work that has been modified or installed by the recipient, or for
|
||||||
|
the User Product in which it has been modified or installed. Access to a
|
||||||
|
network may be denied when the modification itself materially and
|
||||||
|
adversely affects the operation of the network or violates the rules and
|
||||||
|
protocols for communication across the network.
|
||||||
|
|
||||||
|
Corresponding Source conveyed, and Installation Information provided,
|
||||||
|
in accord with this section must be in a format that is publicly
|
||||||
|
documented (and with an implementation available to the public in
|
||||||
|
source code form), and must require no special password or key for
|
||||||
|
unpacking, reading or copying.
|
||||||
|
|
||||||
|
7. Additional Terms.
|
||||||
|
|
||||||
|
"Additional permissions" are terms that supplement the terms of this
|
||||||
|
License by making exceptions from one or more of its conditions.
|
||||||
|
Additional permissions that are applicable to the entire Program shall
|
||||||
|
be treated as though they were included in this License, to the extent
|
||||||
|
that they are valid under applicable law. If additional permissions
|
||||||
|
apply only to part of the Program, that part may be used separately
|
||||||
|
under those permissions, but the entire Program remains governed by
|
||||||
|
this License without regard to the additional permissions.
|
||||||
|
|
||||||
|
When you convey a copy of a covered work, you may at your option
|
||||||
|
remove any additional permissions from that copy, or from any part of
|
||||||
|
it. (Additional permissions may be written to require their own
|
||||||
|
removal in certain cases when you modify the work.) You may place
|
||||||
|
additional permissions on material, added by you to a covered work,
|
||||||
|
for which you have or can give appropriate copyright permission.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, for material you
|
||||||
|
add to a covered work, you may (if authorized by the copyright holders of
|
||||||
|
that material) supplement the terms of this License with terms:
|
||||||
|
|
||||||
|
a) Disclaiming warranty or limiting liability differently from the
|
||||||
|
terms of sections 15 and 16 of this License; or
|
||||||
|
|
||||||
|
b) Requiring preservation of specified reasonable legal notices or
|
||||||
|
author attributions in that material or in the Appropriate Legal
|
||||||
|
Notices displayed by works containing it; or
|
||||||
|
|
||||||
|
c) Prohibiting misrepresentation of the origin of that material, or
|
||||||
|
requiring that modified versions of such material be marked in
|
||||||
|
reasonable ways as different from the original version; or
|
||||||
|
|
||||||
|
d) Limiting the use for publicity purposes of names of licensors or
|
||||||
|
authors of the material; or
|
||||||
|
|
||||||
|
e) Declining to grant rights under trademark law for use of some
|
||||||
|
trade names, trademarks, or service marks; or
|
||||||
|
|
||||||
|
f) Requiring indemnification of licensors and authors of that
|
||||||
|
material by anyone who conveys the material (or modified versions of
|
||||||
|
it) with contractual assumptions of liability to the recipient, for
|
||||||
|
any liability that these contractual assumptions directly impose on
|
||||||
|
those licensors and authors.
|
||||||
|
|
||||||
|
All other non-permissive additional terms are considered "further
|
||||||
|
restrictions" within the meaning of section 10. If the Program as you
|
||||||
|
received it, or any part of it, contains a notice stating that it is
|
||||||
|
governed by this License along with a term that is a further
|
||||||
|
restriction, you may remove that term. If a license document contains
|
||||||
|
a further restriction but permits relicensing or conveying under this
|
||||||
|
License, you may add to a covered work material governed by the terms
|
||||||
|
of that license document, provided that the further restriction does
|
||||||
|
not survive such relicensing or conveying.
|
||||||
|
|
||||||
|
If you add terms to a covered work in accord with this section, you
|
||||||
|
must place, in the relevant source files, a statement of the
|
||||||
|
additional terms that apply to those files, or a notice indicating
|
||||||
|
where to find the applicable terms.
|
||||||
|
|
||||||
|
Additional terms, permissive or non-permissive, may be stated in the
|
||||||
|
form of a separately written license, or stated as exceptions;
|
||||||
|
the above requirements apply either way.
|
||||||
|
|
||||||
|
8. Termination.
|
||||||
|
|
||||||
|
You may not propagate or modify a covered work except as expressly
|
||||||
|
provided under this License. Any attempt otherwise to propagate or
|
||||||
|
modify it is void, and will automatically terminate your rights under
|
||||||
|
this License (including any patent licenses granted under the third
|
||||||
|
paragraph of section 11).
|
||||||
|
|
||||||
|
However, if you cease all violation of this License, then your
|
||||||
|
license from a particular copyright holder is reinstated (a)
|
||||||
|
provisionally, unless and until the copyright holder explicitly and
|
||||||
|
finally terminates your license, and (b) permanently, if the copyright
|
||||||
|
holder fails to notify you of the violation by some reasonable means
|
||||||
|
prior to 60 days after the cessation.
|
||||||
|
|
||||||
|
Moreover, your license from a particular copyright holder is
|
||||||
|
reinstated permanently if the copyright holder notifies you of the
|
||||||
|
violation by some reasonable means, this is the first time you have
|
||||||
|
received notice of violation of this License (for any work) from that
|
||||||
|
copyright holder, and you cure the violation prior to 30 days after
|
||||||
|
your receipt of the notice.
|
||||||
|
|
||||||
|
Termination of your rights under this section does not terminate the
|
||||||
|
licenses of parties who have received copies or rights from you under
|
||||||
|
this License. If your rights have been terminated and not permanently
|
||||||
|
reinstated, you do not qualify to receive new licenses for the same
|
||||||
|
material under section 10.
|
||||||
|
|
||||||
|
9. Acceptance Not Required for Having Copies.
|
||||||
|
|
||||||
|
You are not required to accept this License in order to receive or
|
||||||
|
run a copy of the Program. Ancillary propagation of a covered work
|
||||||
|
occurring solely as a consequence of using peer-to-peer transmission
|
||||||
|
to receive a copy likewise does not require acceptance. However,
|
||||||
|
nothing other than this License grants you permission to propagate or
|
||||||
|
modify any covered work. These actions infringe copyright if you do
|
||||||
|
not accept this License. Therefore, by modifying or propagating a
|
||||||
|
covered work, you indicate your acceptance of this License to do so.
|
||||||
|
|
||||||
|
10. Automatic Licensing of Downstream Recipients.
|
||||||
|
|
||||||
|
Each time you convey a covered work, the recipient automatically
|
||||||
|
receives a license from the original licensors, to run, modify and
|
||||||
|
propagate that work, subject to this License. You are not responsible
|
||||||
|
for enforcing compliance by third parties with this License.
|
||||||
|
|
||||||
|
An "entity transaction" is a transaction transferring control of an
|
||||||
|
organization, or substantially all assets of one, or subdividing an
|
||||||
|
organization, or merging organizations. If propagation of a covered
|
||||||
|
work results from an entity transaction, each party to that
|
||||||
|
transaction who receives a copy of the work also receives whatever
|
||||||
|
licenses to the work the party's predecessor in interest had or could
|
||||||
|
give under the previous paragraph, plus a right to possession of the
|
||||||
|
Corresponding Source of the work from the predecessor in interest, if
|
||||||
|
the predecessor has it or can get it with reasonable efforts.
|
||||||
|
|
||||||
|
You may not impose any further restrictions on the exercise of the
|
||||||
|
rights granted or affirmed under this License. For example, you may
|
||||||
|
not impose a license fee, royalty, or other charge for exercise of
|
||||||
|
rights granted under this License, and you may not initiate litigation
|
||||||
|
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||||
|
any patent claim is infringed by making, using, selling, offering for
|
||||||
|
sale, or importing the Program or any portion of it.
|
||||||
|
|
||||||
|
11. Patents.
|
||||||
|
|
||||||
|
A "contributor" is a copyright holder who authorizes use under this
|
||||||
|
License of the Program or a work on which the Program is based. The
|
||||||
|
work thus licensed is called the contributor's "contributor version".
|
||||||
|
|
||||||
|
A contributor's "essential patent claims" are all patent claims
|
||||||
|
owned or controlled by the contributor, whether already acquired or
|
||||||
|
hereafter acquired, that would be infringed by some manner, permitted
|
||||||
|
by this License, of making, using, or selling its contributor version,
|
||||||
|
but do not include claims that would be infringed only as a
|
||||||
|
consequence of further modification of the contributor version. For
|
||||||
|
purposes of this definition, "control" includes the right to grant
|
||||||
|
patent sublicenses in a manner consistent with the requirements of
|
||||||
|
this License.
|
||||||
|
|
||||||
|
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||||
|
patent license under the contributor's essential patent claims, to
|
||||||
|
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||||
|
propagate the contents of its contributor version.
|
||||||
|
|
||||||
|
In the following three paragraphs, a "patent license" is any express
|
||||||
|
agreement or commitment, however denominated, not to enforce a patent
|
||||||
|
(such as an express permission to practice a patent or covenant not to
|
||||||
|
sue for patent infringement). To "grant" such a patent license to a
|
||||||
|
party means to make such an agreement or commitment not to enforce a
|
||||||
|
patent against the party.
|
||||||
|
|
||||||
|
If you convey a covered work, knowingly relying on a patent license,
|
||||||
|
and the Corresponding Source of the work is not available for anyone
|
||||||
|
to copy, free of charge and under the terms of this License, through a
|
||||||
|
publicly available network server or other readily accessible means,
|
||||||
|
then you must either (1) cause the Corresponding Source to be so
|
||||||
|
available, or (2) arrange to deprive yourself of the benefit of the
|
||||||
|
patent license for this particular work, or (3) arrange, in a manner
|
||||||
|
consistent with the requirements of this License, to extend the patent
|
||||||
|
license to downstream recipients. "Knowingly relying" means you have
|
||||||
|
actual knowledge that, but for the patent license, your conveying the
|
||||||
|
covered work in a country, or your recipient's use of the covered work
|
||||||
|
in a country, would infringe one or more identifiable patents in that
|
||||||
|
country that you have reason to believe are valid.
|
||||||
|
|
||||||
|
If, pursuant to or in connection with a single transaction or
|
||||||
|
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||||
|
covered work, and grant a patent license to some of the parties
|
||||||
|
receiving the covered work authorizing them to use, propagate, modify
|
||||||
|
or convey a specific copy of the covered work, then the patent license
|
||||||
|
you grant is automatically extended to all recipients of the covered
|
||||||
|
work and works based on it.
|
||||||
|
|
||||||
|
A patent license is "discriminatory" if it does not include within
|
||||||
|
the scope of its coverage, prohibits the exercise of, or is
|
||||||
|
conditioned on the non-exercise of one or more of the rights that are
|
||||||
|
specifically granted under this License. You may not convey a covered
|
||||||
|
work if you are a party to an arrangement with a third party that is
|
||||||
|
in the business of distributing software, under which you make payment
|
||||||
|
to the third party based on the extent of your activity of conveying
|
||||||
|
the work, and under which the third party grants, to any of the
|
||||||
|
parties who would receive the covered work from you, a discriminatory
|
||||||
|
patent license (a) in connection with copies of the covered work
|
||||||
|
conveyed by you (or copies made from those copies), or (b) primarily
|
||||||
|
for and in connection with specific products or compilations that
|
||||||
|
contain the covered work, unless you entered into that arrangement,
|
||||||
|
or that patent license was granted, prior to 28 March 2007.
|
||||||
|
|
||||||
|
Nothing in this License shall be construed as excluding or limiting
|
||||||
|
any implied license or other defenses to infringement that may
|
||||||
|
otherwise be available to you under applicable patent law.
|
||||||
|
|
||||||
|
12. No Surrender of Others' Freedom.
|
||||||
|
|
||||||
|
If conditions are imposed on you (whether by court order, agreement or
|
||||||
|
otherwise) that contradict the conditions of this License, they do not
|
||||||
|
excuse you from the conditions of this License. If you cannot convey a
|
||||||
|
covered work so as to satisfy simultaneously your obligations under this
|
||||||
|
License and any other pertinent obligations, then as a consequence you may
|
||||||
|
not convey it at all. For example, if you agree to terms that obligate you
|
||||||
|
to collect a royalty for further conveying from those to whom you convey
|
||||||
|
the Program, the only way you could satisfy both those terms and this
|
||||||
|
License would be to refrain entirely from conveying the Program.
|
||||||
|
|
||||||
|
13. Use with the GNU Affero General Public License.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, you have
|
||||||
|
permission to link or combine any covered work with a work licensed
|
||||||
|
under version 3 of the GNU Affero General Public License into a single
|
||||||
|
combined work, and to convey the resulting work. The terms of this
|
||||||
|
License will continue to apply to the part which is the covered work,
|
||||||
|
but the special requirements of the GNU Affero General Public License,
|
||||||
|
section 13, concerning interaction through a network will apply to the
|
||||||
|
combination as such.
|
||||||
|
|
||||||
|
14. Revised Versions of this License.
|
||||||
|
|
||||||
|
The Free Software Foundation may publish revised and/or new versions of
|
||||||
|
the GNU General Public License from time to time. Such new versions will
|
||||||
|
be similar in spirit to the present version, but may differ in detail to
|
||||||
|
address new problems or concerns.
|
||||||
|
|
||||||
|
Each version is given a distinguishing version number. If the
|
||||||
|
Program specifies that a certain numbered version of the GNU General
|
||||||
|
Public License "or any later version" applies to it, you have the
|
||||||
|
option of following the terms and conditions either of that numbered
|
||||||
|
version or of any later version published by the Free Software
|
||||||
|
Foundation. If the Program does not specify a version number of the
|
||||||
|
GNU General Public License, you may choose any version ever published
|
||||||
|
by the Free Software Foundation.
|
||||||
|
|
||||||
|
If the Program specifies that a proxy can decide which future
|
||||||
|
versions of the GNU General Public License can be used, that proxy's
|
||||||
|
public statement of acceptance of a version permanently authorizes you
|
||||||
|
to choose that version for the Program.
|
||||||
|
|
||||||
|
Later license versions may give you additional or different
|
||||||
|
permissions. However, no additional obligations are imposed on any
|
||||||
|
author or copyright holder as a result of your choosing to follow a
|
||||||
|
later version.
|
||||||
|
|
||||||
|
15. Disclaimer of Warranty.
|
||||||
|
|
||||||
|
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||||
|
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||||
|
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||||
|
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||||
|
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||||
|
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||||
|
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||||
|
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||||
|
|
||||||
|
16. Limitation of Liability.
|
||||||
|
|
||||||
|
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||||
|
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||||
|
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||||
|
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||||
|
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||||
|
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||||
|
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||||
|
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||||
|
SUCH DAMAGES.
|
||||||
|
|
||||||
|
17. Interpretation of Sections 15 and 16.
|
||||||
|
|
||||||
|
If the disclaimer of warranty and limitation of liability provided
|
||||||
|
above cannot be given local legal effect according to their terms,
|
||||||
|
reviewing courts shall apply local law that most closely approximates
|
||||||
|
an absolute waiver of all civil liability in connection with the
|
||||||
|
Program, unless a warranty or assumption of liability accompanies a
|
||||||
|
copy of the Program in return for a fee.
|
||||||
|
|
||||||
|
END OF TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
How to Apply These Terms to Your New Programs
|
||||||
|
|
||||||
|
If you develop a new program, and you want it to be of the greatest
|
||||||
|
possible use to the public, the best way to achieve this is to make it
|
||||||
|
free software which everyone can redistribute and change under these terms.
|
||||||
|
|
||||||
|
To do so, attach the following notices to the program. It is safest
|
||||||
|
to attach them to the start of each source file to most effectively
|
||||||
|
state the exclusion of warranty; and each file should have at least
|
||||||
|
the "copyright" line and a pointer to where the full notice is found.
|
||||||
|
|
||||||
|
<one line to give the program's name and a brief idea of what it does.>
|
||||||
|
Copyright (C) <year> <name of author>
|
||||||
|
|
||||||
|
This program is free software: you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License
|
||||||
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
Also add information on how to contact you by electronic and paper mail.
|
||||||
|
|
||||||
|
If the program does terminal interaction, make it output a short
|
||||||
|
notice like this when it starts in an interactive mode:
|
||||||
|
|
||||||
|
<program> Copyright (C) <year> <name of author>
|
||||||
|
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||||
|
This is free software, and you are welcome to redistribute it
|
||||||
|
under certain conditions; type `show c' for details.
|
||||||
|
|
||||||
|
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||||
|
parts of the General Public License. Of course, your program's commands
|
||||||
|
might be different; for a GUI interface, you would use an "about box".
|
||||||
|
|
||||||
|
You should also get your employer (if you work as a programmer) or school,
|
||||||
|
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||||
|
For more information on this, and how to apply and follow the GNU GPL, see
|
||||||
|
<https://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
The GNU General Public License does not permit incorporating your program
|
||||||
|
into proprietary programs. If your program is a subroutine library, you
|
||||||
|
may consider it more useful to permit linking proprietary applications with
|
||||||
|
the library. If this is what you want to do, use the GNU Lesser General
|
||||||
|
Public License instead of this License. But first, please read
|
||||||
|
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
||||||
|
|
||||||
|
Name: libquadmath
|
||||||
|
Files: numpy.libs/libquadmath*.so
|
||||||
|
Description: dynamically linked to files compiled with gcc
|
||||||
|
Availability: https://gcc.gnu.org/git/?p=gcc.git;a=tree;f=libquadmath
|
||||||
|
License: LGPL-2.1-or-later
|
||||||
|
|
||||||
|
GCC Quad-Precision Math Library
|
||||||
|
Copyright (C) 2010-2019 Free Software Foundation, Inc.
|
||||||
|
Written by Francois-Xavier Coudert <fxcoudert@gcc.gnu.org>
|
||||||
|
|
||||||
|
This file is part of the libquadmath library.
|
||||||
|
Libquadmath is free software; you can redistribute it and/or
|
||||||
|
modify it under the terms of the GNU Library General Public
|
||||||
|
License as published by the Free Software Foundation; either
|
||||||
|
version 2.1 of the License, or (at your option) any later version.
|
||||||
|
|
||||||
|
Libquadmath is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||||
|
Lesser General Public License for more details.
|
||||||
|
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,6 @@
|
|||||||
|
Wheel-Version: 1.0
|
||||||
|
Generator: meson
|
||||||
|
Root-Is-Purelib: false
|
||||||
|
Tag: cp312-cp312-manylinux_2_27_x86_64
|
||||||
|
Tag: cp312-cp312-manylinux_2_28_x86_64
|
||||||
|
|
@ -0,0 +1,13 @@
|
|||||||
|
[pkg_config]
|
||||||
|
numpy = numpy._core.lib.pkgconfig
|
||||||
|
|
||||||
|
[array_api]
|
||||||
|
numpy = numpy
|
||||||
|
|
||||||
|
[pyinstaller40]
|
||||||
|
hook-dirs = numpy:_pyinstaller_hooks_dir
|
||||||
|
|
||||||
|
[console_scripts]
|
||||||
|
f2py = numpy.f2py.f2py2e:main
|
||||||
|
numpy-config = numpy._configtool:main
|
||||||
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,170 @@
|
|||||||
|
# This file is generated by numpy's build process
|
||||||
|
# It contains system_info results at the time of building this package.
|
||||||
|
from enum import Enum
|
||||||
|
from numpy._core._multiarray_umath import (
|
||||||
|
__cpu_features__,
|
||||||
|
__cpu_baseline__,
|
||||||
|
__cpu_dispatch__,
|
||||||
|
)
|
||||||
|
|
||||||
|
__all__ = ["show_config"]
|
||||||
|
_built_with_meson = True
|
||||||
|
|
||||||
|
|
||||||
|
class DisplayModes(Enum):
|
||||||
|
stdout = "stdout"
|
||||||
|
dicts = "dicts"
|
||||||
|
|
||||||
|
|
||||||
|
def _cleanup(d):
|
||||||
|
"""
|
||||||
|
Removes empty values in a `dict` recursively
|
||||||
|
This ensures we remove values that Meson could not provide to CONFIG
|
||||||
|
"""
|
||||||
|
if isinstance(d, dict):
|
||||||
|
return {k: _cleanup(v) for k, v in d.items() if v and _cleanup(v)}
|
||||||
|
else:
|
||||||
|
return d
|
||||||
|
|
||||||
|
|
||||||
|
CONFIG = _cleanup(
|
||||||
|
{
|
||||||
|
"Compilers": {
|
||||||
|
"c": {
|
||||||
|
"name": "gcc",
|
||||||
|
"linker": r"ld.bfd",
|
||||||
|
"version": "14.2.1",
|
||||||
|
"commands": r"cc",
|
||||||
|
"args": r"",
|
||||||
|
"linker args": r"",
|
||||||
|
},
|
||||||
|
"cython": {
|
||||||
|
"name": "cython",
|
||||||
|
"linker": r"cython",
|
||||||
|
"version": "3.1.3",
|
||||||
|
"commands": r"cython",
|
||||||
|
"args": r"",
|
||||||
|
"linker args": r"",
|
||||||
|
},
|
||||||
|
"c++": {
|
||||||
|
"name": "gcc",
|
||||||
|
"linker": r"ld.bfd",
|
||||||
|
"version": "14.2.1",
|
||||||
|
"commands": r"c++",
|
||||||
|
"args": r"",
|
||||||
|
"linker args": r"",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
"Machine Information": {
|
||||||
|
"host": {
|
||||||
|
"cpu": "x86_64",
|
||||||
|
"family": "x86_64",
|
||||||
|
"endian": "little",
|
||||||
|
"system": "linux",
|
||||||
|
},
|
||||||
|
"build": {
|
||||||
|
"cpu": "x86_64",
|
||||||
|
"family": "x86_64",
|
||||||
|
"endian": "little",
|
||||||
|
"system": "linux",
|
||||||
|
},
|
||||||
|
"cross-compiled": bool("False".lower().replace("false", "")),
|
||||||
|
},
|
||||||
|
"Build Dependencies": {
|
||||||
|
"blas": {
|
||||||
|
"name": "scipy-openblas",
|
||||||
|
"found": bool("True".lower().replace("false", "")),
|
||||||
|
"version": "0.3.30",
|
||||||
|
"detection method": "pkgconfig",
|
||||||
|
"include directory": r"/opt/_internal/cpython-3.12.11/lib/python3.12/site-packages/scipy_openblas64/include",
|
||||||
|
"lib directory": r"/opt/_internal/cpython-3.12.11/lib/python3.12/site-packages/scipy_openblas64/lib",
|
||||||
|
"openblas configuration": r"OpenBLAS 0.3.30 USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell MAX_THREADS=64",
|
||||||
|
"pc file directory": r"/project/.openblas",
|
||||||
|
},
|
||||||
|
"lapack": {
|
||||||
|
"name": "scipy-openblas",
|
||||||
|
"found": bool("True".lower().replace("false", "")),
|
||||||
|
"version": "0.3.30",
|
||||||
|
"detection method": "pkgconfig",
|
||||||
|
"include directory": r"/opt/_internal/cpython-3.12.11/lib/python3.12/site-packages/scipy_openblas64/include",
|
||||||
|
"lib directory": r"/opt/_internal/cpython-3.12.11/lib/python3.12/site-packages/scipy_openblas64/lib",
|
||||||
|
"openblas configuration": r"OpenBLAS 0.3.30 USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell MAX_THREADS=64",
|
||||||
|
"pc file directory": r"/project/.openblas",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
"Python Information": {
|
||||||
|
"path": r"/tmp/build-env-w4xgk5bb/bin/python",
|
||||||
|
"version": "3.12",
|
||||||
|
},
|
||||||
|
"SIMD Extensions": {
|
||||||
|
"baseline": __cpu_baseline__,
|
||||||
|
"found": [
|
||||||
|
feature for feature in __cpu_dispatch__ if __cpu_features__[feature]
|
||||||
|
],
|
||||||
|
"not found": [
|
||||||
|
feature for feature in __cpu_dispatch__ if not __cpu_features__[feature]
|
||||||
|
],
|
||||||
|
},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def _check_pyyaml():
|
||||||
|
import yaml
|
||||||
|
|
||||||
|
return yaml
|
||||||
|
|
||||||
|
|
||||||
|
def show(mode=DisplayModes.stdout.value):
|
||||||
|
"""
|
||||||
|
Show libraries and system information on which NumPy was built
|
||||||
|
and is being used
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
mode : {`'stdout'`, `'dicts'`}, optional.
|
||||||
|
Indicates how to display the config information.
|
||||||
|
`'stdout'` prints to console, `'dicts'` returns a dictionary
|
||||||
|
of the configuration.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
out : {`dict`, `None`}
|
||||||
|
If mode is `'dicts'`, a dict is returned, else None
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
get_include : Returns the directory containing NumPy C
|
||||||
|
header files.
|
||||||
|
|
||||||
|
Notes
|
||||||
|
-----
|
||||||
|
1. The `'stdout'` mode will give more readable
|
||||||
|
output if ``pyyaml`` is installed
|
||||||
|
|
||||||
|
"""
|
||||||
|
if mode == DisplayModes.stdout.value:
|
||||||
|
try: # Non-standard library, check import
|
||||||
|
yaml = _check_pyyaml()
|
||||||
|
|
||||||
|
print(yaml.dump(CONFIG))
|
||||||
|
except ModuleNotFoundError:
|
||||||
|
import warnings
|
||||||
|
import json
|
||||||
|
|
||||||
|
warnings.warn("Install `pyyaml` for better output", stacklevel=1)
|
||||||
|
print(json.dumps(CONFIG, indent=2))
|
||||||
|
elif mode == DisplayModes.dicts.value:
|
||||||
|
return CONFIG
|
||||||
|
else:
|
||||||
|
raise AttributeError(
|
||||||
|
f"Invalid `mode`, use one of: {', '.join([e.value for e in DisplayModes])}"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def show_config(mode=DisplayModes.stdout.value):
|
||||||
|
return show(mode)
|
||||||
|
|
||||||
|
|
||||||
|
show_config.__doc__ = show.__doc__
|
||||||
|
show_config.__module__ = "numpy"
|
@ -0,0 +1,102 @@
|
|||||||
|
from enum import Enum
|
||||||
|
from types import ModuleType
|
||||||
|
from typing import Final, NotRequired, TypedDict, overload, type_check_only
|
||||||
|
from typing import Literal as L
|
||||||
|
|
||||||
|
_CompilerConfigDictValue = TypedDict(
|
||||||
|
"_CompilerConfigDictValue",
|
||||||
|
{
|
||||||
|
"name": str,
|
||||||
|
"linker": str,
|
||||||
|
"version": str,
|
||||||
|
"commands": str,
|
||||||
|
"args": str,
|
||||||
|
"linker args": str,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
_CompilerConfigDict = TypedDict(
|
||||||
|
"_CompilerConfigDict",
|
||||||
|
{
|
||||||
|
"c": _CompilerConfigDictValue,
|
||||||
|
"cython": _CompilerConfigDictValue,
|
||||||
|
"c++": _CompilerConfigDictValue,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
_MachineInformationDict = TypedDict(
|
||||||
|
"_MachineInformationDict",
|
||||||
|
{
|
||||||
|
"host": _MachineInformationDictValue,
|
||||||
|
"build": _MachineInformationDictValue,
|
||||||
|
"cross-compiled": NotRequired[L[True]],
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
@type_check_only
|
||||||
|
class _MachineInformationDictValue(TypedDict):
|
||||||
|
cpu: str
|
||||||
|
family: str
|
||||||
|
endian: L["little", "big"]
|
||||||
|
system: str
|
||||||
|
|
||||||
|
_BuildDependenciesDictValue = TypedDict(
|
||||||
|
"_BuildDependenciesDictValue",
|
||||||
|
{
|
||||||
|
"name": str,
|
||||||
|
"found": NotRequired[L[True]],
|
||||||
|
"version": str,
|
||||||
|
"include directory": str,
|
||||||
|
"lib directory": str,
|
||||||
|
"openblas configuration": str,
|
||||||
|
"pc file directory": str,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
class _BuildDependenciesDict(TypedDict):
|
||||||
|
blas: _BuildDependenciesDictValue
|
||||||
|
lapack: _BuildDependenciesDictValue
|
||||||
|
|
||||||
|
class _PythonInformationDict(TypedDict):
|
||||||
|
path: str
|
||||||
|
version: str
|
||||||
|
|
||||||
|
_SIMDExtensionsDict = TypedDict(
|
||||||
|
"_SIMDExtensionsDict",
|
||||||
|
{
|
||||||
|
"baseline": list[str],
|
||||||
|
"found": list[str],
|
||||||
|
"not found": list[str],
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
_ConfigDict = TypedDict(
|
||||||
|
"_ConfigDict",
|
||||||
|
{
|
||||||
|
"Compilers": _CompilerConfigDict,
|
||||||
|
"Machine Information": _MachineInformationDict,
|
||||||
|
"Build Dependencies": _BuildDependenciesDict,
|
||||||
|
"Python Information": _PythonInformationDict,
|
||||||
|
"SIMD Extensions": _SIMDExtensionsDict,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
###
|
||||||
|
|
||||||
|
__all__ = ["show_config"]
|
||||||
|
|
||||||
|
CONFIG: Final[_ConfigDict] = ...
|
||||||
|
|
||||||
|
class DisplayModes(Enum):
|
||||||
|
stdout = "stdout"
|
||||||
|
dicts = "dicts"
|
||||||
|
|
||||||
|
def _check_pyyaml() -> ModuleType: ...
|
||||||
|
|
||||||
|
@overload
|
||||||
|
def show(mode: L["stdout"] = "stdout") -> None: ...
|
||||||
|
@overload
|
||||||
|
def show(mode: L["dicts"]) -> _ConfigDict: ...
|
||||||
|
|
||||||
|
@overload
|
||||||
|
def show_config(mode: L["stdout"] = "stdout") -> None: ...
|
||||||
|
@overload
|
||||||
|
def show_config(mode: L["dicts"]) -> _ConfigDict: ...
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,928 @@
|
|||||||
|
"""
|
||||||
|
NumPy
|
||||||
|
=====
|
||||||
|
|
||||||
|
Provides
|
||||||
|
1. An array object of arbitrary homogeneous items
|
||||||
|
2. Fast mathematical operations over arrays
|
||||||
|
3. Linear Algebra, Fourier Transforms, Random Number Generation
|
||||||
|
|
||||||
|
How to use the documentation
|
||||||
|
----------------------------
|
||||||
|
Documentation is available in two forms: docstrings provided
|
||||||
|
with the code, and a loose standing reference guide, available from
|
||||||
|
`the NumPy homepage <https://numpy.org>`_.
|
||||||
|
|
||||||
|
We recommend exploring the docstrings using
|
||||||
|
`IPython <https://ipython.org>`_, an advanced Python shell with
|
||||||
|
TAB-completion and introspection capabilities. See below for further
|
||||||
|
instructions.
|
||||||
|
|
||||||
|
The docstring examples assume that `numpy` has been imported as ``np``::
|
||||||
|
|
||||||
|
>>> import numpy as np
|
||||||
|
|
||||||
|
Code snippets are indicated by three greater-than signs::
|
||||||
|
|
||||||
|
>>> x = 42
|
||||||
|
>>> x = x + 1
|
||||||
|
|
||||||
|
Use the built-in ``help`` function to view a function's docstring::
|
||||||
|
|
||||||
|
>>> help(np.sort)
|
||||||
|
... # doctest: +SKIP
|
||||||
|
|
||||||
|
For some objects, ``np.info(obj)`` may provide additional help. This is
|
||||||
|
particularly true if you see the line "Help on ufunc object:" at the top
|
||||||
|
of the help() page. Ufuncs are implemented in C, not Python, for speed.
|
||||||
|
The native Python help() does not know how to view their help, but our
|
||||||
|
np.info() function does.
|
||||||
|
|
||||||
|
Available subpackages
|
||||||
|
---------------------
|
||||||
|
lib
|
||||||
|
Basic functions used by several sub-packages.
|
||||||
|
random
|
||||||
|
Core Random Tools
|
||||||
|
linalg
|
||||||
|
Core Linear Algebra Tools
|
||||||
|
fft
|
||||||
|
Core FFT routines
|
||||||
|
polynomial
|
||||||
|
Polynomial tools
|
||||||
|
testing
|
||||||
|
NumPy testing tools
|
||||||
|
distutils
|
||||||
|
Enhancements to distutils with support for
|
||||||
|
Fortran compilers support and more (for Python <= 3.11)
|
||||||
|
|
||||||
|
Utilities
|
||||||
|
---------
|
||||||
|
test
|
||||||
|
Run numpy unittests
|
||||||
|
show_config
|
||||||
|
Show numpy build configuration
|
||||||
|
__version__
|
||||||
|
NumPy version string
|
||||||
|
|
||||||
|
Viewing documentation using IPython
|
||||||
|
-----------------------------------
|
||||||
|
|
||||||
|
Start IPython and import `numpy` usually under the alias ``np``: `import
|
||||||
|
numpy as np`. Then, directly past or use the ``%cpaste`` magic to paste
|
||||||
|
examples into the shell. To see which functions are available in `numpy`,
|
||||||
|
type ``np.<TAB>`` (where ``<TAB>`` refers to the TAB key), or use
|
||||||
|
``np.*cos*?<ENTER>`` (where ``<ENTER>`` refers to the ENTER key) to narrow
|
||||||
|
down the list. To view the docstring for a function, use
|
||||||
|
``np.cos?<ENTER>`` (to view the docstring) and ``np.cos??<ENTER>`` (to view
|
||||||
|
the source code).
|
||||||
|
|
||||||
|
Copies vs. in-place operation
|
||||||
|
-----------------------------
|
||||||
|
Most of the functions in `numpy` return a copy of the array argument
|
||||||
|
(e.g., `np.sort`). In-place versions of these functions are often
|
||||||
|
available as array methods, i.e. ``x = np.array([1,2,3]); x.sort()``.
|
||||||
|
Exceptions to this rule are documented.
|
||||||
|
|
||||||
|
"""
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
# If a version with git hash was stored, use that instead
|
||||||
|
from . import version
|
||||||
|
from ._expired_attrs_2_0 import __expired_attributes__
|
||||||
|
from ._globals import _CopyMode, _NoValue
|
||||||
|
from .version import __version__
|
||||||
|
|
||||||
|
# We first need to detect if we're being called as part of the numpy setup
|
||||||
|
# procedure itself in a reliable manner.
|
||||||
|
try:
|
||||||
|
__NUMPY_SETUP__ # noqa: B018
|
||||||
|
except NameError:
|
||||||
|
__NUMPY_SETUP__ = False
|
||||||
|
|
||||||
|
if __NUMPY_SETUP__:
|
||||||
|
sys.stderr.write('Running from numpy source directory.\n')
|
||||||
|
else:
|
||||||
|
# Allow distributors to run custom init code before importing numpy._core
|
||||||
|
from . import _distributor_init
|
||||||
|
|
||||||
|
try:
|
||||||
|
from numpy.__config__ import show_config
|
||||||
|
except ImportError as e:
|
||||||
|
msg = """Error importing numpy: you should not try to import numpy from
|
||||||
|
its source directory; please exit the numpy source tree, and relaunch
|
||||||
|
your python interpreter from there."""
|
||||||
|
raise ImportError(msg) from e
|
||||||
|
|
||||||
|
from . import _core
|
||||||
|
from ._core import (
|
||||||
|
False_,
|
||||||
|
ScalarType,
|
||||||
|
True_,
|
||||||
|
abs,
|
||||||
|
absolute,
|
||||||
|
acos,
|
||||||
|
acosh,
|
||||||
|
add,
|
||||||
|
all,
|
||||||
|
allclose,
|
||||||
|
amax,
|
||||||
|
amin,
|
||||||
|
any,
|
||||||
|
arange,
|
||||||
|
arccos,
|
||||||
|
arccosh,
|
||||||
|
arcsin,
|
||||||
|
arcsinh,
|
||||||
|
arctan,
|
||||||
|
arctan2,
|
||||||
|
arctanh,
|
||||||
|
argmax,
|
||||||
|
argmin,
|
||||||
|
argpartition,
|
||||||
|
argsort,
|
||||||
|
argwhere,
|
||||||
|
around,
|
||||||
|
array,
|
||||||
|
array2string,
|
||||||
|
array_equal,
|
||||||
|
array_equiv,
|
||||||
|
array_repr,
|
||||||
|
array_str,
|
||||||
|
asanyarray,
|
||||||
|
asarray,
|
||||||
|
ascontiguousarray,
|
||||||
|
asfortranarray,
|
||||||
|
asin,
|
||||||
|
asinh,
|
||||||
|
astype,
|
||||||
|
atan,
|
||||||
|
atan2,
|
||||||
|
atanh,
|
||||||
|
atleast_1d,
|
||||||
|
atleast_2d,
|
||||||
|
atleast_3d,
|
||||||
|
base_repr,
|
||||||
|
binary_repr,
|
||||||
|
bitwise_and,
|
||||||
|
bitwise_count,
|
||||||
|
bitwise_invert,
|
||||||
|
bitwise_left_shift,
|
||||||
|
bitwise_not,
|
||||||
|
bitwise_or,
|
||||||
|
bitwise_right_shift,
|
||||||
|
bitwise_xor,
|
||||||
|
block,
|
||||||
|
bool,
|
||||||
|
bool_,
|
||||||
|
broadcast,
|
||||||
|
busday_count,
|
||||||
|
busday_offset,
|
||||||
|
busdaycalendar,
|
||||||
|
byte,
|
||||||
|
bytes_,
|
||||||
|
can_cast,
|
||||||
|
cbrt,
|
||||||
|
cdouble,
|
||||||
|
ceil,
|
||||||
|
character,
|
||||||
|
choose,
|
||||||
|
clip,
|
||||||
|
clongdouble,
|
||||||
|
complex64,
|
||||||
|
complex128,
|
||||||
|
complexfloating,
|
||||||
|
compress,
|
||||||
|
concat,
|
||||||
|
concatenate,
|
||||||
|
conj,
|
||||||
|
conjugate,
|
||||||
|
convolve,
|
||||||
|
copysign,
|
||||||
|
copyto,
|
||||||
|
correlate,
|
||||||
|
cos,
|
||||||
|
cosh,
|
||||||
|
count_nonzero,
|
||||||
|
cross,
|
||||||
|
csingle,
|
||||||
|
cumprod,
|
||||||
|
cumsum,
|
||||||
|
cumulative_prod,
|
||||||
|
cumulative_sum,
|
||||||
|
datetime64,
|
||||||
|
datetime_as_string,
|
||||||
|
datetime_data,
|
||||||
|
deg2rad,
|
||||||
|
degrees,
|
||||||
|
diagonal,
|
||||||
|
divide,
|
||||||
|
divmod,
|
||||||
|
dot,
|
||||||
|
double,
|
||||||
|
dtype,
|
||||||
|
e,
|
||||||
|
einsum,
|
||||||
|
einsum_path,
|
||||||
|
empty,
|
||||||
|
empty_like,
|
||||||
|
equal,
|
||||||
|
errstate,
|
||||||
|
euler_gamma,
|
||||||
|
exp,
|
||||||
|
exp2,
|
||||||
|
expm1,
|
||||||
|
fabs,
|
||||||
|
finfo,
|
||||||
|
flatiter,
|
||||||
|
flatnonzero,
|
||||||
|
flexible,
|
||||||
|
float16,
|
||||||
|
float32,
|
||||||
|
float64,
|
||||||
|
float_power,
|
||||||
|
floating,
|
||||||
|
floor,
|
||||||
|
floor_divide,
|
||||||
|
fmax,
|
||||||
|
fmin,
|
||||||
|
fmod,
|
||||||
|
format_float_positional,
|
||||||
|
format_float_scientific,
|
||||||
|
frexp,
|
||||||
|
from_dlpack,
|
||||||
|
frombuffer,
|
||||||
|
fromfile,
|
||||||
|
fromfunction,
|
||||||
|
fromiter,
|
||||||
|
frompyfunc,
|
||||||
|
fromstring,
|
||||||
|
full,
|
||||||
|
full_like,
|
||||||
|
gcd,
|
||||||
|
generic,
|
||||||
|
geomspace,
|
||||||
|
get_printoptions,
|
||||||
|
getbufsize,
|
||||||
|
geterr,
|
||||||
|
geterrcall,
|
||||||
|
greater,
|
||||||
|
greater_equal,
|
||||||
|
half,
|
||||||
|
heaviside,
|
||||||
|
hstack,
|
||||||
|
hypot,
|
||||||
|
identity,
|
||||||
|
iinfo,
|
||||||
|
indices,
|
||||||
|
inexact,
|
||||||
|
inf,
|
||||||
|
inner,
|
||||||
|
int8,
|
||||||
|
int16,
|
||||||
|
int32,
|
||||||
|
int64,
|
||||||
|
int_,
|
||||||
|
intc,
|
||||||
|
integer,
|
||||||
|
intp,
|
||||||
|
invert,
|
||||||
|
is_busday,
|
||||||
|
isclose,
|
||||||
|
isdtype,
|
||||||
|
isfinite,
|
||||||
|
isfortran,
|
||||||
|
isinf,
|
||||||
|
isnan,
|
||||||
|
isnat,
|
||||||
|
isscalar,
|
||||||
|
issubdtype,
|
||||||
|
lcm,
|
||||||
|
ldexp,
|
||||||
|
left_shift,
|
||||||
|
less,
|
||||||
|
less_equal,
|
||||||
|
lexsort,
|
||||||
|
linspace,
|
||||||
|
little_endian,
|
||||||
|
log,
|
||||||
|
log1p,
|
||||||
|
log2,
|
||||||
|
log10,
|
||||||
|
logaddexp,
|
||||||
|
logaddexp2,
|
||||||
|
logical_and,
|
||||||
|
logical_not,
|
||||||
|
logical_or,
|
||||||
|
logical_xor,
|
||||||
|
logspace,
|
||||||
|
long,
|
||||||
|
longdouble,
|
||||||
|
longlong,
|
||||||
|
matmul,
|
||||||
|
matrix_transpose,
|
||||||
|
matvec,
|
||||||
|
max,
|
||||||
|
maximum,
|
||||||
|
may_share_memory,
|
||||||
|
mean,
|
||||||
|
memmap,
|
||||||
|
min,
|
||||||
|
min_scalar_type,
|
||||||
|
minimum,
|
||||||
|
mod,
|
||||||
|
modf,
|
||||||
|
moveaxis,
|
||||||
|
multiply,
|
||||||
|
nan,
|
||||||
|
ndarray,
|
||||||
|
ndim,
|
||||||
|
nditer,
|
||||||
|
negative,
|
||||||
|
nested_iters,
|
||||||
|
newaxis,
|
||||||
|
nextafter,
|
||||||
|
nonzero,
|
||||||
|
not_equal,
|
||||||
|
number,
|
||||||
|
object_,
|
||||||
|
ones,
|
||||||
|
ones_like,
|
||||||
|
outer,
|
||||||
|
partition,
|
||||||
|
permute_dims,
|
||||||
|
pi,
|
||||||
|
positive,
|
||||||
|
pow,
|
||||||
|
power,
|
||||||
|
printoptions,
|
||||||
|
prod,
|
||||||
|
promote_types,
|
||||||
|
ptp,
|
||||||
|
put,
|
||||||
|
putmask,
|
||||||
|
rad2deg,
|
||||||
|
radians,
|
||||||
|
ravel,
|
||||||
|
recarray,
|
||||||
|
reciprocal,
|
||||||
|
record,
|
||||||
|
remainder,
|
||||||
|
repeat,
|
||||||
|
require,
|
||||||
|
reshape,
|
||||||
|
resize,
|
||||||
|
result_type,
|
||||||
|
right_shift,
|
||||||
|
rint,
|
||||||
|
roll,
|
||||||
|
rollaxis,
|
||||||
|
round,
|
||||||
|
sctypeDict,
|
||||||
|
searchsorted,
|
||||||
|
set_printoptions,
|
||||||
|
setbufsize,
|
||||||
|
seterr,
|
||||||
|
seterrcall,
|
||||||
|
shape,
|
||||||
|
shares_memory,
|
||||||
|
short,
|
||||||
|
sign,
|
||||||
|
signbit,
|
||||||
|
signedinteger,
|
||||||
|
sin,
|
||||||
|
single,
|
||||||
|
sinh,
|
||||||
|
size,
|
||||||
|
sort,
|
||||||
|
spacing,
|
||||||
|
sqrt,
|
||||||
|
square,
|
||||||
|
squeeze,
|
||||||
|
stack,
|
||||||
|
std,
|
||||||
|
str_,
|
||||||
|
subtract,
|
||||||
|
sum,
|
||||||
|
swapaxes,
|
||||||
|
take,
|
||||||
|
tan,
|
||||||
|
tanh,
|
||||||
|
tensordot,
|
||||||
|
timedelta64,
|
||||||
|
trace,
|
||||||
|
transpose,
|
||||||
|
true_divide,
|
||||||
|
trunc,
|
||||||
|
typecodes,
|
||||||
|
ubyte,
|
||||||
|
ufunc,
|
||||||
|
uint,
|
||||||
|
uint8,
|
||||||
|
uint16,
|
||||||
|
uint32,
|
||||||
|
uint64,
|
||||||
|
uintc,
|
||||||
|
uintp,
|
||||||
|
ulong,
|
||||||
|
ulonglong,
|
||||||
|
unsignedinteger,
|
||||||
|
unstack,
|
||||||
|
ushort,
|
||||||
|
var,
|
||||||
|
vdot,
|
||||||
|
vecdot,
|
||||||
|
vecmat,
|
||||||
|
void,
|
||||||
|
vstack,
|
||||||
|
where,
|
||||||
|
zeros,
|
||||||
|
zeros_like,
|
||||||
|
)
|
||||||
|
|
||||||
|
# NOTE: It's still under discussion whether these aliases
|
||||||
|
# should be removed.
|
||||||
|
for ta in ["float96", "float128", "complex192", "complex256"]:
|
||||||
|
try:
|
||||||
|
globals()[ta] = getattr(_core, ta)
|
||||||
|
except AttributeError:
|
||||||
|
pass
|
||||||
|
del ta
|
||||||
|
|
||||||
|
from . import lib
|
||||||
|
from . import matrixlib as _mat
|
||||||
|
from .lib import scimath as emath
|
||||||
|
from .lib._arraypad_impl import pad
|
||||||
|
from .lib._arraysetops_impl import (
|
||||||
|
ediff1d,
|
||||||
|
in1d,
|
||||||
|
intersect1d,
|
||||||
|
isin,
|
||||||
|
setdiff1d,
|
||||||
|
setxor1d,
|
||||||
|
union1d,
|
||||||
|
unique,
|
||||||
|
unique_all,
|
||||||
|
unique_counts,
|
||||||
|
unique_inverse,
|
||||||
|
unique_values,
|
||||||
|
)
|
||||||
|
from .lib._function_base_impl import (
|
||||||
|
angle,
|
||||||
|
append,
|
||||||
|
asarray_chkfinite,
|
||||||
|
average,
|
||||||
|
bartlett,
|
||||||
|
bincount,
|
||||||
|
blackman,
|
||||||
|
copy,
|
||||||
|
corrcoef,
|
||||||
|
cov,
|
||||||
|
delete,
|
||||||
|
diff,
|
||||||
|
digitize,
|
||||||
|
extract,
|
||||||
|
flip,
|
||||||
|
gradient,
|
||||||
|
hamming,
|
||||||
|
hanning,
|
||||||
|
i0,
|
||||||
|
insert,
|
||||||
|
interp,
|
||||||
|
iterable,
|
||||||
|
kaiser,
|
||||||
|
median,
|
||||||
|
meshgrid,
|
||||||
|
percentile,
|
||||||
|
piecewise,
|
||||||
|
place,
|
||||||
|
quantile,
|
||||||
|
rot90,
|
||||||
|
select,
|
||||||
|
sinc,
|
||||||
|
sort_complex,
|
||||||
|
trapezoid,
|
||||||
|
trapz,
|
||||||
|
trim_zeros,
|
||||||
|
unwrap,
|
||||||
|
vectorize,
|
||||||
|
)
|
||||||
|
from .lib._histograms_impl import histogram, histogram_bin_edges, histogramdd
|
||||||
|
from .lib._index_tricks_impl import (
|
||||||
|
c_,
|
||||||
|
diag_indices,
|
||||||
|
diag_indices_from,
|
||||||
|
fill_diagonal,
|
||||||
|
index_exp,
|
||||||
|
ix_,
|
||||||
|
mgrid,
|
||||||
|
ndenumerate,
|
||||||
|
ndindex,
|
||||||
|
ogrid,
|
||||||
|
r_,
|
||||||
|
ravel_multi_index,
|
||||||
|
s_,
|
||||||
|
unravel_index,
|
||||||
|
)
|
||||||
|
from .lib._nanfunctions_impl import (
|
||||||
|
nanargmax,
|
||||||
|
nanargmin,
|
||||||
|
nancumprod,
|
||||||
|
nancumsum,
|
||||||
|
nanmax,
|
||||||
|
nanmean,
|
||||||
|
nanmedian,
|
||||||
|
nanmin,
|
||||||
|
nanpercentile,
|
||||||
|
nanprod,
|
||||||
|
nanquantile,
|
||||||
|
nanstd,
|
||||||
|
nansum,
|
||||||
|
nanvar,
|
||||||
|
)
|
||||||
|
from .lib._npyio_impl import (
|
||||||
|
fromregex,
|
||||||
|
genfromtxt,
|
||||||
|
load,
|
||||||
|
loadtxt,
|
||||||
|
packbits,
|
||||||
|
save,
|
||||||
|
savetxt,
|
||||||
|
savez,
|
||||||
|
savez_compressed,
|
||||||
|
unpackbits,
|
||||||
|
)
|
||||||
|
from .lib._polynomial_impl import (
|
||||||
|
poly,
|
||||||
|
poly1d,
|
||||||
|
polyadd,
|
||||||
|
polyder,
|
||||||
|
polydiv,
|
||||||
|
polyfit,
|
||||||
|
polyint,
|
||||||
|
polymul,
|
||||||
|
polysub,
|
||||||
|
polyval,
|
||||||
|
roots,
|
||||||
|
)
|
||||||
|
from .lib._shape_base_impl import (
|
||||||
|
apply_along_axis,
|
||||||
|
apply_over_axes,
|
||||||
|
array_split,
|
||||||
|
column_stack,
|
||||||
|
dsplit,
|
||||||
|
dstack,
|
||||||
|
expand_dims,
|
||||||
|
hsplit,
|
||||||
|
kron,
|
||||||
|
put_along_axis,
|
||||||
|
row_stack,
|
||||||
|
split,
|
||||||
|
take_along_axis,
|
||||||
|
tile,
|
||||||
|
vsplit,
|
||||||
|
)
|
||||||
|
from .lib._stride_tricks_impl import (
|
||||||
|
broadcast_arrays,
|
||||||
|
broadcast_shapes,
|
||||||
|
broadcast_to,
|
||||||
|
)
|
||||||
|
from .lib._twodim_base_impl import (
|
||||||
|
diag,
|
||||||
|
diagflat,
|
||||||
|
eye,
|
||||||
|
fliplr,
|
||||||
|
flipud,
|
||||||
|
histogram2d,
|
||||||
|
mask_indices,
|
||||||
|
tri,
|
||||||
|
tril,
|
||||||
|
tril_indices,
|
||||||
|
tril_indices_from,
|
||||||
|
triu,
|
||||||
|
triu_indices,
|
||||||
|
triu_indices_from,
|
||||||
|
vander,
|
||||||
|
)
|
||||||
|
from .lib._type_check_impl import (
|
||||||
|
common_type,
|
||||||
|
imag,
|
||||||
|
iscomplex,
|
||||||
|
iscomplexobj,
|
||||||
|
isreal,
|
||||||
|
isrealobj,
|
||||||
|
mintypecode,
|
||||||
|
nan_to_num,
|
||||||
|
real,
|
||||||
|
real_if_close,
|
||||||
|
typename,
|
||||||
|
)
|
||||||
|
from .lib._ufunclike_impl import fix, isneginf, isposinf
|
||||||
|
from .lib._utils_impl import get_include, info, show_runtime
|
||||||
|
from .matrixlib import asmatrix, bmat, matrix
|
||||||
|
|
||||||
|
# public submodules are imported lazily, therefore are accessible from
|
||||||
|
# __getattr__. Note that `distutils` (deprecated) and `array_api`
|
||||||
|
# (experimental label) are not added here, because `from numpy import *`
|
||||||
|
# must not raise any warnings - that's too disruptive.
|
||||||
|
__numpy_submodules__ = {
|
||||||
|
"linalg", "fft", "dtypes", "random", "polynomial", "ma",
|
||||||
|
"exceptions", "lib", "ctypeslib", "testing", "typing",
|
||||||
|
"f2py", "test", "rec", "char", "core", "strings",
|
||||||
|
}
|
||||||
|
|
||||||
|
# We build warning messages for former attributes
|
||||||
|
_msg = (
|
||||||
|
"module 'numpy' has no attribute '{n}'.\n"
|
||||||
|
"`np.{n}` was a deprecated alias for the builtin `{n}`. "
|
||||||
|
"To avoid this error in existing code, use `{n}` by itself. "
|
||||||
|
"Doing this will not modify any behavior and is safe. {extended_msg}\n"
|
||||||
|
"The aliases was originally deprecated in NumPy 1.20; for more "
|
||||||
|
"details and guidance see the original release note at:\n"
|
||||||
|
" https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations")
|
||||||
|
|
||||||
|
_specific_msg = (
|
||||||
|
"If you specifically wanted the numpy scalar type, use `np.{}` here.")
|
||||||
|
|
||||||
|
_int_extended_msg = (
|
||||||
|
"When replacing `np.{}`, you may wish to use e.g. `np.int64` "
|
||||||
|
"or `np.int32` to specify the precision. If you wish to review "
|
||||||
|
"your current use, check the release note link for "
|
||||||
|
"additional information.")
|
||||||
|
|
||||||
|
_type_info = [
|
||||||
|
("object", ""), # The NumPy scalar only exists by name.
|
||||||
|
("float", _specific_msg.format("float64")),
|
||||||
|
("complex", _specific_msg.format("complex128")),
|
||||||
|
("str", _specific_msg.format("str_")),
|
||||||
|
("int", _int_extended_msg.format("int"))]
|
||||||
|
|
||||||
|
__former_attrs__ = {
|
||||||
|
n: _msg.format(n=n, extended_msg=extended_msg)
|
||||||
|
for n, extended_msg in _type_info
|
||||||
|
}
|
||||||
|
|
||||||
|
# Some of these could be defined right away, but most were aliases to
|
||||||
|
# the Python objects and only removed in NumPy 1.24. Defining them should
|
||||||
|
# probably wait for NumPy 1.26 or 2.0.
|
||||||
|
# When defined, these should possibly not be added to `__all__` to avoid
|
||||||
|
# import with `from numpy import *`.
|
||||||
|
__future_scalars__ = {"str", "bytes", "object"}
|
||||||
|
|
||||||
|
__array_api_version__ = "2024.12"
|
||||||
|
|
||||||
|
from ._array_api_info import __array_namespace_info__
|
||||||
|
|
||||||
|
# now that numpy core module is imported, can initialize limits
|
||||||
|
_core.getlimits._register_known_types()
|
||||||
|
|
||||||
|
__all__ = list(
|
||||||
|
__numpy_submodules__ |
|
||||||
|
set(_core.__all__) |
|
||||||
|
set(_mat.__all__) |
|
||||||
|
set(lib._histograms_impl.__all__) |
|
||||||
|
set(lib._nanfunctions_impl.__all__) |
|
||||||
|
set(lib._function_base_impl.__all__) |
|
||||||
|
set(lib._twodim_base_impl.__all__) |
|
||||||
|
set(lib._shape_base_impl.__all__) |
|
||||||
|
set(lib._type_check_impl.__all__) |
|
||||||
|
set(lib._arraysetops_impl.__all__) |
|
||||||
|
set(lib._ufunclike_impl.__all__) |
|
||||||
|
set(lib._arraypad_impl.__all__) |
|
||||||
|
set(lib._utils_impl.__all__) |
|
||||||
|
set(lib._stride_tricks_impl.__all__) |
|
||||||
|
set(lib._polynomial_impl.__all__) |
|
||||||
|
set(lib._npyio_impl.__all__) |
|
||||||
|
set(lib._index_tricks_impl.__all__) |
|
||||||
|
{"emath", "show_config", "__version__", "__array_namespace_info__"}
|
||||||
|
)
|
||||||
|
|
||||||
|
# Filter out Cython harmless warnings
|
||||||
|
warnings.filterwarnings("ignore", message="numpy.dtype size changed")
|
||||||
|
warnings.filterwarnings("ignore", message="numpy.ufunc size changed")
|
||||||
|
warnings.filterwarnings("ignore", message="numpy.ndarray size changed")
|
||||||
|
|
||||||
|
def __getattr__(attr):
|
||||||
|
# Warn for expired attributes
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
if attr == "linalg":
|
||||||
|
import numpy.linalg as linalg
|
||||||
|
return linalg
|
||||||
|
elif attr == "fft":
|
||||||
|
import numpy.fft as fft
|
||||||
|
return fft
|
||||||
|
elif attr == "dtypes":
|
||||||
|
import numpy.dtypes as dtypes
|
||||||
|
return dtypes
|
||||||
|
elif attr == "random":
|
||||||
|
import numpy.random as random
|
||||||
|
return random
|
||||||
|
elif attr == "polynomial":
|
||||||
|
import numpy.polynomial as polynomial
|
||||||
|
return polynomial
|
||||||
|
elif attr == "ma":
|
||||||
|
import numpy.ma as ma
|
||||||
|
return ma
|
||||||
|
elif attr == "ctypeslib":
|
||||||
|
import numpy.ctypeslib as ctypeslib
|
||||||
|
return ctypeslib
|
||||||
|
elif attr == "exceptions":
|
||||||
|
import numpy.exceptions as exceptions
|
||||||
|
return exceptions
|
||||||
|
elif attr == "testing":
|
||||||
|
import numpy.testing as testing
|
||||||
|
return testing
|
||||||
|
elif attr == "matlib":
|
||||||
|
import numpy.matlib as matlib
|
||||||
|
return matlib
|
||||||
|
elif attr == "f2py":
|
||||||
|
import numpy.f2py as f2py
|
||||||
|
return f2py
|
||||||
|
elif attr == "typing":
|
||||||
|
import numpy.typing as typing
|
||||||
|
return typing
|
||||||
|
elif attr == "rec":
|
||||||
|
import numpy.rec as rec
|
||||||
|
return rec
|
||||||
|
elif attr == "char":
|
||||||
|
import numpy.char as char
|
||||||
|
return char
|
||||||
|
elif attr == "array_api":
|
||||||
|
raise AttributeError("`numpy.array_api` is not available from "
|
||||||
|
"numpy 2.0 onwards", name=None)
|
||||||
|
elif attr == "core":
|
||||||
|
import numpy.core as core
|
||||||
|
return core
|
||||||
|
elif attr == "strings":
|
||||||
|
import numpy.strings as strings
|
||||||
|
return strings
|
||||||
|
elif attr == "distutils":
|
||||||
|
if 'distutils' in __numpy_submodules__:
|
||||||
|
import numpy.distutils as distutils
|
||||||
|
return distutils
|
||||||
|
else:
|
||||||
|
raise AttributeError("`numpy.distutils` is not available from "
|
||||||
|
"Python 3.12 onwards", name=None)
|
||||||
|
|
||||||
|
if attr in __future_scalars__:
|
||||||
|
# And future warnings for those that will change, but also give
|
||||||
|
# the AttributeError
|
||||||
|
warnings.warn(
|
||||||
|
f"In the future `np.{attr}` will be defined as the "
|
||||||
|
"corresponding NumPy scalar.", FutureWarning, stacklevel=2)
|
||||||
|
|
||||||
|
if attr in __former_attrs__:
|
||||||
|
raise AttributeError(__former_attrs__[attr], name=None)
|
||||||
|
|
||||||
|
if attr in __expired_attributes__:
|
||||||
|
raise AttributeError(
|
||||||
|
f"`np.{attr}` was removed in the NumPy 2.0 release. "
|
||||||
|
f"{__expired_attributes__[attr]}",
|
||||||
|
name=None
|
||||||
|
)
|
||||||
|
|
||||||
|
if attr == "chararray":
|
||||||
|
warnings.warn(
|
||||||
|
"`np.chararray` is deprecated and will be removed from "
|
||||||
|
"the main namespace in the future. Use an array with a string "
|
||||||
|
"or bytes dtype instead.", DeprecationWarning, stacklevel=2)
|
||||||
|
import numpy.char as char
|
||||||
|
return char.chararray
|
||||||
|
|
||||||
|
raise AttributeError(f"module {__name__!r} has no attribute {attr!r}")
|
||||||
|
|
||||||
|
def __dir__():
|
||||||
|
public_symbols = (
|
||||||
|
globals().keys() | __numpy_submodules__
|
||||||
|
)
|
||||||
|
public_symbols -= {
|
||||||
|
"matrixlib", "matlib", "tests", "conftest", "version",
|
||||||
|
"distutils", "array_api"
|
||||||
|
}
|
||||||
|
return list(public_symbols)
|
||||||
|
|
||||||
|
# Pytest testing
|
||||||
|
from numpy._pytesttester import PytestTester
|
||||||
|
test = PytestTester(__name__)
|
||||||
|
del PytestTester
|
||||||
|
|
||||||
|
def _sanity_check():
|
||||||
|
"""
|
||||||
|
Quick sanity checks for common bugs caused by environment.
|
||||||
|
There are some cases e.g. with wrong BLAS ABI that cause wrong
|
||||||
|
results under specific runtime conditions that are not necessarily
|
||||||
|
achieved during test suite runs, and it is useful to catch those early.
|
||||||
|
|
||||||
|
See https://github.com/numpy/numpy/issues/8577 and other
|
||||||
|
similar bug reports.
|
||||||
|
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
x = ones(2, dtype=float32)
|
||||||
|
if not abs(x.dot(x) - float32(2.0)) < 1e-5:
|
||||||
|
raise AssertionError
|
||||||
|
except AssertionError:
|
||||||
|
msg = ("The current Numpy installation ({!r}) fails to "
|
||||||
|
"pass simple sanity checks. This can be caused for example "
|
||||||
|
"by incorrect BLAS library being linked in, or by mixing "
|
||||||
|
"package managers (pip, conda, apt, ...). Search closed "
|
||||||
|
"numpy issues for similar problems.")
|
||||||
|
raise RuntimeError(msg.format(__file__)) from None
|
||||||
|
|
||||||
|
_sanity_check()
|
||||||
|
del _sanity_check
|
||||||
|
|
||||||
|
def _mac_os_check():
|
||||||
|
"""
|
||||||
|
Quick Sanity check for Mac OS look for accelerate build bugs.
|
||||||
|
Testing numpy polyfit calls init_dgelsd(LAPACK)
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
c = array([3., 2., 1.])
|
||||||
|
x = linspace(0, 2, 5)
|
||||||
|
y = polyval(c, x)
|
||||||
|
_ = polyfit(x, y, 2, cov=True)
|
||||||
|
except ValueError:
|
||||||
|
pass
|
||||||
|
|
||||||
|
if sys.platform == "darwin":
|
||||||
|
from . import exceptions
|
||||||
|
with warnings.catch_warnings(record=True) as w:
|
||||||
|
_mac_os_check()
|
||||||
|
# Throw runtime error, if the test failed
|
||||||
|
# Check for warning and report the error_message
|
||||||
|
if len(w) > 0:
|
||||||
|
for _wn in w:
|
||||||
|
if _wn.category is exceptions.RankWarning:
|
||||||
|
# Ignore other warnings, they may not be relevant (see gh-25433)
|
||||||
|
error_message = (
|
||||||
|
f"{_wn.category.__name__}: {_wn.message}"
|
||||||
|
)
|
||||||
|
msg = (
|
||||||
|
"Polyfit sanity test emitted a warning, most likely due "
|
||||||
|
"to using a buggy Accelerate backend."
|
||||||
|
"\nIf you compiled yourself, more information is available at:" # noqa: E501
|
||||||
|
"\nhttps://numpy.org/devdocs/building/index.html"
|
||||||
|
"\nOtherwise report this to the vendor "
|
||||||
|
f"that provided NumPy.\n\n{error_message}\n")
|
||||||
|
raise RuntimeError(msg)
|
||||||
|
del _wn
|
||||||
|
del w
|
||||||
|
del _mac_os_check
|
||||||
|
|
||||||
|
def hugepage_setup():
|
||||||
|
"""
|
||||||
|
We usually use madvise hugepages support, but on some old kernels it
|
||||||
|
is slow and thus better avoided. Specifically kernel version 4.6
|
||||||
|
had a bug fix which probably fixed this:
|
||||||
|
https://github.com/torvalds/linux/commit/7cf91a98e607c2f935dbcc177d70011e95b8faff
|
||||||
|
"""
|
||||||
|
use_hugepage = os.environ.get("NUMPY_MADVISE_HUGEPAGE", None)
|
||||||
|
if sys.platform == "linux" and use_hugepage is None:
|
||||||
|
# If there is an issue with parsing the kernel version,
|
||||||
|
# set use_hugepage to 0. Usage of LooseVersion will handle
|
||||||
|
# the kernel version parsing better, but avoided since it
|
||||||
|
# will increase the import time.
|
||||||
|
# See: #16679 for related discussion.
|
||||||
|
try:
|
||||||
|
use_hugepage = 1
|
||||||
|
kernel_version = os.uname().release.split(".")[:2]
|
||||||
|
kernel_version = tuple(int(v) for v in kernel_version)
|
||||||
|
if kernel_version < (4, 6):
|
||||||
|
use_hugepage = 0
|
||||||
|
except ValueError:
|
||||||
|
use_hugepage = 0
|
||||||
|
elif use_hugepage is None:
|
||||||
|
# This is not Linux, so it should not matter, just enable anyway
|
||||||
|
use_hugepage = 1
|
||||||
|
else:
|
||||||
|
use_hugepage = int(use_hugepage)
|
||||||
|
return use_hugepage
|
||||||
|
|
||||||
|
# Note that this will currently only make a difference on Linux
|
||||||
|
_core.multiarray._set_madvise_hugepage(hugepage_setup())
|
||||||
|
del hugepage_setup
|
||||||
|
|
||||||
|
# Give a warning if NumPy is reloaded or imported on a sub-interpreter
|
||||||
|
# We do this from python, since the C-module may not be reloaded and
|
||||||
|
# it is tidier organized.
|
||||||
|
_core.multiarray._multiarray_umath._reload_guard()
|
||||||
|
|
||||||
|
# TODO: Remove the environment variable entirely now that it is "weak"
|
||||||
|
if (os.environ.get("NPY_PROMOTION_STATE", "weak") != "weak"):
|
||||||
|
warnings.warn(
|
||||||
|
"NPY_PROMOTION_STATE was a temporary feature for NumPy 2.0 "
|
||||||
|
"transition and is ignored after NumPy 2.2.",
|
||||||
|
UserWarning, stacklevel=2)
|
||||||
|
|
||||||
|
# Tell PyInstaller where to find hook-numpy.py
|
||||||
|
def _pyinstaller_hooks_dir():
|
||||||
|
from pathlib import Path
|
||||||
|
return [str(Path(__file__).with_name("_pyinstaller").resolve())]
|
||||||
|
|
||||||
|
|
||||||
|
# Remove symbols imported for internal use
|
||||||
|
del os, sys, warnings
|
File diff suppressed because it is too large
Load Diff
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,346 @@
|
|||||||
|
"""
|
||||||
|
Array API Inspection namespace
|
||||||
|
|
||||||
|
This is the namespace for inspection functions as defined by the array API
|
||||||
|
standard. See
|
||||||
|
https://data-apis.org/array-api/latest/API_specification/inspection.html for
|
||||||
|
more details.
|
||||||
|
|
||||||
|
"""
|
||||||
|
from numpy._core import (
|
||||||
|
bool,
|
||||||
|
complex64,
|
||||||
|
complex128,
|
||||||
|
dtype,
|
||||||
|
float32,
|
||||||
|
float64,
|
||||||
|
int8,
|
||||||
|
int16,
|
||||||
|
int32,
|
||||||
|
int64,
|
||||||
|
intp,
|
||||||
|
uint8,
|
||||||
|
uint16,
|
||||||
|
uint32,
|
||||||
|
uint64,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class __array_namespace_info__:
|
||||||
|
"""
|
||||||
|
Get the array API inspection namespace for NumPy.
|
||||||
|
|
||||||
|
The array API inspection namespace defines the following functions:
|
||||||
|
|
||||||
|
- capabilities()
|
||||||
|
- default_device()
|
||||||
|
- default_dtypes()
|
||||||
|
- dtypes()
|
||||||
|
- devices()
|
||||||
|
|
||||||
|
See
|
||||||
|
https://data-apis.org/array-api/latest/API_specification/inspection.html
|
||||||
|
for more details.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
info : ModuleType
|
||||||
|
The array API inspection namespace for NumPy.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> info = np.__array_namespace_info__()
|
||||||
|
>>> info.default_dtypes()
|
||||||
|
{'real floating': numpy.float64,
|
||||||
|
'complex floating': numpy.complex128,
|
||||||
|
'integral': numpy.int64,
|
||||||
|
'indexing': numpy.int64}
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
__module__ = 'numpy'
|
||||||
|
|
||||||
|
def capabilities(self):
|
||||||
|
"""
|
||||||
|
Return a dictionary of array API library capabilities.
|
||||||
|
|
||||||
|
The resulting dictionary has the following keys:
|
||||||
|
|
||||||
|
- **"boolean indexing"**: boolean indicating whether an array library
|
||||||
|
supports boolean indexing. Always ``True`` for NumPy.
|
||||||
|
|
||||||
|
- **"data-dependent shapes"**: boolean indicating whether an array
|
||||||
|
library supports data-dependent output shapes. Always ``True`` for
|
||||||
|
NumPy.
|
||||||
|
|
||||||
|
See
|
||||||
|
https://data-apis.org/array-api/latest/API_specification/generated/array_api.info.capabilities.html
|
||||||
|
for more details.
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
__array_namespace_info__.default_device,
|
||||||
|
__array_namespace_info__.default_dtypes,
|
||||||
|
__array_namespace_info__.dtypes,
|
||||||
|
__array_namespace_info__.devices
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
capabilities : dict
|
||||||
|
A dictionary of array API library capabilities.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> info = np.__array_namespace_info__()
|
||||||
|
>>> info.capabilities()
|
||||||
|
{'boolean indexing': True,
|
||||||
|
'data-dependent shapes': True,
|
||||||
|
'max dimensions': 64}
|
||||||
|
|
||||||
|
"""
|
||||||
|
return {
|
||||||
|
"boolean indexing": True,
|
||||||
|
"data-dependent shapes": True,
|
||||||
|
"max dimensions": 64,
|
||||||
|
}
|
||||||
|
|
||||||
|
def default_device(self):
|
||||||
|
"""
|
||||||
|
The default device used for new NumPy arrays.
|
||||||
|
|
||||||
|
For NumPy, this always returns ``'cpu'``.
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
__array_namespace_info__.capabilities,
|
||||||
|
__array_namespace_info__.default_dtypes,
|
||||||
|
__array_namespace_info__.dtypes,
|
||||||
|
__array_namespace_info__.devices
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
device : str
|
||||||
|
The default device used for new NumPy arrays.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> info = np.__array_namespace_info__()
|
||||||
|
>>> info.default_device()
|
||||||
|
'cpu'
|
||||||
|
|
||||||
|
"""
|
||||||
|
return "cpu"
|
||||||
|
|
||||||
|
def default_dtypes(self, *, device=None):
|
||||||
|
"""
|
||||||
|
The default data types used for new NumPy arrays.
|
||||||
|
|
||||||
|
For NumPy, this always returns the following dictionary:
|
||||||
|
|
||||||
|
- **"real floating"**: ``numpy.float64``
|
||||||
|
- **"complex floating"**: ``numpy.complex128``
|
||||||
|
- **"integral"**: ``numpy.intp``
|
||||||
|
- **"indexing"**: ``numpy.intp``
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
device : str, optional
|
||||||
|
The device to get the default data types for. For NumPy, only
|
||||||
|
``'cpu'`` is allowed.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
dtypes : dict
|
||||||
|
A dictionary describing the default data types used for new NumPy
|
||||||
|
arrays.
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
__array_namespace_info__.capabilities,
|
||||||
|
__array_namespace_info__.default_device,
|
||||||
|
__array_namespace_info__.dtypes,
|
||||||
|
__array_namespace_info__.devices
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> info = np.__array_namespace_info__()
|
||||||
|
>>> info.default_dtypes()
|
||||||
|
{'real floating': numpy.float64,
|
||||||
|
'complex floating': numpy.complex128,
|
||||||
|
'integral': numpy.int64,
|
||||||
|
'indexing': numpy.int64}
|
||||||
|
|
||||||
|
"""
|
||||||
|
if device not in ["cpu", None]:
|
||||||
|
raise ValueError(
|
||||||
|
'Device not understood. Only "cpu" is allowed, but received:'
|
||||||
|
f' {device}'
|
||||||
|
)
|
||||||
|
return {
|
||||||
|
"real floating": dtype(float64),
|
||||||
|
"complex floating": dtype(complex128),
|
||||||
|
"integral": dtype(intp),
|
||||||
|
"indexing": dtype(intp),
|
||||||
|
}
|
||||||
|
|
||||||
|
def dtypes(self, *, device=None, kind=None):
|
||||||
|
"""
|
||||||
|
The array API data types supported by NumPy.
|
||||||
|
|
||||||
|
Note that this function only returns data types that are defined by
|
||||||
|
the array API.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
device : str, optional
|
||||||
|
The device to get the data types for. For NumPy, only ``'cpu'`` is
|
||||||
|
allowed.
|
||||||
|
kind : str or tuple of str, optional
|
||||||
|
The kind of data types to return. If ``None``, all data types are
|
||||||
|
returned. If a string, only data types of that kind are returned.
|
||||||
|
If a tuple, a dictionary containing the union of the given kinds
|
||||||
|
is returned. The following kinds are supported:
|
||||||
|
|
||||||
|
- ``'bool'``: boolean data types (i.e., ``bool``).
|
||||||
|
- ``'signed integer'``: signed integer data types (i.e., ``int8``,
|
||||||
|
``int16``, ``int32``, ``int64``).
|
||||||
|
- ``'unsigned integer'``: unsigned integer data types (i.e.,
|
||||||
|
``uint8``, ``uint16``, ``uint32``, ``uint64``).
|
||||||
|
- ``'integral'``: integer data types. Shorthand for ``('signed
|
||||||
|
integer', 'unsigned integer')``.
|
||||||
|
- ``'real floating'``: real-valued floating-point data types
|
||||||
|
(i.e., ``float32``, ``float64``).
|
||||||
|
- ``'complex floating'``: complex floating-point data types (i.e.,
|
||||||
|
``complex64``, ``complex128``).
|
||||||
|
- ``'numeric'``: numeric data types. Shorthand for ``('integral',
|
||||||
|
'real floating', 'complex floating')``.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
dtypes : dict
|
||||||
|
A dictionary mapping the names of data types to the corresponding
|
||||||
|
NumPy data types.
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
__array_namespace_info__.capabilities,
|
||||||
|
__array_namespace_info__.default_device,
|
||||||
|
__array_namespace_info__.default_dtypes,
|
||||||
|
__array_namespace_info__.devices
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> info = np.__array_namespace_info__()
|
||||||
|
>>> info.dtypes(kind='signed integer')
|
||||||
|
{'int8': numpy.int8,
|
||||||
|
'int16': numpy.int16,
|
||||||
|
'int32': numpy.int32,
|
||||||
|
'int64': numpy.int64}
|
||||||
|
|
||||||
|
"""
|
||||||
|
if device not in ["cpu", None]:
|
||||||
|
raise ValueError(
|
||||||
|
'Device not understood. Only "cpu" is allowed, but received:'
|
||||||
|
f' {device}'
|
||||||
|
)
|
||||||
|
if kind is None:
|
||||||
|
return {
|
||||||
|
"bool": dtype(bool),
|
||||||
|
"int8": dtype(int8),
|
||||||
|
"int16": dtype(int16),
|
||||||
|
"int32": dtype(int32),
|
||||||
|
"int64": dtype(int64),
|
||||||
|
"uint8": dtype(uint8),
|
||||||
|
"uint16": dtype(uint16),
|
||||||
|
"uint32": dtype(uint32),
|
||||||
|
"uint64": dtype(uint64),
|
||||||
|
"float32": dtype(float32),
|
||||||
|
"float64": dtype(float64),
|
||||||
|
"complex64": dtype(complex64),
|
||||||
|
"complex128": dtype(complex128),
|
||||||
|
}
|
||||||
|
if kind == "bool":
|
||||||
|
return {"bool": bool}
|
||||||
|
if kind == "signed integer":
|
||||||
|
return {
|
||||||
|
"int8": dtype(int8),
|
||||||
|
"int16": dtype(int16),
|
||||||
|
"int32": dtype(int32),
|
||||||
|
"int64": dtype(int64),
|
||||||
|
}
|
||||||
|
if kind == "unsigned integer":
|
||||||
|
return {
|
||||||
|
"uint8": dtype(uint8),
|
||||||
|
"uint16": dtype(uint16),
|
||||||
|
"uint32": dtype(uint32),
|
||||||
|
"uint64": dtype(uint64),
|
||||||
|
}
|
||||||
|
if kind == "integral":
|
||||||
|
return {
|
||||||
|
"int8": dtype(int8),
|
||||||
|
"int16": dtype(int16),
|
||||||
|
"int32": dtype(int32),
|
||||||
|
"int64": dtype(int64),
|
||||||
|
"uint8": dtype(uint8),
|
||||||
|
"uint16": dtype(uint16),
|
||||||
|
"uint32": dtype(uint32),
|
||||||
|
"uint64": dtype(uint64),
|
||||||
|
}
|
||||||
|
if kind == "real floating":
|
||||||
|
return {
|
||||||
|
"float32": dtype(float32),
|
||||||
|
"float64": dtype(float64),
|
||||||
|
}
|
||||||
|
if kind == "complex floating":
|
||||||
|
return {
|
||||||
|
"complex64": dtype(complex64),
|
||||||
|
"complex128": dtype(complex128),
|
||||||
|
}
|
||||||
|
if kind == "numeric":
|
||||||
|
return {
|
||||||
|
"int8": dtype(int8),
|
||||||
|
"int16": dtype(int16),
|
||||||
|
"int32": dtype(int32),
|
||||||
|
"int64": dtype(int64),
|
||||||
|
"uint8": dtype(uint8),
|
||||||
|
"uint16": dtype(uint16),
|
||||||
|
"uint32": dtype(uint32),
|
||||||
|
"uint64": dtype(uint64),
|
||||||
|
"float32": dtype(float32),
|
||||||
|
"float64": dtype(float64),
|
||||||
|
"complex64": dtype(complex64),
|
||||||
|
"complex128": dtype(complex128),
|
||||||
|
}
|
||||||
|
if isinstance(kind, tuple):
|
||||||
|
res = {}
|
||||||
|
for k in kind:
|
||||||
|
res.update(self.dtypes(kind=k))
|
||||||
|
return res
|
||||||
|
raise ValueError(f"unsupported kind: {kind!r}")
|
||||||
|
|
||||||
|
def devices(self):
|
||||||
|
"""
|
||||||
|
The devices supported by NumPy.
|
||||||
|
|
||||||
|
For NumPy, this always returns ``['cpu']``.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
devices : list of str
|
||||||
|
The devices supported by NumPy.
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
__array_namespace_info__.capabilities,
|
||||||
|
__array_namespace_info__.default_device,
|
||||||
|
__array_namespace_info__.default_dtypes,
|
||||||
|
__array_namespace_info__.dtypes
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> info = np.__array_namespace_info__()
|
||||||
|
>>> info.devices()
|
||||||
|
['cpu']
|
||||||
|
|
||||||
|
"""
|
||||||
|
return ["cpu"]
|
@ -0,0 +1,207 @@
|
|||||||
|
from typing import (
|
||||||
|
ClassVar,
|
||||||
|
Literal,
|
||||||
|
Never,
|
||||||
|
TypeAlias,
|
||||||
|
TypedDict,
|
||||||
|
TypeVar,
|
||||||
|
final,
|
||||||
|
overload,
|
||||||
|
type_check_only,
|
||||||
|
)
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
_Device: TypeAlias = Literal["cpu"]
|
||||||
|
_DeviceLike: TypeAlias = _Device | None
|
||||||
|
|
||||||
|
_Capabilities = TypedDict(
|
||||||
|
"_Capabilities",
|
||||||
|
{
|
||||||
|
"boolean indexing": Literal[True],
|
||||||
|
"data-dependent shapes": Literal[True],
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
_DefaultDTypes = TypedDict(
|
||||||
|
"_DefaultDTypes",
|
||||||
|
{
|
||||||
|
"real floating": np.dtype[np.float64],
|
||||||
|
"complex floating": np.dtype[np.complex128],
|
||||||
|
"integral": np.dtype[np.intp],
|
||||||
|
"indexing": np.dtype[np.intp],
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
_KindBool: TypeAlias = Literal["bool"]
|
||||||
|
_KindInt: TypeAlias = Literal["signed integer"]
|
||||||
|
_KindUInt: TypeAlias = Literal["unsigned integer"]
|
||||||
|
_KindInteger: TypeAlias = Literal["integral"]
|
||||||
|
_KindFloat: TypeAlias = Literal["real floating"]
|
||||||
|
_KindComplex: TypeAlias = Literal["complex floating"]
|
||||||
|
_KindNumber: TypeAlias = Literal["numeric"]
|
||||||
|
_Kind: TypeAlias = (
|
||||||
|
_KindBool
|
||||||
|
| _KindInt
|
||||||
|
| _KindUInt
|
||||||
|
| _KindInteger
|
||||||
|
| _KindFloat
|
||||||
|
| _KindComplex
|
||||||
|
| _KindNumber
|
||||||
|
)
|
||||||
|
|
||||||
|
_T1 = TypeVar("_T1")
|
||||||
|
_T2 = TypeVar("_T2")
|
||||||
|
_T3 = TypeVar("_T3")
|
||||||
|
_Permute1: TypeAlias = _T1 | tuple[_T1]
|
||||||
|
_Permute2: TypeAlias = tuple[_T1, _T2] | tuple[_T2, _T1]
|
||||||
|
_Permute3: TypeAlias = (
|
||||||
|
tuple[_T1, _T2, _T3] | tuple[_T1, _T3, _T2]
|
||||||
|
| tuple[_T2, _T1, _T3] | tuple[_T2, _T3, _T1]
|
||||||
|
| tuple[_T3, _T1, _T2] | tuple[_T3, _T2, _T1]
|
||||||
|
)
|
||||||
|
|
||||||
|
@type_check_only
|
||||||
|
class _DTypesBool(TypedDict):
|
||||||
|
bool: np.dtype[np.bool]
|
||||||
|
|
||||||
|
@type_check_only
|
||||||
|
class _DTypesInt(TypedDict):
|
||||||
|
int8: np.dtype[np.int8]
|
||||||
|
int16: np.dtype[np.int16]
|
||||||
|
int32: np.dtype[np.int32]
|
||||||
|
int64: np.dtype[np.int64]
|
||||||
|
|
||||||
|
@type_check_only
|
||||||
|
class _DTypesUInt(TypedDict):
|
||||||
|
uint8: np.dtype[np.uint8]
|
||||||
|
uint16: np.dtype[np.uint16]
|
||||||
|
uint32: np.dtype[np.uint32]
|
||||||
|
uint64: np.dtype[np.uint64]
|
||||||
|
|
||||||
|
@type_check_only
|
||||||
|
class _DTypesInteger(_DTypesInt, _DTypesUInt): ...
|
||||||
|
|
||||||
|
@type_check_only
|
||||||
|
class _DTypesFloat(TypedDict):
|
||||||
|
float32: np.dtype[np.float32]
|
||||||
|
float64: np.dtype[np.float64]
|
||||||
|
|
||||||
|
@type_check_only
|
||||||
|
class _DTypesComplex(TypedDict):
|
||||||
|
complex64: np.dtype[np.complex64]
|
||||||
|
complex128: np.dtype[np.complex128]
|
||||||
|
|
||||||
|
@type_check_only
|
||||||
|
class _DTypesNumber(_DTypesInteger, _DTypesFloat, _DTypesComplex): ...
|
||||||
|
|
||||||
|
@type_check_only
|
||||||
|
class _DTypes(_DTypesBool, _DTypesNumber): ...
|
||||||
|
|
||||||
|
@type_check_only
|
||||||
|
class _DTypesUnion(TypedDict, total=False):
|
||||||
|
bool: np.dtype[np.bool]
|
||||||
|
int8: np.dtype[np.int8]
|
||||||
|
int16: np.dtype[np.int16]
|
||||||
|
int32: np.dtype[np.int32]
|
||||||
|
int64: np.dtype[np.int64]
|
||||||
|
uint8: np.dtype[np.uint8]
|
||||||
|
uint16: np.dtype[np.uint16]
|
||||||
|
uint32: np.dtype[np.uint32]
|
||||||
|
uint64: np.dtype[np.uint64]
|
||||||
|
float32: np.dtype[np.float32]
|
||||||
|
float64: np.dtype[np.float64]
|
||||||
|
complex64: np.dtype[np.complex64]
|
||||||
|
complex128: np.dtype[np.complex128]
|
||||||
|
|
||||||
|
_EmptyDict: TypeAlias = dict[Never, Never]
|
||||||
|
|
||||||
|
@final
|
||||||
|
class __array_namespace_info__:
|
||||||
|
__module__: ClassVar[Literal['numpy']]
|
||||||
|
|
||||||
|
def capabilities(self) -> _Capabilities: ...
|
||||||
|
def default_device(self) -> _Device: ...
|
||||||
|
def default_dtypes(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
device: _DeviceLike = ...,
|
||||||
|
) -> _DefaultDTypes: ...
|
||||||
|
def devices(self) -> list[_Device]: ...
|
||||||
|
|
||||||
|
@overload
|
||||||
|
def dtypes(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
device: _DeviceLike = ...,
|
||||||
|
kind: None = ...,
|
||||||
|
) -> _DTypes: ...
|
||||||
|
@overload
|
||||||
|
def dtypes(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
device: _DeviceLike = ...,
|
||||||
|
kind: _Permute1[_KindBool],
|
||||||
|
) -> _DTypesBool: ...
|
||||||
|
@overload
|
||||||
|
def dtypes(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
device: _DeviceLike = ...,
|
||||||
|
kind: _Permute1[_KindInt],
|
||||||
|
) -> _DTypesInt: ...
|
||||||
|
@overload
|
||||||
|
def dtypes(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
device: _DeviceLike = ...,
|
||||||
|
kind: _Permute1[_KindUInt],
|
||||||
|
) -> _DTypesUInt: ...
|
||||||
|
@overload
|
||||||
|
def dtypes(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
device: _DeviceLike = ...,
|
||||||
|
kind: _Permute1[_KindFloat],
|
||||||
|
) -> _DTypesFloat: ...
|
||||||
|
@overload
|
||||||
|
def dtypes(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
device: _DeviceLike = ...,
|
||||||
|
kind: _Permute1[_KindComplex],
|
||||||
|
) -> _DTypesComplex: ...
|
||||||
|
@overload
|
||||||
|
def dtypes(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
device: _DeviceLike = ...,
|
||||||
|
kind: (
|
||||||
|
_Permute1[_KindInteger]
|
||||||
|
| _Permute2[_KindInt, _KindUInt]
|
||||||
|
),
|
||||||
|
) -> _DTypesInteger: ...
|
||||||
|
@overload
|
||||||
|
def dtypes(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
device: _DeviceLike = ...,
|
||||||
|
kind: (
|
||||||
|
_Permute1[_KindNumber]
|
||||||
|
| _Permute3[_KindInteger, _KindFloat, _KindComplex]
|
||||||
|
),
|
||||||
|
) -> _DTypesNumber: ...
|
||||||
|
@overload
|
||||||
|
def dtypes(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
device: _DeviceLike = ...,
|
||||||
|
kind: tuple[()],
|
||||||
|
) -> _EmptyDict: ...
|
||||||
|
@overload
|
||||||
|
def dtypes(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
device: _DeviceLike = ...,
|
||||||
|
kind: tuple[_Kind, ...],
|
||||||
|
) -> _DTypesUnion: ...
|
@ -0,0 +1,39 @@
|
|||||||
|
import argparse
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from .lib._utils_impl import get_include
|
||||||
|
from .version import __version__
|
||||||
|
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--version",
|
||||||
|
action="version",
|
||||||
|
version=__version__,
|
||||||
|
help="Print the version and exit.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--cflags",
|
||||||
|
action="store_true",
|
||||||
|
help="Compile flag needed when using the NumPy headers.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--pkgconfigdir",
|
||||||
|
action="store_true",
|
||||||
|
help=("Print the pkgconfig directory in which `numpy.pc` is stored "
|
||||||
|
"(useful for setting $PKG_CONFIG_PATH)."),
|
||||||
|
)
|
||||||
|
args = parser.parse_args()
|
||||||
|
if not sys.argv[1:]:
|
||||||
|
parser.print_help()
|
||||||
|
if args.cflags:
|
||||||
|
print("-I" + get_include())
|
||||||
|
if args.pkgconfigdir:
|
||||||
|
_path = Path(get_include()) / '..' / 'lib' / 'pkgconfig'
|
||||||
|
print(_path.resolve())
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -0,0 +1 @@
|
|||||||
|
def main() -> None: ...
|
@ -0,0 +1,186 @@
|
|||||||
|
"""
|
||||||
|
Contains the core of NumPy: ndarray, ufuncs, dtypes, etc.
|
||||||
|
|
||||||
|
Please note that this module is private. All functions and objects
|
||||||
|
are available in the main ``numpy`` namespace - use that instead.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
|
from numpy.version import version as __version__
|
||||||
|
|
||||||
|
# disables OpenBLAS affinity setting of the main thread that limits
|
||||||
|
# python threads or processes to one core
|
||||||
|
env_added = []
|
||||||
|
for envkey in ['OPENBLAS_MAIN_FREE', 'GOTOBLAS_MAIN_FREE']:
|
||||||
|
if envkey not in os.environ:
|
||||||
|
os.environ[envkey] = '1'
|
||||||
|
env_added.append(envkey)
|
||||||
|
|
||||||
|
try:
|
||||||
|
from . import multiarray
|
||||||
|
except ImportError as exc:
|
||||||
|
import sys
|
||||||
|
msg = """
|
||||||
|
|
||||||
|
IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
|
||||||
|
|
||||||
|
Importing the numpy C-extensions failed. This error can happen for
|
||||||
|
many reasons, often due to issues with your setup or how NumPy was
|
||||||
|
installed.
|
||||||
|
|
||||||
|
We have compiled some common reasons and troubleshooting tips at:
|
||||||
|
|
||||||
|
https://numpy.org/devdocs/user/troubleshooting-importerror.html
|
||||||
|
|
||||||
|
Please note and check the following:
|
||||||
|
|
||||||
|
* The Python version is: Python%d.%d from "%s"
|
||||||
|
* The NumPy version is: "%s"
|
||||||
|
|
||||||
|
and make sure that they are the versions you expect.
|
||||||
|
Please carefully study the documentation linked above for further help.
|
||||||
|
|
||||||
|
Original error was: %s
|
||||||
|
""" % (sys.version_info[0], sys.version_info[1], sys.executable,
|
||||||
|
__version__, exc)
|
||||||
|
raise ImportError(msg) from exc
|
||||||
|
finally:
|
||||||
|
for envkey in env_added:
|
||||||
|
del os.environ[envkey]
|
||||||
|
del envkey
|
||||||
|
del env_added
|
||||||
|
del os
|
||||||
|
|
||||||
|
from . import umath
|
||||||
|
|
||||||
|
# Check that multiarray,umath are pure python modules wrapping
|
||||||
|
# _multiarray_umath and not either of the old c-extension modules
|
||||||
|
if not (hasattr(multiarray, '_multiarray_umath') and
|
||||||
|
hasattr(umath, '_multiarray_umath')):
|
||||||
|
import sys
|
||||||
|
path = sys.modules['numpy'].__path__
|
||||||
|
msg = ("Something is wrong with the numpy installation. "
|
||||||
|
"While importing we detected an older version of "
|
||||||
|
"numpy in {}. One method of fixing this is to repeatedly uninstall "
|
||||||
|
"numpy until none is found, then reinstall this version.")
|
||||||
|
raise ImportError(msg.format(path))
|
||||||
|
|
||||||
|
from . import numerictypes as nt
|
||||||
|
from .numerictypes import sctypeDict, sctypes
|
||||||
|
|
||||||
|
multiarray.set_typeDict(nt.sctypeDict)
|
||||||
|
from . import (
|
||||||
|
_machar,
|
||||||
|
einsumfunc,
|
||||||
|
fromnumeric,
|
||||||
|
function_base,
|
||||||
|
getlimits,
|
||||||
|
numeric,
|
||||||
|
shape_base,
|
||||||
|
)
|
||||||
|
from .einsumfunc import *
|
||||||
|
from .fromnumeric import *
|
||||||
|
from .function_base import *
|
||||||
|
from .getlimits import *
|
||||||
|
|
||||||
|
# Note: module name memmap is overwritten by a class with same name
|
||||||
|
from .memmap import *
|
||||||
|
from .numeric import *
|
||||||
|
from .records import recarray, record
|
||||||
|
from .shape_base import *
|
||||||
|
|
||||||
|
del nt
|
||||||
|
|
||||||
|
# do this after everything else, to minimize the chance of this misleadingly
|
||||||
|
# appearing in an import-time traceback
|
||||||
|
# add these for module-freeze analysis (like PyInstaller)
|
||||||
|
from . import (
|
||||||
|
_add_newdocs,
|
||||||
|
_add_newdocs_scalars,
|
||||||
|
_dtype,
|
||||||
|
_dtype_ctypes,
|
||||||
|
_internal,
|
||||||
|
_methods,
|
||||||
|
)
|
||||||
|
from .numeric import absolute as abs
|
||||||
|
|
||||||
|
acos = numeric.arccos
|
||||||
|
acosh = numeric.arccosh
|
||||||
|
asin = numeric.arcsin
|
||||||
|
asinh = numeric.arcsinh
|
||||||
|
atan = numeric.arctan
|
||||||
|
atanh = numeric.arctanh
|
||||||
|
atan2 = numeric.arctan2
|
||||||
|
concat = numeric.concatenate
|
||||||
|
bitwise_left_shift = numeric.left_shift
|
||||||
|
bitwise_invert = numeric.invert
|
||||||
|
bitwise_right_shift = numeric.right_shift
|
||||||
|
permute_dims = numeric.transpose
|
||||||
|
pow = numeric.power
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
"abs", "acos", "acosh", "asin", "asinh", "atan", "atanh", "atan2",
|
||||||
|
"bitwise_invert", "bitwise_left_shift", "bitwise_right_shift", "concat",
|
||||||
|
"pow", "permute_dims", "memmap", "sctypeDict", "record", "recarray"
|
||||||
|
]
|
||||||
|
__all__ += numeric.__all__
|
||||||
|
__all__ += function_base.__all__
|
||||||
|
__all__ += getlimits.__all__
|
||||||
|
__all__ += shape_base.__all__
|
||||||
|
__all__ += einsumfunc.__all__
|
||||||
|
|
||||||
|
|
||||||
|
def _ufunc_reduce(func):
|
||||||
|
# Report the `__name__`. pickle will try to find the module. Note that
|
||||||
|
# pickle supports for this `__name__` to be a `__qualname__`. It may
|
||||||
|
# make sense to add a `__qualname__` to ufuncs, to allow this more
|
||||||
|
# explicitly (Numba has ufuncs as attributes).
|
||||||
|
# See also: https://github.com/dask/distributed/issues/3450
|
||||||
|
return func.__name__
|
||||||
|
|
||||||
|
|
||||||
|
def _DType_reconstruct(scalar_type):
|
||||||
|
# This is a work-around to pickle type(np.dtype(np.float64)), etc.
|
||||||
|
# and it should eventually be replaced with a better solution, e.g. when
|
||||||
|
# DTypes become HeapTypes.
|
||||||
|
return type(dtype(scalar_type))
|
||||||
|
|
||||||
|
|
||||||
|
def _DType_reduce(DType):
|
||||||
|
# As types/classes, most DTypes can simply be pickled by their name:
|
||||||
|
if not DType._legacy or DType.__module__ == "numpy.dtypes":
|
||||||
|
return DType.__name__
|
||||||
|
|
||||||
|
# However, user defined legacy dtypes (like rational) do not end up in
|
||||||
|
# `numpy.dtypes` as module and do not have a public class at all.
|
||||||
|
# For these, we pickle them by reconstructing them from the scalar type:
|
||||||
|
scalar_type = DType.type
|
||||||
|
return _DType_reconstruct, (scalar_type,)
|
||||||
|
|
||||||
|
|
||||||
|
def __getattr__(name):
|
||||||
|
# Deprecated 2022-11-22, NumPy 1.25.
|
||||||
|
if name == "MachAr":
|
||||||
|
import warnings
|
||||||
|
warnings.warn(
|
||||||
|
"The `np._core.MachAr` is considered private API (NumPy 1.24)",
|
||||||
|
DeprecationWarning, stacklevel=2,
|
||||||
|
)
|
||||||
|
return _machar.MachAr
|
||||||
|
raise AttributeError(f"Module {__name__!r} has no attribute {name!r}")
|
||||||
|
|
||||||
|
|
||||||
|
import copyreg
|
||||||
|
|
||||||
|
copyreg.pickle(ufunc, _ufunc_reduce)
|
||||||
|
copyreg.pickle(type(dtype), _DType_reduce, _DType_reconstruct)
|
||||||
|
|
||||||
|
# Unclutter namespace (must keep _*_reconstruct for unpickling)
|
||||||
|
del copyreg, _ufunc_reduce, _DType_reduce
|
||||||
|
|
||||||
|
from numpy._pytesttester import PytestTester
|
||||||
|
|
||||||
|
test = PytestTester(__name__)
|
||||||
|
del PytestTester
|
@ -0,0 +1,2 @@
|
|||||||
|
# NOTE: The `np._core` namespace is deliberately kept empty due to it
|
||||||
|
# being private
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,3 @@
|
|||||||
|
from .overrides import get_array_function_like_doc as get_array_function_like_doc
|
||||||
|
|
||||||
|
def refer_to_array_attribute(attr: str, method: bool = True) -> tuple[str, str]: ...
|
@ -0,0 +1,390 @@
|
|||||||
|
"""
|
||||||
|
This file is separate from ``_add_newdocs.py`` so that it can be mocked out by
|
||||||
|
our sphinx ``conf.py`` during doc builds, where we want to avoid showing
|
||||||
|
platform-dependent information.
|
||||||
|
"""
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
|
from numpy._core import dtype
|
||||||
|
from numpy._core import numerictypes as _numerictypes
|
||||||
|
from numpy._core.function_base import add_newdoc
|
||||||
|
|
||||||
|
##############################################################################
|
||||||
|
#
|
||||||
|
# Documentation for concrete scalar classes
|
||||||
|
#
|
||||||
|
##############################################################################
|
||||||
|
|
||||||
|
def numeric_type_aliases(aliases):
|
||||||
|
def type_aliases_gen():
|
||||||
|
for alias, doc in aliases:
|
||||||
|
try:
|
||||||
|
alias_type = getattr(_numerictypes, alias)
|
||||||
|
except AttributeError:
|
||||||
|
# The set of aliases that actually exist varies between platforms
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
yield (alias_type, alias, doc)
|
||||||
|
return list(type_aliases_gen())
|
||||||
|
|
||||||
|
|
||||||
|
possible_aliases = numeric_type_aliases([
|
||||||
|
('int8', '8-bit signed integer (``-128`` to ``127``)'),
|
||||||
|
('int16', '16-bit signed integer (``-32_768`` to ``32_767``)'),
|
||||||
|
('int32', '32-bit signed integer (``-2_147_483_648`` to ``2_147_483_647``)'),
|
||||||
|
('int64', '64-bit signed integer (``-9_223_372_036_854_775_808`` to ``9_223_372_036_854_775_807``)'),
|
||||||
|
('intp', 'Signed integer large enough to fit pointer, compatible with C ``intptr_t``'),
|
||||||
|
('uint8', '8-bit unsigned integer (``0`` to ``255``)'),
|
||||||
|
('uint16', '16-bit unsigned integer (``0`` to ``65_535``)'),
|
||||||
|
('uint32', '32-bit unsigned integer (``0`` to ``4_294_967_295``)'),
|
||||||
|
('uint64', '64-bit unsigned integer (``0`` to ``18_446_744_073_709_551_615``)'),
|
||||||
|
('uintp', 'Unsigned integer large enough to fit pointer, compatible with C ``uintptr_t``'),
|
||||||
|
('float16', '16-bit-precision floating-point number type: sign bit, 5 bits exponent, 10 bits mantissa'),
|
||||||
|
('float32', '32-bit-precision floating-point number type: sign bit, 8 bits exponent, 23 bits mantissa'),
|
||||||
|
('float64', '64-bit precision floating-point number type: sign bit, 11 bits exponent, 52 bits mantissa'),
|
||||||
|
('float96', '96-bit extended-precision floating-point number type'),
|
||||||
|
('float128', '128-bit extended-precision floating-point number type'),
|
||||||
|
('complex64', 'Complex number type composed of 2 32-bit-precision floating-point numbers'),
|
||||||
|
('complex128', 'Complex number type composed of 2 64-bit-precision floating-point numbers'),
|
||||||
|
('complex192', 'Complex number type composed of 2 96-bit extended-precision floating-point numbers'),
|
||||||
|
('complex256', 'Complex number type composed of 2 128-bit extended-precision floating-point numbers'),
|
||||||
|
])
|
||||||
|
|
||||||
|
|
||||||
|
def _get_platform_and_machine():
|
||||||
|
try:
|
||||||
|
system, _, _, _, machine = os.uname()
|
||||||
|
except AttributeError:
|
||||||
|
system = sys.platform
|
||||||
|
if system == 'win32':
|
||||||
|
machine = os.environ.get('PROCESSOR_ARCHITEW6432', '') \
|
||||||
|
or os.environ.get('PROCESSOR_ARCHITECTURE', '')
|
||||||
|
else:
|
||||||
|
machine = 'unknown'
|
||||||
|
return system, machine
|
||||||
|
|
||||||
|
|
||||||
|
_system, _machine = _get_platform_and_machine()
|
||||||
|
_doc_alias_string = f":Alias on this platform ({_system} {_machine}):"
|
||||||
|
|
||||||
|
|
||||||
|
def add_newdoc_for_scalar_type(obj, fixed_aliases, doc):
|
||||||
|
# note: `:field: value` is rST syntax which renders as field lists.
|
||||||
|
o = getattr(_numerictypes, obj)
|
||||||
|
|
||||||
|
character_code = dtype(o).char
|
||||||
|
canonical_name_doc = "" if obj == o.__name__ else \
|
||||||
|
f":Canonical name: `numpy.{obj}`\n "
|
||||||
|
if fixed_aliases:
|
||||||
|
alias_doc = ''.join(f":Alias: `numpy.{alias}`\n "
|
||||||
|
for alias in fixed_aliases)
|
||||||
|
else:
|
||||||
|
alias_doc = ''
|
||||||
|
alias_doc += ''.join(f"{_doc_alias_string} `numpy.{alias}`: {doc}.\n "
|
||||||
|
for (alias_type, alias, doc) in possible_aliases if alias_type is o)
|
||||||
|
|
||||||
|
docstring = f"""
|
||||||
|
{doc.strip()}
|
||||||
|
|
||||||
|
:Character code: ``'{character_code}'``
|
||||||
|
{canonical_name_doc}{alias_doc}
|
||||||
|
"""
|
||||||
|
|
||||||
|
add_newdoc('numpy._core.numerictypes', obj, docstring)
|
||||||
|
|
||||||
|
|
||||||
|
_bool_docstring = (
|
||||||
|
"""
|
||||||
|
Boolean type (True or False), stored as a byte.
|
||||||
|
|
||||||
|
.. warning::
|
||||||
|
|
||||||
|
The :class:`bool` type is not a subclass of the :class:`int_` type
|
||||||
|
(the :class:`bool` is not even a number type). This is different
|
||||||
|
than Python's default implementation of :class:`bool` as a
|
||||||
|
sub-class of :class:`int`.
|
||||||
|
"""
|
||||||
|
)
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('bool', [], _bool_docstring)
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('bool_', [], _bool_docstring)
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('byte', [],
|
||||||
|
"""
|
||||||
|
Signed integer type, compatible with C ``char``.
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('short', [],
|
||||||
|
"""
|
||||||
|
Signed integer type, compatible with C ``short``.
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('intc', [],
|
||||||
|
"""
|
||||||
|
Signed integer type, compatible with C ``int``.
|
||||||
|
""")
|
||||||
|
|
||||||
|
# TODO: These docs probably need an if to highlight the default rather than
|
||||||
|
# the C-types (and be correct).
|
||||||
|
add_newdoc_for_scalar_type('int_', [],
|
||||||
|
"""
|
||||||
|
Default signed integer type, 64bit on 64bit systems and 32bit on 32bit
|
||||||
|
systems.
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('longlong', [],
|
||||||
|
"""
|
||||||
|
Signed integer type, compatible with C ``long long``.
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('ubyte', [],
|
||||||
|
"""
|
||||||
|
Unsigned integer type, compatible with C ``unsigned char``.
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('ushort', [],
|
||||||
|
"""
|
||||||
|
Unsigned integer type, compatible with C ``unsigned short``.
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('uintc', [],
|
||||||
|
"""
|
||||||
|
Unsigned integer type, compatible with C ``unsigned int``.
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('uint', [],
|
||||||
|
"""
|
||||||
|
Unsigned signed integer type, 64bit on 64bit systems and 32bit on 32bit
|
||||||
|
systems.
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('ulonglong', [],
|
||||||
|
"""
|
||||||
|
Signed integer type, compatible with C ``unsigned long long``.
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('half', [],
|
||||||
|
"""
|
||||||
|
Half-precision floating-point number type.
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('single', [],
|
||||||
|
"""
|
||||||
|
Single-precision floating-point number type, compatible with C ``float``.
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('double', [],
|
||||||
|
"""
|
||||||
|
Double-precision floating-point number type, compatible with Python
|
||||||
|
:class:`float` and C ``double``.
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('longdouble', [],
|
||||||
|
"""
|
||||||
|
Extended-precision floating-point number type, compatible with C
|
||||||
|
``long double`` but not necessarily with IEEE 754 quadruple-precision.
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('csingle', [],
|
||||||
|
"""
|
||||||
|
Complex number type composed of two single-precision floating-point
|
||||||
|
numbers.
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('cdouble', [],
|
||||||
|
"""
|
||||||
|
Complex number type composed of two double-precision floating-point
|
||||||
|
numbers, compatible with Python :class:`complex`.
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('clongdouble', [],
|
||||||
|
"""
|
||||||
|
Complex number type composed of two extended-precision floating-point
|
||||||
|
numbers.
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('object_', [],
|
||||||
|
"""
|
||||||
|
Any Python object.
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('str_', [],
|
||||||
|
r"""
|
||||||
|
A unicode string.
|
||||||
|
|
||||||
|
This type strips trailing null codepoints.
|
||||||
|
|
||||||
|
>>> s = np.str_("abc\x00")
|
||||||
|
>>> s
|
||||||
|
'abc'
|
||||||
|
|
||||||
|
Unlike the builtin :class:`str`, this supports the
|
||||||
|
:ref:`python:bufferobjects`, exposing its contents as UCS4:
|
||||||
|
|
||||||
|
>>> m = memoryview(np.str_("abc"))
|
||||||
|
>>> m.format
|
||||||
|
'3w'
|
||||||
|
>>> m.tobytes()
|
||||||
|
b'a\x00\x00\x00b\x00\x00\x00c\x00\x00\x00'
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('bytes_', [],
|
||||||
|
r"""
|
||||||
|
A byte string.
|
||||||
|
|
||||||
|
When used in arrays, this type strips trailing null bytes.
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('void', [],
|
||||||
|
r"""
|
||||||
|
np.void(length_or_data, /, dtype=None)
|
||||||
|
|
||||||
|
Create a new structured or unstructured void scalar.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
length_or_data : int, array-like, bytes-like, object
|
||||||
|
One of multiple meanings (see notes). The length or
|
||||||
|
bytes data of an unstructured void. Or alternatively,
|
||||||
|
the data to be stored in the new scalar when `dtype`
|
||||||
|
is provided.
|
||||||
|
This can be an array-like, in which case an array may
|
||||||
|
be returned.
|
||||||
|
dtype : dtype, optional
|
||||||
|
If provided the dtype of the new scalar. This dtype must
|
||||||
|
be "void" dtype (i.e. a structured or unstructured void,
|
||||||
|
see also :ref:`defining-structured-types`).
|
||||||
|
|
||||||
|
.. versionadded:: 1.24
|
||||||
|
|
||||||
|
Notes
|
||||||
|
-----
|
||||||
|
For historical reasons and because void scalars can represent both
|
||||||
|
arbitrary byte data and structured dtypes, the void constructor
|
||||||
|
has three calling conventions:
|
||||||
|
|
||||||
|
1. ``np.void(5)`` creates a ``dtype="V5"`` scalar filled with five
|
||||||
|
``\0`` bytes. The 5 can be a Python or NumPy integer.
|
||||||
|
2. ``np.void(b"bytes-like")`` creates a void scalar from the byte string.
|
||||||
|
The dtype itemsize will match the byte string length, here ``"V10"``.
|
||||||
|
3. When a ``dtype=`` is passed the call is roughly the same as an
|
||||||
|
array creation. However, a void scalar rather than array is returned.
|
||||||
|
|
||||||
|
Please see the examples which show all three different conventions.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> np.void(5)
|
||||||
|
np.void(b'\x00\x00\x00\x00\x00')
|
||||||
|
>>> np.void(b'abcd')
|
||||||
|
np.void(b'\x61\x62\x63\x64')
|
||||||
|
>>> np.void((3.2, b'eggs'), dtype="d,S5")
|
||||||
|
np.void((3.2, b'eggs'), dtype=[('f0', '<f8'), ('f1', 'S5')])
|
||||||
|
>>> np.void(3, dtype=[('x', np.int8), ('y', np.int8)])
|
||||||
|
np.void((3, 3), dtype=[('x', 'i1'), ('y', 'i1')])
|
||||||
|
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('datetime64', [],
|
||||||
|
"""
|
||||||
|
If created from a 64-bit integer, it represents an offset from
|
||||||
|
``1970-01-01T00:00:00``.
|
||||||
|
If created from string, the string can be in ISO 8601 date
|
||||||
|
or datetime format.
|
||||||
|
|
||||||
|
When parsing a string to create a datetime object, if the string contains
|
||||||
|
a trailing timezone (A 'Z' or a timezone offset), the timezone will be
|
||||||
|
dropped and a User Warning is given.
|
||||||
|
|
||||||
|
Datetime64 objects should be considered to be UTC and therefore have an
|
||||||
|
offset of +0000.
|
||||||
|
|
||||||
|
>>> np.datetime64(10, 'Y')
|
||||||
|
np.datetime64('1980')
|
||||||
|
>>> np.datetime64('1980', 'Y')
|
||||||
|
np.datetime64('1980')
|
||||||
|
>>> np.datetime64(10, 'D')
|
||||||
|
np.datetime64('1970-01-11')
|
||||||
|
|
||||||
|
See :ref:`arrays.datetime` for more information.
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc_for_scalar_type('timedelta64', [],
|
||||||
|
"""
|
||||||
|
A timedelta stored as a 64-bit integer.
|
||||||
|
|
||||||
|
See :ref:`arrays.datetime` for more information.
|
||||||
|
""")
|
||||||
|
|
||||||
|
add_newdoc('numpy._core.numerictypes', "integer", ('is_integer',
|
||||||
|
"""
|
||||||
|
integer.is_integer() -> bool
|
||||||
|
|
||||||
|
Return ``True`` if the number is finite with integral value.
|
||||||
|
|
||||||
|
.. versionadded:: 1.22
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> import numpy as np
|
||||||
|
>>> np.int64(-2).is_integer()
|
||||||
|
True
|
||||||
|
>>> np.uint32(5).is_integer()
|
||||||
|
True
|
||||||
|
"""))
|
||||||
|
|
||||||
|
# TODO: work out how to put this on the base class, np.floating
|
||||||
|
for float_name in ('half', 'single', 'double', 'longdouble'):
|
||||||
|
add_newdoc('numpy._core.numerictypes', float_name, ('as_integer_ratio',
|
||||||
|
f"""
|
||||||
|
{float_name}.as_integer_ratio() -> (int, int)
|
||||||
|
|
||||||
|
Return a pair of integers, whose ratio is exactly equal to the original
|
||||||
|
floating point number, and with a positive denominator.
|
||||||
|
Raise `OverflowError` on infinities and a `ValueError` on NaNs.
|
||||||
|
|
||||||
|
>>> np.{float_name}(10.0).as_integer_ratio()
|
||||||
|
(10, 1)
|
||||||
|
>>> np.{float_name}(0.0).as_integer_ratio()
|
||||||
|
(0, 1)
|
||||||
|
>>> np.{float_name}(-.25).as_integer_ratio()
|
||||||
|
(-1, 4)
|
||||||
|
"""))
|
||||||
|
|
||||||
|
add_newdoc('numpy._core.numerictypes', float_name, ('is_integer',
|
||||||
|
f"""
|
||||||
|
{float_name}.is_integer() -> bool
|
||||||
|
|
||||||
|
Return ``True`` if the floating point number is finite with integral
|
||||||
|
value, and ``False`` otherwise.
|
||||||
|
|
||||||
|
.. versionadded:: 1.22
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> np.{float_name}(-2.0).is_integer()
|
||||||
|
True
|
||||||
|
>>> np.{float_name}(3.2).is_integer()
|
||||||
|
False
|
||||||
|
"""))
|
||||||
|
|
||||||
|
for int_name in ('int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32',
|
||||||
|
'int64', 'uint64', 'int64', 'uint64', 'int64', 'uint64'):
|
||||||
|
# Add negative examples for signed cases by checking typecode
|
||||||
|
add_newdoc('numpy._core.numerictypes', int_name, ('bit_count',
|
||||||
|
f"""
|
||||||
|
{int_name}.bit_count() -> int
|
||||||
|
|
||||||
|
Computes the number of 1-bits in the absolute value of the input.
|
||||||
|
Analogous to the builtin `int.bit_count` or ``popcount`` in C++.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> np.{int_name}(127).bit_count()
|
||||||
|
7""" +
|
||||||
|
(f"""
|
||||||
|
>>> np.{int_name}(-127).bit_count()
|
||||||
|
7
|
||||||
|
""" if dtype(int_name).char.islower() else "")))
|
@ -0,0 +1,16 @@
|
|||||||
|
from collections.abc import Iterable
|
||||||
|
from typing import Final
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
possible_aliases: Final[list[tuple[type[np.number], str, str]]] = ...
|
||||||
|
_system: Final[str] = ...
|
||||||
|
_machine: Final[str] = ...
|
||||||
|
_doc_alias_string: Final[str] = ...
|
||||||
|
_bool_docstring: Final[str] = ...
|
||||||
|
int_name: str = ...
|
||||||
|
float_name: str = ...
|
||||||
|
|
||||||
|
def numeric_type_aliases(aliases: list[tuple[str, str]]) -> list[tuple[type[np.number], str, str]]: ...
|
||||||
|
def add_newdoc_for_scalar_type(obj: str, fixed_aliases: Iterable[str], doc: str) -> None: ...
|
||||||
|
def _get_platform_and_machine() -> tuple[str, str]: ...
|
@ -0,0 +1,134 @@
|
|||||||
|
"""
|
||||||
|
Functions in the ``as*array`` family that promote array-likes into arrays.
|
||||||
|
|
||||||
|
`require` fits this category despite its name not matching this pattern.
|
||||||
|
"""
|
||||||
|
from .multiarray import array, asanyarray
|
||||||
|
from .overrides import (
|
||||||
|
array_function_dispatch,
|
||||||
|
finalize_array_function_like,
|
||||||
|
set_module,
|
||||||
|
)
|
||||||
|
|
||||||
|
__all__ = ["require"]
|
||||||
|
|
||||||
|
|
||||||
|
POSSIBLE_FLAGS = {
|
||||||
|
'C': 'C', 'C_CONTIGUOUS': 'C', 'CONTIGUOUS': 'C',
|
||||||
|
'F': 'F', 'F_CONTIGUOUS': 'F', 'FORTRAN': 'F',
|
||||||
|
'A': 'A', 'ALIGNED': 'A',
|
||||||
|
'W': 'W', 'WRITEABLE': 'W',
|
||||||
|
'O': 'O', 'OWNDATA': 'O',
|
||||||
|
'E': 'E', 'ENSUREARRAY': 'E'
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@finalize_array_function_like
|
||||||
|
@set_module('numpy')
|
||||||
|
def require(a, dtype=None, requirements=None, *, like=None):
|
||||||
|
"""
|
||||||
|
Return an ndarray of the provided type that satisfies requirements.
|
||||||
|
|
||||||
|
This function is useful to be sure that an array with the correct flags
|
||||||
|
is returned for passing to compiled code (perhaps through ctypes).
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
a : array_like
|
||||||
|
The object to be converted to a type-and-requirement-satisfying array.
|
||||||
|
dtype : data-type
|
||||||
|
The required data-type. If None preserve the current dtype. If your
|
||||||
|
application requires the data to be in native byteorder, include
|
||||||
|
a byteorder specification as a part of the dtype specification.
|
||||||
|
requirements : str or sequence of str
|
||||||
|
The requirements list can be any of the following
|
||||||
|
|
||||||
|
* 'F_CONTIGUOUS' ('F') - ensure a Fortran-contiguous array
|
||||||
|
* 'C_CONTIGUOUS' ('C') - ensure a C-contiguous array
|
||||||
|
* 'ALIGNED' ('A') - ensure a data-type aligned array
|
||||||
|
* 'WRITEABLE' ('W') - ensure a writable array
|
||||||
|
* 'OWNDATA' ('O') - ensure an array that owns its own data
|
||||||
|
* 'ENSUREARRAY', ('E') - ensure a base array, instead of a subclass
|
||||||
|
${ARRAY_FUNCTION_LIKE}
|
||||||
|
|
||||||
|
.. versionadded:: 1.20.0
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
out : ndarray
|
||||||
|
Array with specified requirements and type if given.
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
asarray : Convert input to an ndarray.
|
||||||
|
asanyarray : Convert to an ndarray, but pass through ndarray subclasses.
|
||||||
|
ascontiguousarray : Convert input to a contiguous array.
|
||||||
|
asfortranarray : Convert input to an ndarray with column-major
|
||||||
|
memory order.
|
||||||
|
ndarray.flags : Information about the memory layout of the array.
|
||||||
|
|
||||||
|
Notes
|
||||||
|
-----
|
||||||
|
The returned array will be guaranteed to have the listed requirements
|
||||||
|
by making a copy if needed.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> import numpy as np
|
||||||
|
>>> x = np.arange(6).reshape(2,3)
|
||||||
|
>>> x.flags
|
||||||
|
C_CONTIGUOUS : True
|
||||||
|
F_CONTIGUOUS : False
|
||||||
|
OWNDATA : False
|
||||||
|
WRITEABLE : True
|
||||||
|
ALIGNED : True
|
||||||
|
WRITEBACKIFCOPY : False
|
||||||
|
|
||||||
|
>>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F'])
|
||||||
|
>>> y.flags
|
||||||
|
C_CONTIGUOUS : False
|
||||||
|
F_CONTIGUOUS : True
|
||||||
|
OWNDATA : True
|
||||||
|
WRITEABLE : True
|
||||||
|
ALIGNED : True
|
||||||
|
WRITEBACKIFCOPY : False
|
||||||
|
|
||||||
|
"""
|
||||||
|
if like is not None:
|
||||||
|
return _require_with_like(
|
||||||
|
like,
|
||||||
|
a,
|
||||||
|
dtype=dtype,
|
||||||
|
requirements=requirements,
|
||||||
|
)
|
||||||
|
|
||||||
|
if not requirements:
|
||||||
|
return asanyarray(a, dtype=dtype)
|
||||||
|
|
||||||
|
requirements = {POSSIBLE_FLAGS[x.upper()] for x in requirements}
|
||||||
|
|
||||||
|
if 'E' in requirements:
|
||||||
|
requirements.remove('E')
|
||||||
|
subok = False
|
||||||
|
else:
|
||||||
|
subok = True
|
||||||
|
|
||||||
|
order = 'A'
|
||||||
|
if requirements >= {'C', 'F'}:
|
||||||
|
raise ValueError('Cannot specify both "C" and "F" order')
|
||||||
|
elif 'F' in requirements:
|
||||||
|
order = 'F'
|
||||||
|
requirements.remove('F')
|
||||||
|
elif 'C' in requirements:
|
||||||
|
order = 'C'
|
||||||
|
requirements.remove('C')
|
||||||
|
|
||||||
|
arr = array(a, dtype=dtype, order=order, copy=None, subok=subok)
|
||||||
|
|
||||||
|
for prop in requirements:
|
||||||
|
if not arr.flags[prop]:
|
||||||
|
return arr.copy(order)
|
||||||
|
return arr
|
||||||
|
|
||||||
|
|
||||||
|
_require_with_like = array_function_dispatch()(require)
|
@ -0,0 +1,41 @@
|
|||||||
|
from collections.abc import Iterable
|
||||||
|
from typing import Any, Literal, TypeAlias, TypeVar, overload
|
||||||
|
|
||||||
|
from numpy._typing import DTypeLike, NDArray, _SupportsArrayFunc
|
||||||
|
|
||||||
|
_ArrayT = TypeVar("_ArrayT", bound=NDArray[Any])
|
||||||
|
|
||||||
|
_Requirements: TypeAlias = Literal[
|
||||||
|
"C", "C_CONTIGUOUS", "CONTIGUOUS",
|
||||||
|
"F", "F_CONTIGUOUS", "FORTRAN",
|
||||||
|
"A", "ALIGNED",
|
||||||
|
"W", "WRITEABLE",
|
||||||
|
"O", "OWNDATA"
|
||||||
|
]
|
||||||
|
_E: TypeAlias = Literal["E", "ENSUREARRAY"]
|
||||||
|
_RequirementsWithE: TypeAlias = _Requirements | _E
|
||||||
|
|
||||||
|
@overload
|
||||||
|
def require(
|
||||||
|
a: _ArrayT,
|
||||||
|
dtype: None = ...,
|
||||||
|
requirements: _Requirements | Iterable[_Requirements] | None = ...,
|
||||||
|
*,
|
||||||
|
like: _SupportsArrayFunc = ...
|
||||||
|
) -> _ArrayT: ...
|
||||||
|
@overload
|
||||||
|
def require(
|
||||||
|
a: object,
|
||||||
|
dtype: DTypeLike = ...,
|
||||||
|
requirements: _E | Iterable[_RequirementsWithE] = ...,
|
||||||
|
*,
|
||||||
|
like: _SupportsArrayFunc = ...
|
||||||
|
) -> NDArray[Any]: ...
|
||||||
|
@overload
|
||||||
|
def require(
|
||||||
|
a: object,
|
||||||
|
dtype: DTypeLike = ...,
|
||||||
|
requirements: _Requirements | Iterable[_Requirements] | None = ...,
|
||||||
|
*,
|
||||||
|
like: _SupportsArrayFunc = ...
|
||||||
|
) -> NDArray[Any]: ...
|
@ -0,0 +1,366 @@
|
|||||||
|
"""
|
||||||
|
A place for code to be called from the implementation of np.dtype
|
||||||
|
|
||||||
|
String handling is much easier to do correctly in python.
|
||||||
|
"""
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
_kind_to_stem = {
|
||||||
|
'u': 'uint',
|
||||||
|
'i': 'int',
|
||||||
|
'c': 'complex',
|
||||||
|
'f': 'float',
|
||||||
|
'b': 'bool',
|
||||||
|
'V': 'void',
|
||||||
|
'O': 'object',
|
||||||
|
'M': 'datetime',
|
||||||
|
'm': 'timedelta',
|
||||||
|
'S': 'bytes',
|
||||||
|
'U': 'str',
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def _kind_name(dtype):
|
||||||
|
try:
|
||||||
|
return _kind_to_stem[dtype.kind]
|
||||||
|
except KeyError as e:
|
||||||
|
raise RuntimeError(
|
||||||
|
f"internal dtype error, unknown kind {dtype.kind!r}"
|
||||||
|
) from None
|
||||||
|
|
||||||
|
|
||||||
|
def __str__(dtype):
|
||||||
|
if dtype.fields is not None:
|
||||||
|
return _struct_str(dtype, include_align=True)
|
||||||
|
elif dtype.subdtype:
|
||||||
|
return _subarray_str(dtype)
|
||||||
|
elif issubclass(dtype.type, np.flexible) or not dtype.isnative:
|
||||||
|
return dtype.str
|
||||||
|
else:
|
||||||
|
return dtype.name
|
||||||
|
|
||||||
|
|
||||||
|
def __repr__(dtype):
|
||||||
|
arg_str = _construction_repr(dtype, include_align=False)
|
||||||
|
if dtype.isalignedstruct:
|
||||||
|
arg_str = arg_str + ", align=True"
|
||||||
|
return f"dtype({arg_str})"
|
||||||
|
|
||||||
|
|
||||||
|
def _unpack_field(dtype, offset, title=None):
|
||||||
|
"""
|
||||||
|
Helper function to normalize the items in dtype.fields.
|
||||||
|
|
||||||
|
Call as:
|
||||||
|
|
||||||
|
dtype, offset, title = _unpack_field(*dtype.fields[name])
|
||||||
|
"""
|
||||||
|
return dtype, offset, title
|
||||||
|
|
||||||
|
|
||||||
|
def _isunsized(dtype):
|
||||||
|
# PyDataType_ISUNSIZED
|
||||||
|
return dtype.itemsize == 0
|
||||||
|
|
||||||
|
|
||||||
|
def _construction_repr(dtype, include_align=False, short=False):
|
||||||
|
"""
|
||||||
|
Creates a string repr of the dtype, excluding the 'dtype()' part
|
||||||
|
surrounding the object. This object may be a string, a list, or
|
||||||
|
a dict depending on the nature of the dtype. This
|
||||||
|
is the object passed as the first parameter to the dtype
|
||||||
|
constructor, and if no additional constructor parameters are
|
||||||
|
given, will reproduce the exact memory layout.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
short : bool
|
||||||
|
If true, this creates a shorter repr using 'kind' and 'itemsize',
|
||||||
|
instead of the longer type name.
|
||||||
|
|
||||||
|
include_align : bool
|
||||||
|
If true, this includes the 'align=True' parameter
|
||||||
|
inside the struct dtype construction dict when needed. Use this flag
|
||||||
|
if you want a proper repr string without the 'dtype()' part around it.
|
||||||
|
|
||||||
|
If false, this does not preserve the
|
||||||
|
'align=True' parameter or sticky NPY_ALIGNED_STRUCT flag for
|
||||||
|
struct arrays like the regular repr does, because the 'align'
|
||||||
|
flag is not part of first dtype constructor parameter. This
|
||||||
|
mode is intended for a full 'repr', where the 'align=True' is
|
||||||
|
provided as the second parameter.
|
||||||
|
"""
|
||||||
|
if dtype.fields is not None:
|
||||||
|
return _struct_str(dtype, include_align=include_align)
|
||||||
|
elif dtype.subdtype:
|
||||||
|
return _subarray_str(dtype)
|
||||||
|
else:
|
||||||
|
return _scalar_str(dtype, short=short)
|
||||||
|
|
||||||
|
|
||||||
|
def _scalar_str(dtype, short):
|
||||||
|
byteorder = _byte_order_str(dtype)
|
||||||
|
|
||||||
|
if dtype.type == np.bool:
|
||||||
|
if short:
|
||||||
|
return "'?'"
|
||||||
|
else:
|
||||||
|
return "'bool'"
|
||||||
|
|
||||||
|
elif dtype.type == np.object_:
|
||||||
|
# The object reference may be different sizes on different
|
||||||
|
# platforms, so it should never include the itemsize here.
|
||||||
|
return "'O'"
|
||||||
|
|
||||||
|
elif dtype.type == np.bytes_:
|
||||||
|
if _isunsized(dtype):
|
||||||
|
return "'S'"
|
||||||
|
else:
|
||||||
|
return "'S%d'" % dtype.itemsize
|
||||||
|
|
||||||
|
elif dtype.type == np.str_:
|
||||||
|
if _isunsized(dtype):
|
||||||
|
return f"'{byteorder}U'"
|
||||||
|
else:
|
||||||
|
return "'%sU%d'" % (byteorder, dtype.itemsize / 4)
|
||||||
|
|
||||||
|
elif dtype.type == str:
|
||||||
|
return "'T'"
|
||||||
|
|
||||||
|
elif not type(dtype)._legacy:
|
||||||
|
return f"'{byteorder}{type(dtype).__name__}{dtype.itemsize * 8}'"
|
||||||
|
|
||||||
|
# unlike the other types, subclasses of void are preserved - but
|
||||||
|
# historically the repr does not actually reveal the subclass
|
||||||
|
elif issubclass(dtype.type, np.void):
|
||||||
|
if _isunsized(dtype):
|
||||||
|
return "'V'"
|
||||||
|
else:
|
||||||
|
return "'V%d'" % dtype.itemsize
|
||||||
|
|
||||||
|
elif dtype.type == np.datetime64:
|
||||||
|
return f"'{byteorder}M8{_datetime_metadata_str(dtype)}'"
|
||||||
|
|
||||||
|
elif dtype.type == np.timedelta64:
|
||||||
|
return f"'{byteorder}m8{_datetime_metadata_str(dtype)}'"
|
||||||
|
|
||||||
|
elif dtype.isbuiltin == 2:
|
||||||
|
return dtype.type.__name__
|
||||||
|
|
||||||
|
elif np.issubdtype(dtype, np.number):
|
||||||
|
# Short repr with endianness, like '<f8'
|
||||||
|
if short or dtype.byteorder not in ('=', '|'):
|
||||||
|
return "'%s%c%d'" % (byteorder, dtype.kind, dtype.itemsize)
|
||||||
|
|
||||||
|
# Longer repr, like 'float64'
|
||||||
|
else:
|
||||||
|
return "'%s%d'" % (_kind_name(dtype), 8 * dtype.itemsize)
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise RuntimeError(
|
||||||
|
"Internal error: NumPy dtype unrecognized type number")
|
||||||
|
|
||||||
|
|
||||||
|
def _byte_order_str(dtype):
|
||||||
|
""" Normalize byteorder to '<' or '>' """
|
||||||
|
# hack to obtain the native and swapped byte order characters
|
||||||
|
swapped = np.dtype(int).newbyteorder('S')
|
||||||
|
native = swapped.newbyteorder('S')
|
||||||
|
|
||||||
|
byteorder = dtype.byteorder
|
||||||
|
if byteorder == '=':
|
||||||
|
return native.byteorder
|
||||||
|
if byteorder == 'S':
|
||||||
|
# TODO: this path can never be reached
|
||||||
|
return swapped.byteorder
|
||||||
|
elif byteorder == '|':
|
||||||
|
return ''
|
||||||
|
else:
|
||||||
|
return byteorder
|
||||||
|
|
||||||
|
|
||||||
|
def _datetime_metadata_str(dtype):
|
||||||
|
# TODO: this duplicates the C metastr_to_unicode functionality
|
||||||
|
unit, count = np.datetime_data(dtype)
|
||||||
|
if unit == 'generic':
|
||||||
|
return ''
|
||||||
|
elif count == 1:
|
||||||
|
return f'[{unit}]'
|
||||||
|
else:
|
||||||
|
return f'[{count}{unit}]'
|
||||||
|
|
||||||
|
|
||||||
|
def _struct_dict_str(dtype, includealignedflag):
|
||||||
|
# unpack the fields dictionary into ls
|
||||||
|
names = dtype.names
|
||||||
|
fld_dtypes = []
|
||||||
|
offsets = []
|
||||||
|
titles = []
|
||||||
|
for name in names:
|
||||||
|
fld_dtype, offset, title = _unpack_field(*dtype.fields[name])
|
||||||
|
fld_dtypes.append(fld_dtype)
|
||||||
|
offsets.append(offset)
|
||||||
|
titles.append(title)
|
||||||
|
|
||||||
|
# Build up a string to make the dictionary
|
||||||
|
|
||||||
|
if np._core.arrayprint._get_legacy_print_mode() <= 121:
|
||||||
|
colon = ":"
|
||||||
|
fieldsep = ","
|
||||||
|
else:
|
||||||
|
colon = ": "
|
||||||
|
fieldsep = ", "
|
||||||
|
|
||||||
|
# First, the names
|
||||||
|
ret = "{'names'%s[" % colon
|
||||||
|
ret += fieldsep.join(repr(name) for name in names)
|
||||||
|
|
||||||
|
# Second, the formats
|
||||||
|
ret += f"], 'formats'{colon}["
|
||||||
|
ret += fieldsep.join(
|
||||||
|
_construction_repr(fld_dtype, short=True) for fld_dtype in fld_dtypes)
|
||||||
|
|
||||||
|
# Third, the offsets
|
||||||
|
ret += f"], 'offsets'{colon}["
|
||||||
|
ret += fieldsep.join("%d" % offset for offset in offsets)
|
||||||
|
|
||||||
|
# Fourth, the titles
|
||||||
|
if any(title is not None for title in titles):
|
||||||
|
ret += f"], 'titles'{colon}["
|
||||||
|
ret += fieldsep.join(repr(title) for title in titles)
|
||||||
|
|
||||||
|
# Fifth, the itemsize
|
||||||
|
ret += "], 'itemsize'%s%d" % (colon, dtype.itemsize)
|
||||||
|
|
||||||
|
if (includealignedflag and dtype.isalignedstruct):
|
||||||
|
# Finally, the aligned flag
|
||||||
|
ret += ", 'aligned'%sTrue}" % colon
|
||||||
|
else:
|
||||||
|
ret += "}"
|
||||||
|
|
||||||
|
return ret
|
||||||
|
|
||||||
|
|
||||||
|
def _aligned_offset(offset, alignment):
|
||||||
|
# round up offset:
|
||||||
|
return - (-offset // alignment) * alignment
|
||||||
|
|
||||||
|
|
||||||
|
def _is_packed(dtype):
|
||||||
|
"""
|
||||||
|
Checks whether the structured data type in 'dtype'
|
||||||
|
has a simple layout, where all the fields are in order,
|
||||||
|
and follow each other with no alignment padding.
|
||||||
|
|
||||||
|
When this returns true, the dtype can be reconstructed
|
||||||
|
from a list of the field names and dtypes with no additional
|
||||||
|
dtype parameters.
|
||||||
|
|
||||||
|
Duplicates the C `is_dtype_struct_simple_unaligned_layout` function.
|
||||||
|
"""
|
||||||
|
align = dtype.isalignedstruct
|
||||||
|
max_alignment = 1
|
||||||
|
total_offset = 0
|
||||||
|
for name in dtype.names:
|
||||||
|
fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name])
|
||||||
|
|
||||||
|
if align:
|
||||||
|
total_offset = _aligned_offset(total_offset, fld_dtype.alignment)
|
||||||
|
max_alignment = max(max_alignment, fld_dtype.alignment)
|
||||||
|
|
||||||
|
if fld_offset != total_offset:
|
||||||
|
return False
|
||||||
|
total_offset += fld_dtype.itemsize
|
||||||
|
|
||||||
|
if align:
|
||||||
|
total_offset = _aligned_offset(total_offset, max_alignment)
|
||||||
|
|
||||||
|
return total_offset == dtype.itemsize
|
||||||
|
|
||||||
|
|
||||||
|
def _struct_list_str(dtype):
|
||||||
|
items = []
|
||||||
|
for name in dtype.names:
|
||||||
|
fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name])
|
||||||
|
|
||||||
|
item = "("
|
||||||
|
if title is not None:
|
||||||
|
item += f"({title!r}, {name!r}), "
|
||||||
|
else:
|
||||||
|
item += f"{name!r}, "
|
||||||
|
# Special case subarray handling here
|
||||||
|
if fld_dtype.subdtype is not None:
|
||||||
|
base, shape = fld_dtype.subdtype
|
||||||
|
item += f"{_construction_repr(base, short=True)}, {shape}"
|
||||||
|
else:
|
||||||
|
item += _construction_repr(fld_dtype, short=True)
|
||||||
|
|
||||||
|
item += ")"
|
||||||
|
items.append(item)
|
||||||
|
|
||||||
|
return "[" + ", ".join(items) + "]"
|
||||||
|
|
||||||
|
|
||||||
|
def _struct_str(dtype, include_align):
|
||||||
|
# The list str representation can't include the 'align=' flag,
|
||||||
|
# so if it is requested and the struct has the aligned flag set,
|
||||||
|
# we must use the dict str instead.
|
||||||
|
if not (include_align and dtype.isalignedstruct) and _is_packed(dtype):
|
||||||
|
sub = _struct_list_str(dtype)
|
||||||
|
|
||||||
|
else:
|
||||||
|
sub = _struct_dict_str(dtype, include_align)
|
||||||
|
|
||||||
|
# If the data type isn't the default, void, show it
|
||||||
|
if dtype.type != np.void:
|
||||||
|
return f"({dtype.type.__module__}.{dtype.type.__name__}, {sub})"
|
||||||
|
else:
|
||||||
|
return sub
|
||||||
|
|
||||||
|
|
||||||
|
def _subarray_str(dtype):
|
||||||
|
base, shape = dtype.subdtype
|
||||||
|
return f"({_construction_repr(base, short=True)}, {shape})"
|
||||||
|
|
||||||
|
|
||||||
|
def _name_includes_bit_suffix(dtype):
|
||||||
|
if dtype.type == np.object_:
|
||||||
|
# pointer size varies by system, best to omit it
|
||||||
|
return False
|
||||||
|
elif dtype.type == np.bool:
|
||||||
|
# implied
|
||||||
|
return False
|
||||||
|
elif dtype.type is None:
|
||||||
|
return True
|
||||||
|
elif np.issubdtype(dtype, np.flexible) and _isunsized(dtype):
|
||||||
|
# unspecified
|
||||||
|
return False
|
||||||
|
else:
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
def _name_get(dtype):
|
||||||
|
# provides dtype.name.__get__, documented as returning a "bit name"
|
||||||
|
|
||||||
|
if dtype.isbuiltin == 2:
|
||||||
|
# user dtypes don't promise to do anything special
|
||||||
|
return dtype.type.__name__
|
||||||
|
|
||||||
|
if not type(dtype)._legacy:
|
||||||
|
name = type(dtype).__name__
|
||||||
|
|
||||||
|
elif issubclass(dtype.type, np.void):
|
||||||
|
# historically, void subclasses preserve their name, eg `record64`
|
||||||
|
name = dtype.type.__name__
|
||||||
|
else:
|
||||||
|
name = _kind_name(dtype)
|
||||||
|
|
||||||
|
# append bit counts
|
||||||
|
if _name_includes_bit_suffix(dtype):
|
||||||
|
name += f"{dtype.itemsize * 8}"
|
||||||
|
|
||||||
|
# append metadata to datetimes
|
||||||
|
if dtype.type in (np.datetime64, np.timedelta64):
|
||||||
|
name += _datetime_metadata_str(dtype)
|
||||||
|
|
||||||
|
return name
|
@ -0,0 +1,58 @@
|
|||||||
|
from typing import Final, TypeAlias, TypedDict, overload, type_check_only
|
||||||
|
from typing import Literal as L
|
||||||
|
|
||||||
|
from typing_extensions import ReadOnly, TypeVar
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
###
|
||||||
|
|
||||||
|
_T = TypeVar("_T")
|
||||||
|
|
||||||
|
_Name: TypeAlias = L["uint", "int", "complex", "float", "bool", "void", "object", "datetime", "timedelta", "bytes", "str"]
|
||||||
|
|
||||||
|
@type_check_only
|
||||||
|
class _KindToStemType(TypedDict):
|
||||||
|
u: ReadOnly[L["uint"]]
|
||||||
|
i: ReadOnly[L["int"]]
|
||||||
|
c: ReadOnly[L["complex"]]
|
||||||
|
f: ReadOnly[L["float"]]
|
||||||
|
b: ReadOnly[L["bool"]]
|
||||||
|
V: ReadOnly[L["void"]]
|
||||||
|
O: ReadOnly[L["object"]]
|
||||||
|
M: ReadOnly[L["datetime"]]
|
||||||
|
m: ReadOnly[L["timedelta"]]
|
||||||
|
S: ReadOnly[L["bytes"]]
|
||||||
|
U: ReadOnly[L["str"]]
|
||||||
|
|
||||||
|
###
|
||||||
|
|
||||||
|
_kind_to_stem: Final[_KindToStemType] = ...
|
||||||
|
|
||||||
|
#
|
||||||
|
def _kind_name(dtype: np.dtype) -> _Name: ...
|
||||||
|
def __str__(dtype: np.dtype) -> str: ...
|
||||||
|
def __repr__(dtype: np.dtype) -> str: ...
|
||||||
|
|
||||||
|
#
|
||||||
|
def _isunsized(dtype: np.dtype) -> bool: ...
|
||||||
|
def _is_packed(dtype: np.dtype) -> bool: ...
|
||||||
|
def _name_includes_bit_suffix(dtype: np.dtype) -> bool: ...
|
||||||
|
|
||||||
|
#
|
||||||
|
def _construction_repr(dtype: np.dtype, include_align: bool = False, short: bool = False) -> str: ...
|
||||||
|
def _scalar_str(dtype: np.dtype, short: bool) -> str: ...
|
||||||
|
def _byte_order_str(dtype: np.dtype) -> str: ...
|
||||||
|
def _datetime_metadata_str(dtype: np.dtype) -> str: ...
|
||||||
|
def _struct_dict_str(dtype: np.dtype, includealignedflag: bool) -> str: ...
|
||||||
|
def _struct_list_str(dtype: np.dtype) -> str: ...
|
||||||
|
def _struct_str(dtype: np.dtype, include_align: bool) -> str: ...
|
||||||
|
def _subarray_str(dtype: np.dtype) -> str: ...
|
||||||
|
def _name_get(dtype: np.dtype) -> str: ...
|
||||||
|
|
||||||
|
#
|
||||||
|
@overload
|
||||||
|
def _unpack_field(dtype: np.dtype, offset: int, title: _T) -> tuple[np.dtype, int, _T]: ...
|
||||||
|
@overload
|
||||||
|
def _unpack_field(dtype: np.dtype, offset: int, title: None = None) -> tuple[np.dtype, int, None]: ...
|
||||||
|
def _aligned_offset(offset: int, alignment: int) -> int: ...
|
@ -0,0 +1,120 @@
|
|||||||
|
"""
|
||||||
|
Conversion from ctypes to dtype.
|
||||||
|
|
||||||
|
In an ideal world, we could achieve this through the PEP3118 buffer protocol,
|
||||||
|
something like::
|
||||||
|
|
||||||
|
def dtype_from_ctypes_type(t):
|
||||||
|
# needed to ensure that the shape of `t` is within memoryview.format
|
||||||
|
class DummyStruct(ctypes.Structure):
|
||||||
|
_fields_ = [('a', t)]
|
||||||
|
|
||||||
|
# empty to avoid memory allocation
|
||||||
|
ctype_0 = (DummyStruct * 0)()
|
||||||
|
mv = memoryview(ctype_0)
|
||||||
|
|
||||||
|
# convert the struct, and slice back out the field
|
||||||
|
return _dtype_from_pep3118(mv.format)['a']
|
||||||
|
|
||||||
|
Unfortunately, this fails because:
|
||||||
|
|
||||||
|
* ctypes cannot handle length-0 arrays with PEP3118 (bpo-32782)
|
||||||
|
* PEP3118 cannot represent unions, but both numpy and ctypes can
|
||||||
|
* ctypes cannot handle big-endian structs with PEP3118 (bpo-32780)
|
||||||
|
"""
|
||||||
|
|
||||||
|
# We delay-import ctypes for distributions that do not include it.
|
||||||
|
# While this module is not used unless the user passes in ctypes
|
||||||
|
# members, it is eagerly imported from numpy/_core/__init__.py.
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def _from_ctypes_array(t):
|
||||||
|
return np.dtype((dtype_from_ctypes_type(t._type_), (t._length_,)))
|
||||||
|
|
||||||
|
|
||||||
|
def _from_ctypes_structure(t):
|
||||||
|
for item in t._fields_:
|
||||||
|
if len(item) > 2:
|
||||||
|
raise TypeError(
|
||||||
|
"ctypes bitfields have no dtype equivalent")
|
||||||
|
|
||||||
|
if hasattr(t, "_pack_"):
|
||||||
|
import ctypes
|
||||||
|
formats = []
|
||||||
|
offsets = []
|
||||||
|
names = []
|
||||||
|
current_offset = 0
|
||||||
|
for fname, ftyp in t._fields_:
|
||||||
|
names.append(fname)
|
||||||
|
formats.append(dtype_from_ctypes_type(ftyp))
|
||||||
|
# Each type has a default offset, this is platform dependent
|
||||||
|
# for some types.
|
||||||
|
effective_pack = min(t._pack_, ctypes.alignment(ftyp))
|
||||||
|
current_offset = (
|
||||||
|
(current_offset + effective_pack - 1) // effective_pack
|
||||||
|
) * effective_pack
|
||||||
|
offsets.append(current_offset)
|
||||||
|
current_offset += ctypes.sizeof(ftyp)
|
||||||
|
|
||||||
|
return np.dtype({
|
||||||
|
"formats": formats,
|
||||||
|
"offsets": offsets,
|
||||||
|
"names": names,
|
||||||
|
"itemsize": ctypes.sizeof(t)})
|
||||||
|
else:
|
||||||
|
fields = []
|
||||||
|
for fname, ftyp in t._fields_:
|
||||||
|
fields.append((fname, dtype_from_ctypes_type(ftyp)))
|
||||||
|
|
||||||
|
# by default, ctypes structs are aligned
|
||||||
|
return np.dtype(fields, align=True)
|
||||||
|
|
||||||
|
|
||||||
|
def _from_ctypes_scalar(t):
|
||||||
|
"""
|
||||||
|
Return the dtype type with endianness included if it's the case
|
||||||
|
"""
|
||||||
|
if getattr(t, '__ctype_be__', None) is t:
|
||||||
|
return np.dtype('>' + t._type_)
|
||||||
|
elif getattr(t, '__ctype_le__', None) is t:
|
||||||
|
return np.dtype('<' + t._type_)
|
||||||
|
else:
|
||||||
|
return np.dtype(t._type_)
|
||||||
|
|
||||||
|
|
||||||
|
def _from_ctypes_union(t):
|
||||||
|
import ctypes
|
||||||
|
formats = []
|
||||||
|
offsets = []
|
||||||
|
names = []
|
||||||
|
for fname, ftyp in t._fields_:
|
||||||
|
names.append(fname)
|
||||||
|
formats.append(dtype_from_ctypes_type(ftyp))
|
||||||
|
offsets.append(0) # Union fields are offset to 0
|
||||||
|
|
||||||
|
return np.dtype({
|
||||||
|
"formats": formats,
|
||||||
|
"offsets": offsets,
|
||||||
|
"names": names,
|
||||||
|
"itemsize": ctypes.sizeof(t)})
|
||||||
|
|
||||||
|
|
||||||
|
def dtype_from_ctypes_type(t):
|
||||||
|
"""
|
||||||
|
Construct a dtype object from a ctypes type
|
||||||
|
"""
|
||||||
|
import _ctypes
|
||||||
|
if issubclass(t, _ctypes.Array):
|
||||||
|
return _from_ctypes_array(t)
|
||||||
|
elif issubclass(t, _ctypes._Pointer):
|
||||||
|
raise TypeError("ctypes pointers have no dtype equivalent")
|
||||||
|
elif issubclass(t, _ctypes.Structure):
|
||||||
|
return _from_ctypes_structure(t)
|
||||||
|
elif issubclass(t, _ctypes.Union):
|
||||||
|
return _from_ctypes_union(t)
|
||||||
|
elif isinstance(getattr(t, '_type_', None), str):
|
||||||
|
return _from_ctypes_scalar(t)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(
|
||||||
|
f"Unknown ctypes type {t.__name__}")
|
@ -0,0 +1,83 @@
|
|||||||
|
import _ctypes
|
||||||
|
import ctypes as ct
|
||||||
|
from typing import Any, overload
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
#
|
||||||
|
@overload
|
||||||
|
def dtype_from_ctypes_type(t: type[_ctypes.Array[Any] | _ctypes.Structure]) -> np.dtype[np.void]: ...
|
||||||
|
@overload
|
||||||
|
def dtype_from_ctypes_type(t: type[ct.c_bool]) -> np.dtype[np.bool]: ...
|
||||||
|
@overload
|
||||||
|
def dtype_from_ctypes_type(t: type[ct.c_int8 | ct.c_byte]) -> np.dtype[np.int8]: ...
|
||||||
|
@overload
|
||||||
|
def dtype_from_ctypes_type(t: type[ct.c_uint8 | ct.c_ubyte]) -> np.dtype[np.uint8]: ...
|
||||||
|
@overload
|
||||||
|
def dtype_from_ctypes_type(t: type[ct.c_int16 | ct.c_short]) -> np.dtype[np.int16]: ...
|
||||||
|
@overload
|
||||||
|
def dtype_from_ctypes_type(t: type[ct.c_uint16 | ct.c_ushort]) -> np.dtype[np.uint16]: ...
|
||||||
|
@overload
|
||||||
|
def dtype_from_ctypes_type(t: type[ct.c_int32 | ct.c_int]) -> np.dtype[np.int32]: ...
|
||||||
|
@overload
|
||||||
|
def dtype_from_ctypes_type(t: type[ct.c_uint32 | ct.c_uint]) -> np.dtype[np.uint32]: ...
|
||||||
|
@overload
|
||||||
|
def dtype_from_ctypes_type(t: type[ct.c_ssize_t | ct.c_long]) -> np.dtype[np.int32 | np.int64]: ...
|
||||||
|
@overload
|
||||||
|
def dtype_from_ctypes_type(t: type[ct.c_size_t | ct.c_ulong]) -> np.dtype[np.uint32 | np.uint64]: ...
|
||||||
|
@overload
|
||||||
|
def dtype_from_ctypes_type(t: type[ct.c_int64 | ct.c_longlong]) -> np.dtype[np.int64]: ...
|
||||||
|
@overload
|
||||||
|
def dtype_from_ctypes_type(t: type[ct.c_uint64 | ct.c_ulonglong]) -> np.dtype[np.uint64]: ...
|
||||||
|
@overload
|
||||||
|
def dtype_from_ctypes_type(t: type[ct.c_float]) -> np.dtype[np.float32]: ...
|
||||||
|
@overload
|
||||||
|
def dtype_from_ctypes_type(t: type[ct.c_double]) -> np.dtype[np.float64]: ...
|
||||||
|
@overload
|
||||||
|
def dtype_from_ctypes_type(t: type[ct.c_longdouble]) -> np.dtype[np.longdouble]: ...
|
||||||
|
@overload
|
||||||
|
def dtype_from_ctypes_type(t: type[ct.c_char]) -> np.dtype[np.bytes_]: ...
|
||||||
|
@overload
|
||||||
|
def dtype_from_ctypes_type(t: type[ct.py_object[Any]]) -> np.dtype[np.object_]: ...
|
||||||
|
|
||||||
|
# NOTE: the complex ctypes on python>=3.14 are not yet supported at runtim, see
|
||||||
|
# https://github.com/numpy/numpy/issues/28360
|
||||||
|
|
||||||
|
#
|
||||||
|
def _from_ctypes_array(t: type[_ctypes.Array[Any]]) -> np.dtype[np.void]: ...
|
||||||
|
def _from_ctypes_structure(t: type[_ctypes.Structure]) -> np.dtype[np.void]: ...
|
||||||
|
def _from_ctypes_union(t: type[_ctypes.Union]) -> np.dtype[np.void]: ...
|
||||||
|
|
||||||
|
# keep in sync with `dtype_from_ctypes_type` (minus the first overload)
|
||||||
|
@overload
|
||||||
|
def _from_ctypes_scalar(t: type[ct.c_bool]) -> np.dtype[np.bool]: ...
|
||||||
|
@overload
|
||||||
|
def _from_ctypes_scalar(t: type[ct.c_int8 | ct.c_byte]) -> np.dtype[np.int8]: ...
|
||||||
|
@overload
|
||||||
|
def _from_ctypes_scalar(t: type[ct.c_uint8 | ct.c_ubyte]) -> np.dtype[np.uint8]: ...
|
||||||
|
@overload
|
||||||
|
def _from_ctypes_scalar(t: type[ct.c_int16 | ct.c_short]) -> np.dtype[np.int16]: ...
|
||||||
|
@overload
|
||||||
|
def _from_ctypes_scalar(t: type[ct.c_uint16 | ct.c_ushort]) -> np.dtype[np.uint16]: ...
|
||||||
|
@overload
|
||||||
|
def _from_ctypes_scalar(t: type[ct.c_int32 | ct.c_int]) -> np.dtype[np.int32]: ...
|
||||||
|
@overload
|
||||||
|
def _from_ctypes_scalar(t: type[ct.c_uint32 | ct.c_uint]) -> np.dtype[np.uint32]: ...
|
||||||
|
@overload
|
||||||
|
def _from_ctypes_scalar(t: type[ct.c_ssize_t | ct.c_long]) -> np.dtype[np.int32 | np.int64]: ...
|
||||||
|
@overload
|
||||||
|
def _from_ctypes_scalar(t: type[ct.c_size_t | ct.c_ulong]) -> np.dtype[np.uint32 | np.uint64]: ...
|
||||||
|
@overload
|
||||||
|
def _from_ctypes_scalar(t: type[ct.c_int64 | ct.c_longlong]) -> np.dtype[np.int64]: ...
|
||||||
|
@overload
|
||||||
|
def _from_ctypes_scalar(t: type[ct.c_uint64 | ct.c_ulonglong]) -> np.dtype[np.uint64]: ...
|
||||||
|
@overload
|
||||||
|
def _from_ctypes_scalar(t: type[ct.c_float]) -> np.dtype[np.float32]: ...
|
||||||
|
@overload
|
||||||
|
def _from_ctypes_scalar(t: type[ct.c_double]) -> np.dtype[np.float64]: ...
|
||||||
|
@overload
|
||||||
|
def _from_ctypes_scalar(t: type[ct.c_longdouble]) -> np.dtype[np.longdouble]: ...
|
||||||
|
@overload
|
||||||
|
def _from_ctypes_scalar(t: type[ct.c_char]) -> np.dtype[np.bytes_]: ...
|
||||||
|
@overload
|
||||||
|
def _from_ctypes_scalar(t: type[ct.py_object[Any]]) -> np.dtype[np.object_]: ...
|
@ -0,0 +1,162 @@
|
|||||||
|
"""
|
||||||
|
Various richly-typed exceptions, that also help us deal with string formatting
|
||||||
|
in python where it's easier.
|
||||||
|
|
||||||
|
By putting the formatting in `__str__`, we also avoid paying the cost for
|
||||||
|
users who silence the exceptions.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def _unpack_tuple(tup):
|
||||||
|
if len(tup) == 1:
|
||||||
|
return tup[0]
|
||||||
|
else:
|
||||||
|
return tup
|
||||||
|
|
||||||
|
|
||||||
|
def _display_as_base(cls):
|
||||||
|
"""
|
||||||
|
A decorator that makes an exception class look like its base.
|
||||||
|
|
||||||
|
We use this to hide subclasses that are implementation details - the user
|
||||||
|
should catch the base type, which is what the traceback will show them.
|
||||||
|
|
||||||
|
Classes decorated with this decorator are subject to removal without a
|
||||||
|
deprecation warning.
|
||||||
|
"""
|
||||||
|
assert issubclass(cls, Exception)
|
||||||
|
cls.__name__ = cls.__base__.__name__
|
||||||
|
return cls
|
||||||
|
|
||||||
|
|
||||||
|
class UFuncTypeError(TypeError):
|
||||||
|
""" Base class for all ufunc exceptions """
|
||||||
|
def __init__(self, ufunc):
|
||||||
|
self.ufunc = ufunc
|
||||||
|
|
||||||
|
|
||||||
|
@_display_as_base
|
||||||
|
class _UFuncNoLoopError(UFuncTypeError):
|
||||||
|
""" Thrown when a ufunc loop cannot be found """
|
||||||
|
def __init__(self, ufunc, dtypes):
|
||||||
|
super().__init__(ufunc)
|
||||||
|
self.dtypes = tuple(dtypes)
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
return (
|
||||||
|
f"ufunc {self.ufunc.__name__!r} did not contain a loop with signature "
|
||||||
|
f"matching types {_unpack_tuple(self.dtypes[:self.ufunc.nin])!r} "
|
||||||
|
f"-> {_unpack_tuple(self.dtypes[self.ufunc.nin:])!r}"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@_display_as_base
|
||||||
|
class _UFuncBinaryResolutionError(_UFuncNoLoopError):
|
||||||
|
""" Thrown when a binary resolution fails """
|
||||||
|
def __init__(self, ufunc, dtypes):
|
||||||
|
super().__init__(ufunc, dtypes)
|
||||||
|
assert len(self.dtypes) == 2
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
return (
|
||||||
|
"ufunc {!r} cannot use operands with types {!r} and {!r}"
|
||||||
|
).format(
|
||||||
|
self.ufunc.__name__, *self.dtypes
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@_display_as_base
|
||||||
|
class _UFuncCastingError(UFuncTypeError):
|
||||||
|
def __init__(self, ufunc, casting, from_, to):
|
||||||
|
super().__init__(ufunc)
|
||||||
|
self.casting = casting
|
||||||
|
self.from_ = from_
|
||||||
|
self.to = to
|
||||||
|
|
||||||
|
|
||||||
|
@_display_as_base
|
||||||
|
class _UFuncInputCastingError(_UFuncCastingError):
|
||||||
|
""" Thrown when a ufunc input cannot be casted """
|
||||||
|
def __init__(self, ufunc, casting, from_, to, i):
|
||||||
|
super().__init__(ufunc, casting, from_, to)
|
||||||
|
self.in_i = i
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
# only show the number if more than one input exists
|
||||||
|
i_str = f"{self.in_i} " if self.ufunc.nin != 1 else ""
|
||||||
|
return (
|
||||||
|
f"Cannot cast ufunc {self.ufunc.__name__!r} input {i_str}from "
|
||||||
|
f"{self.from_!r} to {self.to!r} with casting rule {self.casting!r}"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@_display_as_base
|
||||||
|
class _UFuncOutputCastingError(_UFuncCastingError):
|
||||||
|
""" Thrown when a ufunc output cannot be casted """
|
||||||
|
def __init__(self, ufunc, casting, from_, to, i):
|
||||||
|
super().__init__(ufunc, casting, from_, to)
|
||||||
|
self.out_i = i
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
# only show the number if more than one output exists
|
||||||
|
i_str = f"{self.out_i} " if self.ufunc.nout != 1 else ""
|
||||||
|
return (
|
||||||
|
f"Cannot cast ufunc {self.ufunc.__name__!r} output {i_str}from "
|
||||||
|
f"{self.from_!r} to {self.to!r} with casting rule {self.casting!r}"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@_display_as_base
|
||||||
|
class _ArrayMemoryError(MemoryError):
|
||||||
|
""" Thrown when an array cannot be allocated"""
|
||||||
|
def __init__(self, shape, dtype):
|
||||||
|
self.shape = shape
|
||||||
|
self.dtype = dtype
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _total_size(self):
|
||||||
|
num_bytes = self.dtype.itemsize
|
||||||
|
for dim in self.shape:
|
||||||
|
num_bytes *= dim
|
||||||
|
return num_bytes
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _size_to_string(num_bytes):
|
||||||
|
""" Convert a number of bytes into a binary size string """
|
||||||
|
|
||||||
|
# https://en.wikipedia.org/wiki/Binary_prefix
|
||||||
|
LOG2_STEP = 10
|
||||||
|
STEP = 1024
|
||||||
|
units = ['bytes', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB']
|
||||||
|
|
||||||
|
unit_i = max(num_bytes.bit_length() - 1, 1) // LOG2_STEP
|
||||||
|
unit_val = 1 << (unit_i * LOG2_STEP)
|
||||||
|
n_units = num_bytes / unit_val
|
||||||
|
del unit_val
|
||||||
|
|
||||||
|
# ensure we pick a unit that is correct after rounding
|
||||||
|
if round(n_units) == STEP:
|
||||||
|
unit_i += 1
|
||||||
|
n_units /= STEP
|
||||||
|
|
||||||
|
# deal with sizes so large that we don't have units for them
|
||||||
|
if unit_i >= len(units):
|
||||||
|
new_unit_i = len(units) - 1
|
||||||
|
n_units *= 1 << ((unit_i - new_unit_i) * LOG2_STEP)
|
||||||
|
unit_i = new_unit_i
|
||||||
|
|
||||||
|
unit_name = units[unit_i]
|
||||||
|
# format with a sensible number of digits
|
||||||
|
if unit_i == 0:
|
||||||
|
# no decimal point on bytes
|
||||||
|
return f'{n_units:.0f} {unit_name}'
|
||||||
|
elif round(n_units) < 1000:
|
||||||
|
# 3 significant figures, if none are dropped to the left of the .
|
||||||
|
return f'{n_units:#.3g} {unit_name}'
|
||||||
|
else:
|
||||||
|
# just give all the digits otherwise
|
||||||
|
return f'{n_units:#.0f} {unit_name}'
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
size_str = self._size_to_string(self._total_size)
|
||||||
|
return (f"Unable to allocate {size_str} for an array with shape "
|
||||||
|
f"{self.shape} and data type {self.dtype}")
|
@ -0,0 +1,55 @@
|
|||||||
|
from collections.abc import Iterable
|
||||||
|
from typing import Any, Final, TypeVar, overload
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from numpy import _CastingKind
|
||||||
|
from numpy._utils import set_module as set_module
|
||||||
|
|
||||||
|
###
|
||||||
|
|
||||||
|
_T = TypeVar("_T")
|
||||||
|
_TupleT = TypeVar("_TupleT", bound=tuple[()] | tuple[Any, Any, *tuple[Any, ...]])
|
||||||
|
_ExceptionT = TypeVar("_ExceptionT", bound=Exception)
|
||||||
|
|
||||||
|
###
|
||||||
|
|
||||||
|
class UFuncTypeError(TypeError):
|
||||||
|
ufunc: Final[np.ufunc]
|
||||||
|
def __init__(self, /, ufunc: np.ufunc) -> None: ...
|
||||||
|
|
||||||
|
class _UFuncNoLoopError(UFuncTypeError):
|
||||||
|
dtypes: tuple[np.dtype, ...]
|
||||||
|
def __init__(self, /, ufunc: np.ufunc, dtypes: Iterable[np.dtype]) -> None: ...
|
||||||
|
|
||||||
|
class _UFuncBinaryResolutionError(_UFuncNoLoopError):
|
||||||
|
dtypes: tuple[np.dtype, np.dtype]
|
||||||
|
def __init__(self, /, ufunc: np.ufunc, dtypes: Iterable[np.dtype]) -> None: ...
|
||||||
|
|
||||||
|
class _UFuncCastingError(UFuncTypeError):
|
||||||
|
casting: Final[_CastingKind]
|
||||||
|
from_: Final[np.dtype]
|
||||||
|
to: Final[np.dtype]
|
||||||
|
def __init__(self, /, ufunc: np.ufunc, casting: _CastingKind, from_: np.dtype, to: np.dtype) -> None: ...
|
||||||
|
|
||||||
|
class _UFuncInputCastingError(_UFuncCastingError):
|
||||||
|
in_i: Final[int]
|
||||||
|
def __init__(self, /, ufunc: np.ufunc, casting: _CastingKind, from_: np.dtype, to: np.dtype, i: int) -> None: ...
|
||||||
|
|
||||||
|
class _UFuncOutputCastingError(_UFuncCastingError):
|
||||||
|
out_i: Final[int]
|
||||||
|
def __init__(self, /, ufunc: np.ufunc, casting: _CastingKind, from_: np.dtype, to: np.dtype, i: int) -> None: ...
|
||||||
|
|
||||||
|
class _ArrayMemoryError(MemoryError):
|
||||||
|
shape: tuple[int, ...]
|
||||||
|
dtype: np.dtype
|
||||||
|
def __init__(self, /, shape: tuple[int, ...], dtype: np.dtype) -> None: ...
|
||||||
|
@property
|
||||||
|
def _total_size(self) -> int: ...
|
||||||
|
@staticmethod
|
||||||
|
def _size_to_string(num_bytes: int) -> str: ...
|
||||||
|
|
||||||
|
@overload
|
||||||
|
def _unpack_tuple(tup: tuple[_T]) -> _T: ...
|
||||||
|
@overload
|
||||||
|
def _unpack_tuple(tup: _TupleT) -> _TupleT: ...
|
||||||
|
def _display_as_base(cls: type[_ExceptionT]) -> type[_ExceptionT]: ...
|
@ -0,0 +1,958 @@
|
|||||||
|
"""
|
||||||
|
A place for internal code
|
||||||
|
|
||||||
|
Some things are more easily handled Python.
|
||||||
|
|
||||||
|
"""
|
||||||
|
import ast
|
||||||
|
import math
|
||||||
|
import re
|
||||||
|
import sys
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
from numpy import _NoValue
|
||||||
|
from numpy.exceptions import DTypePromotionError
|
||||||
|
|
||||||
|
from .multiarray import StringDType, array, dtype, promote_types
|
||||||
|
|
||||||
|
try:
|
||||||
|
import ctypes
|
||||||
|
except ImportError:
|
||||||
|
ctypes = None
|
||||||
|
|
||||||
|
IS_PYPY = sys.implementation.name == 'pypy'
|
||||||
|
|
||||||
|
if sys.byteorder == 'little':
|
||||||
|
_nbo = '<'
|
||||||
|
else:
|
||||||
|
_nbo = '>'
|
||||||
|
|
||||||
|
def _makenames_list(adict, align):
|
||||||
|
allfields = []
|
||||||
|
|
||||||
|
for fname, obj in adict.items():
|
||||||
|
n = len(obj)
|
||||||
|
if not isinstance(obj, tuple) or n not in (2, 3):
|
||||||
|
raise ValueError("entry not a 2- or 3- tuple")
|
||||||
|
if n > 2 and obj[2] == fname:
|
||||||
|
continue
|
||||||
|
num = int(obj[1])
|
||||||
|
if num < 0:
|
||||||
|
raise ValueError("invalid offset.")
|
||||||
|
format = dtype(obj[0], align=align)
|
||||||
|
if n > 2:
|
||||||
|
title = obj[2]
|
||||||
|
else:
|
||||||
|
title = None
|
||||||
|
allfields.append((fname, format, num, title))
|
||||||
|
# sort by offsets
|
||||||
|
allfields.sort(key=lambda x: x[2])
|
||||||
|
names = [x[0] for x in allfields]
|
||||||
|
formats = [x[1] for x in allfields]
|
||||||
|
offsets = [x[2] for x in allfields]
|
||||||
|
titles = [x[3] for x in allfields]
|
||||||
|
|
||||||
|
return names, formats, offsets, titles
|
||||||
|
|
||||||
|
# Called in PyArray_DescrConverter function when
|
||||||
|
# a dictionary without "names" and "formats"
|
||||||
|
# fields is used as a data-type descriptor.
|
||||||
|
def _usefields(adict, align):
|
||||||
|
try:
|
||||||
|
names = adict[-1]
|
||||||
|
except KeyError:
|
||||||
|
names = None
|
||||||
|
if names is None:
|
||||||
|
names, formats, offsets, titles = _makenames_list(adict, align)
|
||||||
|
else:
|
||||||
|
formats = []
|
||||||
|
offsets = []
|
||||||
|
titles = []
|
||||||
|
for name in names:
|
||||||
|
res = adict[name]
|
||||||
|
formats.append(res[0])
|
||||||
|
offsets.append(res[1])
|
||||||
|
if len(res) > 2:
|
||||||
|
titles.append(res[2])
|
||||||
|
else:
|
||||||
|
titles.append(None)
|
||||||
|
|
||||||
|
return dtype({"names": names,
|
||||||
|
"formats": formats,
|
||||||
|
"offsets": offsets,
|
||||||
|
"titles": titles}, align)
|
||||||
|
|
||||||
|
|
||||||
|
# construct an array_protocol descriptor list
|
||||||
|
# from the fields attribute of a descriptor
|
||||||
|
# This calls itself recursively but should eventually hit
|
||||||
|
# a descriptor that has no fields and then return
|
||||||
|
# a simple typestring
|
||||||
|
|
||||||
|
def _array_descr(descriptor):
|
||||||
|
fields = descriptor.fields
|
||||||
|
if fields is None:
|
||||||
|
subdtype = descriptor.subdtype
|
||||||
|
if subdtype is None:
|
||||||
|
if descriptor.metadata is None:
|
||||||
|
return descriptor.str
|
||||||
|
else:
|
||||||
|
new = descriptor.metadata.copy()
|
||||||
|
if new:
|
||||||
|
return (descriptor.str, new)
|
||||||
|
else:
|
||||||
|
return descriptor.str
|
||||||
|
else:
|
||||||
|
return (_array_descr(subdtype[0]), subdtype[1])
|
||||||
|
|
||||||
|
names = descriptor.names
|
||||||
|
ordered_fields = [fields[x] + (x,) for x in names]
|
||||||
|
result = []
|
||||||
|
offset = 0
|
||||||
|
for field in ordered_fields:
|
||||||
|
if field[1] > offset:
|
||||||
|
num = field[1] - offset
|
||||||
|
result.append(('', f'|V{num}'))
|
||||||
|
offset += num
|
||||||
|
elif field[1] < offset:
|
||||||
|
raise ValueError(
|
||||||
|
"dtype.descr is not defined for types with overlapping or "
|
||||||
|
"out-of-order fields")
|
||||||
|
if len(field) > 3:
|
||||||
|
name = (field[2], field[3])
|
||||||
|
else:
|
||||||
|
name = field[2]
|
||||||
|
if field[0].subdtype:
|
||||||
|
tup = (name, _array_descr(field[0].subdtype[0]),
|
||||||
|
field[0].subdtype[1])
|
||||||
|
else:
|
||||||
|
tup = (name, _array_descr(field[0]))
|
||||||
|
offset += field[0].itemsize
|
||||||
|
result.append(tup)
|
||||||
|
|
||||||
|
if descriptor.itemsize > offset:
|
||||||
|
num = descriptor.itemsize - offset
|
||||||
|
result.append(('', f'|V{num}'))
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
# format_re was originally from numarray by J. Todd Miller
|
||||||
|
|
||||||
|
format_re = re.compile(r'(?P<order1>[<>|=]?)'
|
||||||
|
r'(?P<repeats> *[(]?[ ,0-9]*[)]? *)'
|
||||||
|
r'(?P<order2>[<>|=]?)'
|
||||||
|
r'(?P<dtype>[A-Za-z0-9.?]*(?:\[[a-zA-Z0-9,.]+\])?)')
|
||||||
|
sep_re = re.compile(r'\s*,\s*')
|
||||||
|
space_re = re.compile(r'\s+$')
|
||||||
|
|
||||||
|
# astr is a string (perhaps comma separated)
|
||||||
|
|
||||||
|
_convorder = {'=': _nbo}
|
||||||
|
|
||||||
|
def _commastring(astr):
|
||||||
|
startindex = 0
|
||||||
|
result = []
|
||||||
|
islist = False
|
||||||
|
while startindex < len(astr):
|
||||||
|
mo = format_re.match(astr, pos=startindex)
|
||||||
|
try:
|
||||||
|
(order1, repeats, order2, dtype) = mo.groups()
|
||||||
|
except (TypeError, AttributeError):
|
||||||
|
raise ValueError(
|
||||||
|
f'format number {len(result) + 1} of "{astr}" is not recognized'
|
||||||
|
) from None
|
||||||
|
startindex = mo.end()
|
||||||
|
# Separator or ending padding
|
||||||
|
if startindex < len(astr):
|
||||||
|
if space_re.match(astr, pos=startindex):
|
||||||
|
startindex = len(astr)
|
||||||
|
else:
|
||||||
|
mo = sep_re.match(astr, pos=startindex)
|
||||||
|
if not mo:
|
||||||
|
raise ValueError(
|
||||||
|
'format number %d of "%s" is not recognized' %
|
||||||
|
(len(result) + 1, astr))
|
||||||
|
startindex = mo.end()
|
||||||
|
islist = True
|
||||||
|
|
||||||
|
if order2 == '':
|
||||||
|
order = order1
|
||||||
|
elif order1 == '':
|
||||||
|
order = order2
|
||||||
|
else:
|
||||||
|
order1 = _convorder.get(order1, order1)
|
||||||
|
order2 = _convorder.get(order2, order2)
|
||||||
|
if (order1 != order2):
|
||||||
|
raise ValueError(
|
||||||
|
f'inconsistent byte-order specification {order1} and {order2}')
|
||||||
|
order = order1
|
||||||
|
|
||||||
|
if order in ('|', '=', _nbo):
|
||||||
|
order = ''
|
||||||
|
dtype = order + dtype
|
||||||
|
if repeats == '':
|
||||||
|
newitem = dtype
|
||||||
|
else:
|
||||||
|
if (repeats[0] == "(" and repeats[-1] == ")"
|
||||||
|
and repeats[1:-1].strip() != ""
|
||||||
|
and "," not in repeats):
|
||||||
|
warnings.warn(
|
||||||
|
'Passing in a parenthesized single number for repeats '
|
||||||
|
'is deprecated; pass either a single number or indicate '
|
||||||
|
'a tuple with a comma, like "(2,)".', DeprecationWarning,
|
||||||
|
stacklevel=2)
|
||||||
|
newitem = (dtype, ast.literal_eval(repeats))
|
||||||
|
|
||||||
|
result.append(newitem)
|
||||||
|
|
||||||
|
return result if islist else result[0]
|
||||||
|
|
||||||
|
class dummy_ctype:
|
||||||
|
|
||||||
|
def __init__(self, cls):
|
||||||
|
self._cls = cls
|
||||||
|
|
||||||
|
def __mul__(self, other):
|
||||||
|
return self
|
||||||
|
|
||||||
|
def __call__(self, *other):
|
||||||
|
return self._cls(other)
|
||||||
|
|
||||||
|
def __eq__(self, other):
|
||||||
|
return self._cls == other._cls
|
||||||
|
|
||||||
|
def __ne__(self, other):
|
||||||
|
return self._cls != other._cls
|
||||||
|
|
||||||
|
def _getintp_ctype():
|
||||||
|
val = _getintp_ctype.cache
|
||||||
|
if val is not None:
|
||||||
|
return val
|
||||||
|
if ctypes is None:
|
||||||
|
import numpy as np
|
||||||
|
val = dummy_ctype(np.intp)
|
||||||
|
else:
|
||||||
|
char = dtype('n').char
|
||||||
|
if char == 'i':
|
||||||
|
val = ctypes.c_int
|
||||||
|
elif char == 'l':
|
||||||
|
val = ctypes.c_long
|
||||||
|
elif char == 'q':
|
||||||
|
val = ctypes.c_longlong
|
||||||
|
else:
|
||||||
|
val = ctypes.c_long
|
||||||
|
_getintp_ctype.cache = val
|
||||||
|
return val
|
||||||
|
|
||||||
|
|
||||||
|
_getintp_ctype.cache = None
|
||||||
|
|
||||||
|
# Used for .ctypes attribute of ndarray
|
||||||
|
|
||||||
|
class _missing_ctypes:
|
||||||
|
def cast(self, num, obj):
|
||||||
|
return num.value
|
||||||
|
|
||||||
|
class c_void_p:
|
||||||
|
def __init__(self, ptr):
|
||||||
|
self.value = ptr
|
||||||
|
|
||||||
|
|
||||||
|
class _ctypes:
|
||||||
|
def __init__(self, array, ptr=None):
|
||||||
|
self._arr = array
|
||||||
|
|
||||||
|
if ctypes:
|
||||||
|
self._ctypes = ctypes
|
||||||
|
self._data = self._ctypes.c_void_p(ptr)
|
||||||
|
else:
|
||||||
|
# fake a pointer-like object that holds onto the reference
|
||||||
|
self._ctypes = _missing_ctypes()
|
||||||
|
self._data = self._ctypes.c_void_p(ptr)
|
||||||
|
self._data._objects = array
|
||||||
|
|
||||||
|
if self._arr.ndim == 0:
|
||||||
|
self._zerod = True
|
||||||
|
else:
|
||||||
|
self._zerod = False
|
||||||
|
|
||||||
|
def data_as(self, obj):
|
||||||
|
"""
|
||||||
|
Return the data pointer cast to a particular c-types object.
|
||||||
|
For example, calling ``self._as_parameter_`` is equivalent to
|
||||||
|
``self.data_as(ctypes.c_void_p)``. Perhaps you want to use
|
||||||
|
the data as a pointer to a ctypes array of floating-point data:
|
||||||
|
``self.data_as(ctypes.POINTER(ctypes.c_double))``.
|
||||||
|
|
||||||
|
The returned pointer will keep a reference to the array.
|
||||||
|
"""
|
||||||
|
# _ctypes.cast function causes a circular reference of self._data in
|
||||||
|
# self._data._objects. Attributes of self._data cannot be released
|
||||||
|
# until gc.collect is called. Make a copy of the pointer first then
|
||||||
|
# let it hold the array reference. This is a workaround to circumvent
|
||||||
|
# the CPython bug https://bugs.python.org/issue12836.
|
||||||
|
ptr = self._ctypes.cast(self._data, obj)
|
||||||
|
ptr._arr = self._arr
|
||||||
|
return ptr
|
||||||
|
|
||||||
|
def shape_as(self, obj):
|
||||||
|
"""
|
||||||
|
Return the shape tuple as an array of some other c-types
|
||||||
|
type. For example: ``self.shape_as(ctypes.c_short)``.
|
||||||
|
"""
|
||||||
|
if self._zerod:
|
||||||
|
return None
|
||||||
|
return (obj * self._arr.ndim)(*self._arr.shape)
|
||||||
|
|
||||||
|
def strides_as(self, obj):
|
||||||
|
"""
|
||||||
|
Return the strides tuple as an array of some other
|
||||||
|
c-types type. For example: ``self.strides_as(ctypes.c_longlong)``.
|
||||||
|
"""
|
||||||
|
if self._zerod:
|
||||||
|
return None
|
||||||
|
return (obj * self._arr.ndim)(*self._arr.strides)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def data(self):
|
||||||
|
"""
|
||||||
|
A pointer to the memory area of the array as a Python integer.
|
||||||
|
This memory area may contain data that is not aligned, or not in
|
||||||
|
correct byte-order. The memory area may not even be writeable.
|
||||||
|
The array flags and data-type of this array should be respected
|
||||||
|
when passing this attribute to arbitrary C-code to avoid trouble
|
||||||
|
that can include Python crashing. User Beware! The value of this
|
||||||
|
attribute is exactly the same as:
|
||||||
|
``self._array_interface_['data'][0]``.
|
||||||
|
|
||||||
|
Note that unlike ``data_as``, a reference won't be kept to the array:
|
||||||
|
code like ``ctypes.c_void_p((a + b).ctypes.data)`` will result in a
|
||||||
|
pointer to a deallocated array, and should be spelt
|
||||||
|
``(a + b).ctypes.data_as(ctypes.c_void_p)``
|
||||||
|
"""
|
||||||
|
return self._data.value
|
||||||
|
|
||||||
|
@property
|
||||||
|
def shape(self):
|
||||||
|
"""
|
||||||
|
(c_intp*self.ndim): A ctypes array of length self.ndim where
|
||||||
|
the basetype is the C-integer corresponding to ``dtype('p')`` on this
|
||||||
|
platform (see `~numpy.ctypeslib.c_intp`). This base-type could be
|
||||||
|
`ctypes.c_int`, `ctypes.c_long`, or `ctypes.c_longlong` depending on
|
||||||
|
the platform. The ctypes array contains the shape of
|
||||||
|
the underlying array.
|
||||||
|
"""
|
||||||
|
return self.shape_as(_getintp_ctype())
|
||||||
|
|
||||||
|
@property
|
||||||
|
def strides(self):
|
||||||
|
"""
|
||||||
|
(c_intp*self.ndim): A ctypes array of length self.ndim where
|
||||||
|
the basetype is the same as for the shape attribute. This ctypes
|
||||||
|
array contains the strides information from the underlying array.
|
||||||
|
This strides information is important for showing how many bytes
|
||||||
|
must be jumped to get to the next element in the array.
|
||||||
|
"""
|
||||||
|
return self.strides_as(_getintp_ctype())
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _as_parameter_(self):
|
||||||
|
"""
|
||||||
|
Overrides the ctypes semi-magic method
|
||||||
|
|
||||||
|
Enables `c_func(some_array.ctypes)`
|
||||||
|
"""
|
||||||
|
return self.data_as(ctypes.c_void_p)
|
||||||
|
|
||||||
|
# Numpy 1.21.0, 2021-05-18
|
||||||
|
|
||||||
|
def get_data(self):
|
||||||
|
"""Deprecated getter for the `_ctypes.data` property.
|
||||||
|
|
||||||
|
.. deprecated:: 1.21
|
||||||
|
"""
|
||||||
|
warnings.warn('"get_data" is deprecated. Use "data" instead',
|
||||||
|
DeprecationWarning, stacklevel=2)
|
||||||
|
return self.data
|
||||||
|
|
||||||
|
def get_shape(self):
|
||||||
|
"""Deprecated getter for the `_ctypes.shape` property.
|
||||||
|
|
||||||
|
.. deprecated:: 1.21
|
||||||
|
"""
|
||||||
|
warnings.warn('"get_shape" is deprecated. Use "shape" instead',
|
||||||
|
DeprecationWarning, stacklevel=2)
|
||||||
|
return self.shape
|
||||||
|
|
||||||
|
def get_strides(self):
|
||||||
|
"""Deprecated getter for the `_ctypes.strides` property.
|
||||||
|
|
||||||
|
.. deprecated:: 1.21
|
||||||
|
"""
|
||||||
|
warnings.warn('"get_strides" is deprecated. Use "strides" instead',
|
||||||
|
DeprecationWarning, stacklevel=2)
|
||||||
|
return self.strides
|
||||||
|
|
||||||
|
def get_as_parameter(self):
|
||||||
|
"""Deprecated getter for the `_ctypes._as_parameter_` property.
|
||||||
|
|
||||||
|
.. deprecated:: 1.21
|
||||||
|
"""
|
||||||
|
warnings.warn(
|
||||||
|
'"get_as_parameter" is deprecated. Use "_as_parameter_" instead',
|
||||||
|
DeprecationWarning, stacklevel=2,
|
||||||
|
)
|
||||||
|
return self._as_parameter_
|
||||||
|
|
||||||
|
|
||||||
|
def _newnames(datatype, order):
|
||||||
|
"""
|
||||||
|
Given a datatype and an order object, return a new names tuple, with the
|
||||||
|
order indicated
|
||||||
|
"""
|
||||||
|
oldnames = datatype.names
|
||||||
|
nameslist = list(oldnames)
|
||||||
|
if isinstance(order, str):
|
||||||
|
order = [order]
|
||||||
|
seen = set()
|
||||||
|
if isinstance(order, (list, tuple)):
|
||||||
|
for name in order:
|
||||||
|
try:
|
||||||
|
nameslist.remove(name)
|
||||||
|
except ValueError:
|
||||||
|
if name in seen:
|
||||||
|
raise ValueError(f"duplicate field name: {name}") from None
|
||||||
|
else:
|
||||||
|
raise ValueError(f"unknown field name: {name}") from None
|
||||||
|
seen.add(name)
|
||||||
|
return tuple(list(order) + nameslist)
|
||||||
|
raise ValueError(f"unsupported order value: {order}")
|
||||||
|
|
||||||
|
def _copy_fields(ary):
|
||||||
|
"""Return copy of structured array with padding between fields removed.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
ary : ndarray
|
||||||
|
Structured array from which to remove padding bytes
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
ary_copy : ndarray
|
||||||
|
Copy of ary with padding bytes removed
|
||||||
|
"""
|
||||||
|
dt = ary.dtype
|
||||||
|
copy_dtype = {'names': dt.names,
|
||||||
|
'formats': [dt.fields[name][0] for name in dt.names]}
|
||||||
|
return array(ary, dtype=copy_dtype, copy=True)
|
||||||
|
|
||||||
|
def _promote_fields(dt1, dt2):
|
||||||
|
""" Perform type promotion for two structured dtypes.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
dt1 : structured dtype
|
||||||
|
First dtype.
|
||||||
|
dt2 : structured dtype
|
||||||
|
Second dtype.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
out : dtype
|
||||||
|
The promoted dtype
|
||||||
|
|
||||||
|
Notes
|
||||||
|
-----
|
||||||
|
If one of the inputs is aligned, the result will be. The titles of
|
||||||
|
both descriptors must match (point to the same field).
|
||||||
|
"""
|
||||||
|
# Both must be structured and have the same names in the same order
|
||||||
|
if (dt1.names is None or dt2.names is None) or dt1.names != dt2.names:
|
||||||
|
raise DTypePromotionError(
|
||||||
|
f"field names `{dt1.names}` and `{dt2.names}` mismatch.")
|
||||||
|
|
||||||
|
# if both are identical, we can (maybe!) just return the same dtype.
|
||||||
|
identical = dt1 is dt2
|
||||||
|
new_fields = []
|
||||||
|
for name in dt1.names:
|
||||||
|
field1 = dt1.fields[name]
|
||||||
|
field2 = dt2.fields[name]
|
||||||
|
new_descr = promote_types(field1[0], field2[0])
|
||||||
|
identical = identical and new_descr is field1[0]
|
||||||
|
|
||||||
|
# Check that the titles match (if given):
|
||||||
|
if field1[2:] != field2[2:]:
|
||||||
|
raise DTypePromotionError(
|
||||||
|
f"field titles of field '{name}' mismatch")
|
||||||
|
if len(field1) == 2:
|
||||||
|
new_fields.append((name, new_descr))
|
||||||
|
else:
|
||||||
|
new_fields.append(((field1[2], name), new_descr))
|
||||||
|
|
||||||
|
res = dtype(new_fields, align=dt1.isalignedstruct or dt2.isalignedstruct)
|
||||||
|
|
||||||
|
# Might as well preserve identity (and metadata) if the dtype is identical
|
||||||
|
# and the itemsize, offsets are also unmodified. This could probably be
|
||||||
|
# sped up, but also probably just be removed entirely.
|
||||||
|
if identical and res.itemsize == dt1.itemsize:
|
||||||
|
for name in dt1.names:
|
||||||
|
if dt1.fields[name][1] != res.fields[name][1]:
|
||||||
|
return res # the dtype changed.
|
||||||
|
return dt1
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def _getfield_is_safe(oldtype, newtype, offset):
|
||||||
|
""" Checks safety of getfield for object arrays.
|
||||||
|
|
||||||
|
As in _view_is_safe, we need to check that memory containing objects is not
|
||||||
|
reinterpreted as a non-object datatype and vice versa.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
oldtype : data-type
|
||||||
|
Data type of the original ndarray.
|
||||||
|
newtype : data-type
|
||||||
|
Data type of the field being accessed by ndarray.getfield
|
||||||
|
offset : int
|
||||||
|
Offset of the field being accessed by ndarray.getfield
|
||||||
|
|
||||||
|
Raises
|
||||||
|
------
|
||||||
|
TypeError
|
||||||
|
If the field access is invalid
|
||||||
|
|
||||||
|
"""
|
||||||
|
if newtype.hasobject or oldtype.hasobject:
|
||||||
|
if offset == 0 and newtype == oldtype:
|
||||||
|
return
|
||||||
|
if oldtype.names is not None:
|
||||||
|
for name in oldtype.names:
|
||||||
|
if (oldtype.fields[name][1] == offset and
|
||||||
|
oldtype.fields[name][0] == newtype):
|
||||||
|
return
|
||||||
|
raise TypeError("Cannot get/set field of an object array")
|
||||||
|
return
|
||||||
|
|
||||||
|
def _view_is_safe(oldtype, newtype):
|
||||||
|
""" Checks safety of a view involving object arrays, for example when
|
||||||
|
doing::
|
||||||
|
|
||||||
|
np.zeros(10, dtype=oldtype).view(newtype)
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
oldtype : data-type
|
||||||
|
Data type of original ndarray
|
||||||
|
newtype : data-type
|
||||||
|
Data type of the view
|
||||||
|
|
||||||
|
Raises
|
||||||
|
------
|
||||||
|
TypeError
|
||||||
|
If the new type is incompatible with the old type.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
# if the types are equivalent, there is no problem.
|
||||||
|
# for example: dtype((np.record, 'i4,i4')) == dtype((np.void, 'i4,i4'))
|
||||||
|
if oldtype == newtype:
|
||||||
|
return
|
||||||
|
|
||||||
|
if newtype.hasobject or oldtype.hasobject:
|
||||||
|
raise TypeError("Cannot change data-type for array of references.")
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
|
# Given a string containing a PEP 3118 format specifier,
|
||||||
|
# construct a NumPy dtype
|
||||||
|
|
||||||
|
_pep3118_native_map = {
|
||||||
|
'?': '?',
|
||||||
|
'c': 'S1',
|
||||||
|
'b': 'b',
|
||||||
|
'B': 'B',
|
||||||
|
'h': 'h',
|
||||||
|
'H': 'H',
|
||||||
|
'i': 'i',
|
||||||
|
'I': 'I',
|
||||||
|
'l': 'l',
|
||||||
|
'L': 'L',
|
||||||
|
'q': 'q',
|
||||||
|
'Q': 'Q',
|
||||||
|
'e': 'e',
|
||||||
|
'f': 'f',
|
||||||
|
'd': 'd',
|
||||||
|
'g': 'g',
|
||||||
|
'Zf': 'F',
|
||||||
|
'Zd': 'D',
|
||||||
|
'Zg': 'G',
|
||||||
|
's': 'S',
|
||||||
|
'w': 'U',
|
||||||
|
'O': 'O',
|
||||||
|
'x': 'V', # padding
|
||||||
|
}
|
||||||
|
_pep3118_native_typechars = ''.join(_pep3118_native_map.keys())
|
||||||
|
|
||||||
|
_pep3118_standard_map = {
|
||||||
|
'?': '?',
|
||||||
|
'c': 'S1',
|
||||||
|
'b': 'b',
|
||||||
|
'B': 'B',
|
||||||
|
'h': 'i2',
|
||||||
|
'H': 'u2',
|
||||||
|
'i': 'i4',
|
||||||
|
'I': 'u4',
|
||||||
|
'l': 'i4',
|
||||||
|
'L': 'u4',
|
||||||
|
'q': 'i8',
|
||||||
|
'Q': 'u8',
|
||||||
|
'e': 'f2',
|
||||||
|
'f': 'f',
|
||||||
|
'd': 'd',
|
||||||
|
'Zf': 'F',
|
||||||
|
'Zd': 'D',
|
||||||
|
's': 'S',
|
||||||
|
'w': 'U',
|
||||||
|
'O': 'O',
|
||||||
|
'x': 'V', # padding
|
||||||
|
}
|
||||||
|
_pep3118_standard_typechars = ''.join(_pep3118_standard_map.keys())
|
||||||
|
|
||||||
|
_pep3118_unsupported_map = {
|
||||||
|
'u': 'UCS-2 strings',
|
||||||
|
'&': 'pointers',
|
||||||
|
't': 'bitfields',
|
||||||
|
'X': 'function pointers',
|
||||||
|
}
|
||||||
|
|
||||||
|
class _Stream:
|
||||||
|
def __init__(self, s):
|
||||||
|
self.s = s
|
||||||
|
self.byteorder = '@'
|
||||||
|
|
||||||
|
def advance(self, n):
|
||||||
|
res = self.s[:n]
|
||||||
|
self.s = self.s[n:]
|
||||||
|
return res
|
||||||
|
|
||||||
|
def consume(self, c):
|
||||||
|
if self.s[:len(c)] == c:
|
||||||
|
self.advance(len(c))
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
def consume_until(self, c):
|
||||||
|
if callable(c):
|
||||||
|
i = 0
|
||||||
|
while i < len(self.s) and not c(self.s[i]):
|
||||||
|
i = i + 1
|
||||||
|
return self.advance(i)
|
||||||
|
else:
|
||||||
|
i = self.s.index(c)
|
||||||
|
res = self.advance(i)
|
||||||
|
self.advance(len(c))
|
||||||
|
return res
|
||||||
|
|
||||||
|
@property
|
||||||
|
def next(self):
|
||||||
|
return self.s[0]
|
||||||
|
|
||||||
|
def __bool__(self):
|
||||||
|
return bool(self.s)
|
||||||
|
|
||||||
|
|
||||||
|
def _dtype_from_pep3118(spec):
|
||||||
|
stream = _Stream(spec)
|
||||||
|
dtype, align = __dtype_from_pep3118(stream, is_subdtype=False)
|
||||||
|
return dtype
|
||||||
|
|
||||||
|
def __dtype_from_pep3118(stream, is_subdtype):
|
||||||
|
field_spec = {
|
||||||
|
'names': [],
|
||||||
|
'formats': [],
|
||||||
|
'offsets': [],
|
||||||
|
'itemsize': 0
|
||||||
|
}
|
||||||
|
offset = 0
|
||||||
|
common_alignment = 1
|
||||||
|
is_padding = False
|
||||||
|
|
||||||
|
# Parse spec
|
||||||
|
while stream:
|
||||||
|
value = None
|
||||||
|
|
||||||
|
# End of structure, bail out to upper level
|
||||||
|
if stream.consume('}'):
|
||||||
|
break
|
||||||
|
|
||||||
|
# Sub-arrays (1)
|
||||||
|
shape = None
|
||||||
|
if stream.consume('('):
|
||||||
|
shape = stream.consume_until(')')
|
||||||
|
shape = tuple(map(int, shape.split(',')))
|
||||||
|
|
||||||
|
# Byte order
|
||||||
|
if stream.next in ('@', '=', '<', '>', '^', '!'):
|
||||||
|
byteorder = stream.advance(1)
|
||||||
|
if byteorder == '!':
|
||||||
|
byteorder = '>'
|
||||||
|
stream.byteorder = byteorder
|
||||||
|
|
||||||
|
# Byte order characters also control native vs. standard type sizes
|
||||||
|
if stream.byteorder in ('@', '^'):
|
||||||
|
type_map = _pep3118_native_map
|
||||||
|
type_map_chars = _pep3118_native_typechars
|
||||||
|
else:
|
||||||
|
type_map = _pep3118_standard_map
|
||||||
|
type_map_chars = _pep3118_standard_typechars
|
||||||
|
|
||||||
|
# Item sizes
|
||||||
|
itemsize_str = stream.consume_until(lambda c: not c.isdigit())
|
||||||
|
if itemsize_str:
|
||||||
|
itemsize = int(itemsize_str)
|
||||||
|
else:
|
||||||
|
itemsize = 1
|
||||||
|
|
||||||
|
# Data types
|
||||||
|
is_padding = False
|
||||||
|
|
||||||
|
if stream.consume('T{'):
|
||||||
|
value, align = __dtype_from_pep3118(
|
||||||
|
stream, is_subdtype=True)
|
||||||
|
elif stream.next in type_map_chars:
|
||||||
|
if stream.next == 'Z':
|
||||||
|
typechar = stream.advance(2)
|
||||||
|
else:
|
||||||
|
typechar = stream.advance(1)
|
||||||
|
|
||||||
|
is_padding = (typechar == 'x')
|
||||||
|
dtypechar = type_map[typechar]
|
||||||
|
if dtypechar in 'USV':
|
||||||
|
dtypechar += '%d' % itemsize
|
||||||
|
itemsize = 1
|
||||||
|
numpy_byteorder = {'@': '=', '^': '='}.get(
|
||||||
|
stream.byteorder, stream.byteorder)
|
||||||
|
value = dtype(numpy_byteorder + dtypechar)
|
||||||
|
align = value.alignment
|
||||||
|
elif stream.next in _pep3118_unsupported_map:
|
||||||
|
desc = _pep3118_unsupported_map[stream.next]
|
||||||
|
raise NotImplementedError(
|
||||||
|
f"Unrepresentable PEP 3118 data type {stream.next!r} ({desc})")
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unknown PEP 3118 data type specifier {stream.s!r}"
|
||||||
|
)
|
||||||
|
|
||||||
|
#
|
||||||
|
# Native alignment may require padding
|
||||||
|
#
|
||||||
|
# Here we assume that the presence of a '@' character implicitly
|
||||||
|
# implies that the start of the array is *already* aligned.
|
||||||
|
#
|
||||||
|
extra_offset = 0
|
||||||
|
if stream.byteorder == '@':
|
||||||
|
start_padding = (-offset) % align
|
||||||
|
intra_padding = (-value.itemsize) % align
|
||||||
|
|
||||||
|
offset += start_padding
|
||||||
|
|
||||||
|
if intra_padding != 0:
|
||||||
|
if itemsize > 1 or (shape is not None and _prod(shape) > 1):
|
||||||
|
# Inject internal padding to the end of the sub-item
|
||||||
|
value = _add_trailing_padding(value, intra_padding)
|
||||||
|
else:
|
||||||
|
# We can postpone the injection of internal padding,
|
||||||
|
# as the item appears at most once
|
||||||
|
extra_offset += intra_padding
|
||||||
|
|
||||||
|
# Update common alignment
|
||||||
|
common_alignment = _lcm(align, common_alignment)
|
||||||
|
|
||||||
|
# Convert itemsize to sub-array
|
||||||
|
if itemsize != 1:
|
||||||
|
value = dtype((value, (itemsize,)))
|
||||||
|
|
||||||
|
# Sub-arrays (2)
|
||||||
|
if shape is not None:
|
||||||
|
value = dtype((value, shape))
|
||||||
|
|
||||||
|
# Field name
|
||||||
|
if stream.consume(':'):
|
||||||
|
name = stream.consume_until(':')
|
||||||
|
else:
|
||||||
|
name = None
|
||||||
|
|
||||||
|
if not (is_padding and name is None):
|
||||||
|
if name is not None and name in field_spec['names']:
|
||||||
|
raise RuntimeError(
|
||||||
|
f"Duplicate field name '{name}' in PEP3118 format"
|
||||||
|
)
|
||||||
|
field_spec['names'].append(name)
|
||||||
|
field_spec['formats'].append(value)
|
||||||
|
field_spec['offsets'].append(offset)
|
||||||
|
|
||||||
|
offset += value.itemsize
|
||||||
|
offset += extra_offset
|
||||||
|
|
||||||
|
field_spec['itemsize'] = offset
|
||||||
|
|
||||||
|
# extra final padding for aligned types
|
||||||
|
if stream.byteorder == '@':
|
||||||
|
field_spec['itemsize'] += (-offset) % common_alignment
|
||||||
|
|
||||||
|
# Check if this was a simple 1-item type, and unwrap it
|
||||||
|
if (field_spec['names'] == [None]
|
||||||
|
and field_spec['offsets'][0] == 0
|
||||||
|
and field_spec['itemsize'] == field_spec['formats'][0].itemsize
|
||||||
|
and not is_subdtype):
|
||||||
|
ret = field_spec['formats'][0]
|
||||||
|
else:
|
||||||
|
_fix_names(field_spec)
|
||||||
|
ret = dtype(field_spec)
|
||||||
|
|
||||||
|
# Finished
|
||||||
|
return ret, common_alignment
|
||||||
|
|
||||||
|
def _fix_names(field_spec):
|
||||||
|
""" Replace names which are None with the next unused f%d name """
|
||||||
|
names = field_spec['names']
|
||||||
|
for i, name in enumerate(names):
|
||||||
|
if name is not None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
j = 0
|
||||||
|
while True:
|
||||||
|
name = f'f{j}'
|
||||||
|
if name not in names:
|
||||||
|
break
|
||||||
|
j = j + 1
|
||||||
|
names[i] = name
|
||||||
|
|
||||||
|
def _add_trailing_padding(value, padding):
|
||||||
|
"""Inject the specified number of padding bytes at the end of a dtype"""
|
||||||
|
if value.fields is None:
|
||||||
|
field_spec = {
|
||||||
|
'names': ['f0'],
|
||||||
|
'formats': [value],
|
||||||
|
'offsets': [0],
|
||||||
|
'itemsize': value.itemsize
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
fields = value.fields
|
||||||
|
names = value.names
|
||||||
|
field_spec = {
|
||||||
|
'names': names,
|
||||||
|
'formats': [fields[name][0] for name in names],
|
||||||
|
'offsets': [fields[name][1] for name in names],
|
||||||
|
'itemsize': value.itemsize
|
||||||
|
}
|
||||||
|
|
||||||
|
field_spec['itemsize'] += padding
|
||||||
|
return dtype(field_spec)
|
||||||
|
|
||||||
|
def _prod(a):
|
||||||
|
p = 1
|
||||||
|
for x in a:
|
||||||
|
p *= x
|
||||||
|
return p
|
||||||
|
|
||||||
|
def _gcd(a, b):
|
||||||
|
"""Calculate the greatest common divisor of a and b"""
|
||||||
|
if not (math.isfinite(a) and math.isfinite(b)):
|
||||||
|
raise ValueError('Can only find greatest common divisor of '
|
||||||
|
f'finite arguments, found "{a}" and "{b}"')
|
||||||
|
while b:
|
||||||
|
a, b = b, a % b
|
||||||
|
return a
|
||||||
|
|
||||||
|
def _lcm(a, b):
|
||||||
|
return a // _gcd(a, b) * b
|
||||||
|
|
||||||
|
def array_ufunc_errmsg_formatter(dummy, ufunc, method, *inputs, **kwargs):
|
||||||
|
""" Format the error message for when __array_ufunc__ gives up. """
|
||||||
|
args_string = ', '.join([f'{arg!r}' for arg in inputs] +
|
||||||
|
[f'{k}={v!r}'
|
||||||
|
for k, v in kwargs.items()])
|
||||||
|
args = inputs + kwargs.get('out', ())
|
||||||
|
types_string = ', '.join(repr(type(arg).__name__) for arg in args)
|
||||||
|
return ('operand type(s) all returned NotImplemented from '
|
||||||
|
f'__array_ufunc__({ufunc!r}, {method!r}, {args_string}): {types_string}'
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def array_function_errmsg_formatter(public_api, types):
|
||||||
|
""" Format the error message for when __array_ufunc__ gives up. """
|
||||||
|
func_name = f'{public_api.__module__}.{public_api.__name__}'
|
||||||
|
return (f"no implementation found for '{func_name}' on types that implement "
|
||||||
|
f'__array_function__: {list(types)}')
|
||||||
|
|
||||||
|
|
||||||
|
def _ufunc_doc_signature_formatter(ufunc):
|
||||||
|
"""
|
||||||
|
Builds a signature string which resembles PEP 457
|
||||||
|
|
||||||
|
This is used to construct the first line of the docstring
|
||||||
|
"""
|
||||||
|
|
||||||
|
# input arguments are simple
|
||||||
|
if ufunc.nin == 1:
|
||||||
|
in_args = 'x'
|
||||||
|
else:
|
||||||
|
in_args = ', '.join(f'x{i + 1}' for i in range(ufunc.nin))
|
||||||
|
|
||||||
|
# output arguments are both keyword or positional
|
||||||
|
if ufunc.nout == 0:
|
||||||
|
out_args = ', /, out=()'
|
||||||
|
elif ufunc.nout == 1:
|
||||||
|
out_args = ', /, out=None'
|
||||||
|
else:
|
||||||
|
out_args = '[, {positional}], / [, out={default}]'.format(
|
||||||
|
positional=', '.join(
|
||||||
|
f'out{i + 1}' for i in range(ufunc.nout)),
|
||||||
|
default=repr((None,) * ufunc.nout)
|
||||||
|
)
|
||||||
|
|
||||||
|
# keyword only args depend on whether this is a gufunc
|
||||||
|
kwargs = (
|
||||||
|
", casting='same_kind'"
|
||||||
|
", order='K'"
|
||||||
|
", dtype=None"
|
||||||
|
", subok=True"
|
||||||
|
)
|
||||||
|
|
||||||
|
# NOTE: gufuncs may or may not support the `axis` parameter
|
||||||
|
if ufunc.signature is None:
|
||||||
|
kwargs = f", where=True{kwargs}[, signature]"
|
||||||
|
else:
|
||||||
|
kwargs += "[, signature, axes, axis]"
|
||||||
|
|
||||||
|
# join all the parts together
|
||||||
|
return f'{ufunc.__name__}({in_args}{out_args}, *{kwargs})'
|
||||||
|
|
||||||
|
|
||||||
|
def npy_ctypes_check(cls):
|
||||||
|
# determine if a class comes from ctypes, in order to work around
|
||||||
|
# a bug in the buffer protocol for those objects, bpo-10746
|
||||||
|
try:
|
||||||
|
# ctypes class are new-style, so have an __mro__. This probably fails
|
||||||
|
# for ctypes classes with multiple inheritance.
|
||||||
|
if IS_PYPY:
|
||||||
|
# (..., _ctypes.basics._CData, Bufferable, object)
|
||||||
|
ctype_base = cls.__mro__[-3]
|
||||||
|
else:
|
||||||
|
# # (..., _ctypes._CData, object)
|
||||||
|
ctype_base = cls.__mro__[-2]
|
||||||
|
# right now, they're part of the _ctypes module
|
||||||
|
return '_ctypes' in ctype_base.__module__
|
||||||
|
except Exception:
|
||||||
|
return False
|
||||||
|
|
||||||
|
# used to handle the _NoValue default argument for na_object
|
||||||
|
# in the C implementation of the __reduce__ method for stringdtype
|
||||||
|
def _convert_to_stringdtype_kwargs(coerce, na_object=_NoValue):
|
||||||
|
if na_object is _NoValue:
|
||||||
|
return StringDType(coerce=coerce)
|
||||||
|
return StringDType(coerce=coerce, na_object=na_object)
|
@ -0,0 +1,72 @@
|
|||||||
|
import ctypes as ct
|
||||||
|
import re
|
||||||
|
from collections.abc import Callable, Iterable
|
||||||
|
from typing import Any, Final, Generic, Self, overload
|
||||||
|
|
||||||
|
from typing_extensions import TypeVar, deprecated
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import numpy.typing as npt
|
||||||
|
from numpy.ctypeslib import c_intp
|
||||||
|
|
||||||
|
_CastT = TypeVar("_CastT", bound=ct._CanCastTo)
|
||||||
|
_T_co = TypeVar("_T_co", covariant=True)
|
||||||
|
_CT = TypeVar("_CT", bound=ct._CData)
|
||||||
|
_PT_co = TypeVar("_PT_co", bound=int | None, default=None, covariant=True)
|
||||||
|
|
||||||
|
###
|
||||||
|
|
||||||
|
IS_PYPY: Final[bool] = ...
|
||||||
|
|
||||||
|
format_re: Final[re.Pattern[str]] = ...
|
||||||
|
sep_re: Final[re.Pattern[str]] = ...
|
||||||
|
space_re: Final[re.Pattern[str]] = ...
|
||||||
|
|
||||||
|
###
|
||||||
|
|
||||||
|
# TODO: Let the likes of `shape_as` and `strides_as` return `None`
|
||||||
|
# for 0D arrays once we've got shape-support
|
||||||
|
|
||||||
|
class _ctypes(Generic[_PT_co]):
|
||||||
|
@overload
|
||||||
|
def __init__(self: _ctypes[None], /, array: npt.NDArray[Any], ptr: None = None) -> None: ...
|
||||||
|
@overload
|
||||||
|
def __init__(self, /, array: npt.NDArray[Any], ptr: _PT_co) -> None: ...
|
||||||
|
|
||||||
|
#
|
||||||
|
@property
|
||||||
|
def data(self) -> _PT_co: ...
|
||||||
|
@property
|
||||||
|
def shape(self) -> ct.Array[c_intp]: ...
|
||||||
|
@property
|
||||||
|
def strides(self) -> ct.Array[c_intp]: ...
|
||||||
|
@property
|
||||||
|
def _as_parameter_(self) -> ct.c_void_p: ...
|
||||||
|
|
||||||
|
#
|
||||||
|
def data_as(self, /, obj: type[_CastT]) -> _CastT: ...
|
||||||
|
def shape_as(self, /, obj: type[_CT]) -> ct.Array[_CT]: ...
|
||||||
|
def strides_as(self, /, obj: type[_CT]) -> ct.Array[_CT]: ...
|
||||||
|
|
||||||
|
#
|
||||||
|
@deprecated('"get_data" is deprecated. Use "data" instead')
|
||||||
|
def get_data(self, /) -> _PT_co: ...
|
||||||
|
@deprecated('"get_shape" is deprecated. Use "shape" instead')
|
||||||
|
def get_shape(self, /) -> ct.Array[c_intp]: ...
|
||||||
|
@deprecated('"get_strides" is deprecated. Use "strides" instead')
|
||||||
|
def get_strides(self, /) -> ct.Array[c_intp]: ...
|
||||||
|
@deprecated('"get_as_parameter" is deprecated. Use "_as_parameter_" instead')
|
||||||
|
def get_as_parameter(self, /) -> ct.c_void_p: ...
|
||||||
|
|
||||||
|
class dummy_ctype(Generic[_T_co]):
|
||||||
|
_cls: type[_T_co]
|
||||||
|
|
||||||
|
def __init__(self, /, cls: type[_T_co]) -> None: ...
|
||||||
|
def __eq__(self, other: Self, /) -> bool: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||||||
|
def __ne__(self, other: Self, /) -> bool: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||||||
|
def __mul__(self, other: object, /) -> Self: ...
|
||||||
|
def __call__(self, /, *other: object) -> _T_co: ...
|
||||||
|
|
||||||
|
def array_ufunc_errmsg_formatter(dummy: object, ufunc: np.ufunc, method: str, *inputs: object, **kwargs: object) -> str: ...
|
||||||
|
def array_function_errmsg_formatter(public_api: Callable[..., object], types: Iterable[str]) -> str: ...
|
||||||
|
def npy_ctypes_check(cls: type) -> bool: ...
|
@ -0,0 +1,355 @@
|
|||||||
|
"""
|
||||||
|
Machine arithmetic - determine the parameters of the
|
||||||
|
floating-point arithmetic system
|
||||||
|
|
||||||
|
Author: Pearu Peterson, September 2003
|
||||||
|
|
||||||
|
"""
|
||||||
|
__all__ = ['MachAr']
|
||||||
|
|
||||||
|
from ._ufunc_config import errstate
|
||||||
|
from .fromnumeric import any
|
||||||
|
|
||||||
|
# Need to speed this up...especially for longdouble
|
||||||
|
|
||||||
|
# Deprecated 2021-10-20, NumPy 1.22
|
||||||
|
class MachAr:
|
||||||
|
"""
|
||||||
|
Diagnosing machine parameters.
|
||||||
|
|
||||||
|
Attributes
|
||||||
|
----------
|
||||||
|
ibeta : int
|
||||||
|
Radix in which numbers are represented.
|
||||||
|
it : int
|
||||||
|
Number of base-`ibeta` digits in the floating point mantissa M.
|
||||||
|
machep : int
|
||||||
|
Exponent of the smallest (most negative) power of `ibeta` that,
|
||||||
|
added to 1.0, gives something different from 1.0
|
||||||
|
eps : float
|
||||||
|
Floating-point number ``beta**machep`` (floating point precision)
|
||||||
|
negep : int
|
||||||
|
Exponent of the smallest power of `ibeta` that, subtracted
|
||||||
|
from 1.0, gives something different from 1.0.
|
||||||
|
epsneg : float
|
||||||
|
Floating-point number ``beta**negep``.
|
||||||
|
iexp : int
|
||||||
|
Number of bits in the exponent (including its sign and bias).
|
||||||
|
minexp : int
|
||||||
|
Smallest (most negative) power of `ibeta` consistent with there
|
||||||
|
being no leading zeros in the mantissa.
|
||||||
|
xmin : float
|
||||||
|
Floating-point number ``beta**minexp`` (the smallest [in
|
||||||
|
magnitude] positive floating point number with full precision).
|
||||||
|
maxexp : int
|
||||||
|
Smallest (positive) power of `ibeta` that causes overflow.
|
||||||
|
xmax : float
|
||||||
|
``(1-epsneg) * beta**maxexp`` (the largest [in magnitude]
|
||||||
|
usable floating value).
|
||||||
|
irnd : int
|
||||||
|
In ``range(6)``, information on what kind of rounding is done
|
||||||
|
in addition, and on how underflow is handled.
|
||||||
|
ngrd : int
|
||||||
|
Number of 'guard digits' used when truncating the product
|
||||||
|
of two mantissas to fit the representation.
|
||||||
|
epsilon : float
|
||||||
|
Same as `eps`.
|
||||||
|
tiny : float
|
||||||
|
An alias for `smallest_normal`, kept for backwards compatibility.
|
||||||
|
huge : float
|
||||||
|
Same as `xmax`.
|
||||||
|
precision : float
|
||||||
|
``- int(-log10(eps))``
|
||||||
|
resolution : float
|
||||||
|
``- 10**(-precision)``
|
||||||
|
smallest_normal : float
|
||||||
|
The smallest positive floating point number with 1 as leading bit in
|
||||||
|
the mantissa following IEEE-754. Same as `xmin`.
|
||||||
|
smallest_subnormal : float
|
||||||
|
The smallest positive floating point number with 0 as leading bit in
|
||||||
|
the mantissa following IEEE-754.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
float_conv : function, optional
|
||||||
|
Function that converts an integer or integer array to a float
|
||||||
|
or float array. Default is `float`.
|
||||||
|
int_conv : function, optional
|
||||||
|
Function that converts a float or float array to an integer or
|
||||||
|
integer array. Default is `int`.
|
||||||
|
float_to_float : function, optional
|
||||||
|
Function that converts a float array to float. Default is `float`.
|
||||||
|
Note that this does not seem to do anything useful in the current
|
||||||
|
implementation.
|
||||||
|
float_to_str : function, optional
|
||||||
|
Function that converts a single float to a string. Default is
|
||||||
|
``lambda v:'%24.16e' %v``.
|
||||||
|
title : str, optional
|
||||||
|
Title that is printed in the string representation of `MachAr`.
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
finfo : Machine limits for floating point types.
|
||||||
|
iinfo : Machine limits for integer types.
|
||||||
|
|
||||||
|
References
|
||||||
|
----------
|
||||||
|
.. [1] Press, Teukolsky, Vetterling and Flannery,
|
||||||
|
"Numerical Recipes in C++," 2nd ed,
|
||||||
|
Cambridge University Press, 2002, p. 31.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, float_conv=float, int_conv=int,
|
||||||
|
float_to_float=float,
|
||||||
|
float_to_str=lambda v: f'{v:24.16e}',
|
||||||
|
title='Python floating point number'):
|
||||||
|
"""
|
||||||
|
|
||||||
|
float_conv - convert integer to float (array)
|
||||||
|
int_conv - convert float (array) to integer
|
||||||
|
float_to_float - convert float array to float
|
||||||
|
float_to_str - convert array float to str
|
||||||
|
title - description of used floating point numbers
|
||||||
|
|
||||||
|
"""
|
||||||
|
# We ignore all errors here because we are purposely triggering
|
||||||
|
# underflow to detect the properties of the running arch.
|
||||||
|
with errstate(under='ignore'):
|
||||||
|
self._do_init(float_conv, int_conv, float_to_float, float_to_str, title)
|
||||||
|
|
||||||
|
def _do_init(self, float_conv, int_conv, float_to_float, float_to_str, title):
|
||||||
|
max_iterN = 10000
|
||||||
|
msg = "Did not converge after %d tries with %s"
|
||||||
|
one = float_conv(1)
|
||||||
|
two = one + one
|
||||||
|
zero = one - one
|
||||||
|
|
||||||
|
# Do we really need to do this? Aren't they 2 and 2.0?
|
||||||
|
# Determine ibeta and beta
|
||||||
|
a = one
|
||||||
|
for _ in range(max_iterN):
|
||||||
|
a = a + a
|
||||||
|
temp = a + one
|
||||||
|
temp1 = temp - a
|
||||||
|
if any(temp1 - one != zero):
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
raise RuntimeError(msg % (_, one.dtype))
|
||||||
|
b = one
|
||||||
|
for _ in range(max_iterN):
|
||||||
|
b = b + b
|
||||||
|
temp = a + b
|
||||||
|
itemp = int_conv(temp - a)
|
||||||
|
if any(itemp != 0):
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
raise RuntimeError(msg % (_, one.dtype))
|
||||||
|
ibeta = itemp
|
||||||
|
beta = float_conv(ibeta)
|
||||||
|
|
||||||
|
# Determine it and irnd
|
||||||
|
it = -1
|
||||||
|
b = one
|
||||||
|
for _ in range(max_iterN):
|
||||||
|
it = it + 1
|
||||||
|
b = b * beta
|
||||||
|
temp = b + one
|
||||||
|
temp1 = temp - b
|
||||||
|
if any(temp1 - one != zero):
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
raise RuntimeError(msg % (_, one.dtype))
|
||||||
|
|
||||||
|
betah = beta / two
|
||||||
|
a = one
|
||||||
|
for _ in range(max_iterN):
|
||||||
|
a = a + a
|
||||||
|
temp = a + one
|
||||||
|
temp1 = temp - a
|
||||||
|
if any(temp1 - one != zero):
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
raise RuntimeError(msg % (_, one.dtype))
|
||||||
|
temp = a + betah
|
||||||
|
irnd = 0
|
||||||
|
if any(temp - a != zero):
|
||||||
|
irnd = 1
|
||||||
|
tempa = a + beta
|
||||||
|
temp = tempa + betah
|
||||||
|
if irnd == 0 and any(temp - tempa != zero):
|
||||||
|
irnd = 2
|
||||||
|
|
||||||
|
# Determine negep and epsneg
|
||||||
|
negep = it + 3
|
||||||
|
betain = one / beta
|
||||||
|
a = one
|
||||||
|
for i in range(negep):
|
||||||
|
a = a * betain
|
||||||
|
b = a
|
||||||
|
for _ in range(max_iterN):
|
||||||
|
temp = one - a
|
||||||
|
if any(temp - one != zero):
|
||||||
|
break
|
||||||
|
a = a * beta
|
||||||
|
negep = negep - 1
|
||||||
|
# Prevent infinite loop on PPC with gcc 4.0:
|
||||||
|
if negep < 0:
|
||||||
|
raise RuntimeError("could not determine machine tolerance "
|
||||||
|
"for 'negep', locals() -> %s" % (locals()))
|
||||||
|
else:
|
||||||
|
raise RuntimeError(msg % (_, one.dtype))
|
||||||
|
negep = -negep
|
||||||
|
epsneg = a
|
||||||
|
|
||||||
|
# Determine machep and eps
|
||||||
|
machep = - it - 3
|
||||||
|
a = b
|
||||||
|
|
||||||
|
for _ in range(max_iterN):
|
||||||
|
temp = one + a
|
||||||
|
if any(temp - one != zero):
|
||||||
|
break
|
||||||
|
a = a * beta
|
||||||
|
machep = machep + 1
|
||||||
|
else:
|
||||||
|
raise RuntimeError(msg % (_, one.dtype))
|
||||||
|
eps = a
|
||||||
|
|
||||||
|
# Determine ngrd
|
||||||
|
ngrd = 0
|
||||||
|
temp = one + eps
|
||||||
|
if irnd == 0 and any(temp * one - one != zero):
|
||||||
|
ngrd = 1
|
||||||
|
|
||||||
|
# Determine iexp
|
||||||
|
i = 0
|
||||||
|
k = 1
|
||||||
|
z = betain
|
||||||
|
t = one + eps
|
||||||
|
nxres = 0
|
||||||
|
for _ in range(max_iterN):
|
||||||
|
y = z
|
||||||
|
z = y * y
|
||||||
|
a = z * one # Check here for underflow
|
||||||
|
temp = z * t
|
||||||
|
if any(a + a == zero) or any(abs(z) >= y):
|
||||||
|
break
|
||||||
|
temp1 = temp * betain
|
||||||
|
if any(temp1 * beta == z):
|
||||||
|
break
|
||||||
|
i = i + 1
|
||||||
|
k = k + k
|
||||||
|
else:
|
||||||
|
raise RuntimeError(msg % (_, one.dtype))
|
||||||
|
if ibeta != 10:
|
||||||
|
iexp = i + 1
|
||||||
|
mx = k + k
|
||||||
|
else:
|
||||||
|
iexp = 2
|
||||||
|
iz = ibeta
|
||||||
|
while k >= iz:
|
||||||
|
iz = iz * ibeta
|
||||||
|
iexp = iexp + 1
|
||||||
|
mx = iz + iz - 1
|
||||||
|
|
||||||
|
# Determine minexp and xmin
|
||||||
|
for _ in range(max_iterN):
|
||||||
|
xmin = y
|
||||||
|
y = y * betain
|
||||||
|
a = y * one
|
||||||
|
temp = y * t
|
||||||
|
if any((a + a) != zero) and any(abs(y) < xmin):
|
||||||
|
k = k + 1
|
||||||
|
temp1 = temp * betain
|
||||||
|
if any(temp1 * beta == y) and any(temp != y):
|
||||||
|
nxres = 3
|
||||||
|
xmin = y
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
raise RuntimeError(msg % (_, one.dtype))
|
||||||
|
minexp = -k
|
||||||
|
|
||||||
|
# Determine maxexp, xmax
|
||||||
|
if mx <= k + k - 3 and ibeta != 10:
|
||||||
|
mx = mx + mx
|
||||||
|
iexp = iexp + 1
|
||||||
|
maxexp = mx + minexp
|
||||||
|
irnd = irnd + nxres
|
||||||
|
if irnd >= 2:
|
||||||
|
maxexp = maxexp - 2
|
||||||
|
i = maxexp + minexp
|
||||||
|
if ibeta == 2 and not i:
|
||||||
|
maxexp = maxexp - 1
|
||||||
|
if i > 20:
|
||||||
|
maxexp = maxexp - 1
|
||||||
|
if any(a != y):
|
||||||
|
maxexp = maxexp - 2
|
||||||
|
xmax = one - epsneg
|
||||||
|
if any(xmax * one != xmax):
|
||||||
|
xmax = one - beta * epsneg
|
||||||
|
xmax = xmax / (xmin * beta * beta * beta)
|
||||||
|
i = maxexp + minexp + 3
|
||||||
|
for j in range(i):
|
||||||
|
if ibeta == 2:
|
||||||
|
xmax = xmax + xmax
|
||||||
|
else:
|
||||||
|
xmax = xmax * beta
|
||||||
|
|
||||||
|
smallest_subnormal = abs(xmin / beta ** (it))
|
||||||
|
|
||||||
|
self.ibeta = ibeta
|
||||||
|
self.it = it
|
||||||
|
self.negep = negep
|
||||||
|
self.epsneg = float_to_float(epsneg)
|
||||||
|
self._str_epsneg = float_to_str(epsneg)
|
||||||
|
self.machep = machep
|
||||||
|
self.eps = float_to_float(eps)
|
||||||
|
self._str_eps = float_to_str(eps)
|
||||||
|
self.ngrd = ngrd
|
||||||
|
self.iexp = iexp
|
||||||
|
self.minexp = minexp
|
||||||
|
self.xmin = float_to_float(xmin)
|
||||||
|
self._str_xmin = float_to_str(xmin)
|
||||||
|
self.maxexp = maxexp
|
||||||
|
self.xmax = float_to_float(xmax)
|
||||||
|
self._str_xmax = float_to_str(xmax)
|
||||||
|
self.irnd = irnd
|
||||||
|
|
||||||
|
self.title = title
|
||||||
|
# Commonly used parameters
|
||||||
|
self.epsilon = self.eps
|
||||||
|
self.tiny = self.xmin
|
||||||
|
self.huge = self.xmax
|
||||||
|
self.smallest_normal = self.xmin
|
||||||
|
self._str_smallest_normal = float_to_str(self.xmin)
|
||||||
|
self.smallest_subnormal = float_to_float(smallest_subnormal)
|
||||||
|
self._str_smallest_subnormal = float_to_str(smallest_subnormal)
|
||||||
|
|
||||||
|
import math
|
||||||
|
self.precision = int(-math.log10(float_to_float(self.eps)))
|
||||||
|
ten = two + two + two + two + two
|
||||||
|
resolution = ten ** (-self.precision)
|
||||||
|
self.resolution = float_to_float(resolution)
|
||||||
|
self._str_resolution = float_to_str(resolution)
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
fmt = (
|
||||||
|
'Machine parameters for %(title)s\n'
|
||||||
|
'---------------------------------------------------------------------\n'
|
||||||
|
'ibeta=%(ibeta)s it=%(it)s iexp=%(iexp)s ngrd=%(ngrd)s irnd=%(irnd)s\n'
|
||||||
|
'machep=%(machep)s eps=%(_str_eps)s (beta**machep == epsilon)\n'
|
||||||
|
'negep =%(negep)s epsneg=%(_str_epsneg)s (beta**epsneg)\n'
|
||||||
|
'minexp=%(minexp)s xmin=%(_str_xmin)s (beta**minexp == tiny)\n'
|
||||||
|
'maxexp=%(maxexp)s xmax=%(_str_xmax)s ((1-epsneg)*beta**maxexp == huge)\n'
|
||||||
|
'smallest_normal=%(smallest_normal)s '
|
||||||
|
'smallest_subnormal=%(smallest_subnormal)s\n'
|
||||||
|
'---------------------------------------------------------------------\n'
|
||||||
|
)
|
||||||
|
return fmt % self.__dict__
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
print(MachAr())
|
@ -0,0 +1,55 @@
|
|||||||
|
from collections.abc import Iterable
|
||||||
|
from typing import Any, Final, TypeVar, overload
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from numpy import _CastingKind
|
||||||
|
from numpy._utils import set_module as set_module
|
||||||
|
|
||||||
|
###
|
||||||
|
|
||||||
|
_T = TypeVar("_T")
|
||||||
|
_TupleT = TypeVar("_TupleT", bound=tuple[()] | tuple[Any, Any, *tuple[Any, ...]])
|
||||||
|
_ExceptionT = TypeVar("_ExceptionT", bound=Exception)
|
||||||
|
|
||||||
|
###
|
||||||
|
|
||||||
|
class UFuncTypeError(TypeError):
|
||||||
|
ufunc: Final[np.ufunc]
|
||||||
|
def __init__(self, /, ufunc: np.ufunc) -> None: ...
|
||||||
|
|
||||||
|
class _UFuncNoLoopError(UFuncTypeError):
|
||||||
|
dtypes: tuple[np.dtype, ...]
|
||||||
|
def __init__(self, /, ufunc: np.ufunc, dtypes: Iterable[np.dtype]) -> None: ...
|
||||||
|
|
||||||
|
class _UFuncBinaryResolutionError(_UFuncNoLoopError):
|
||||||
|
dtypes: tuple[np.dtype, np.dtype]
|
||||||
|
def __init__(self, /, ufunc: np.ufunc, dtypes: Iterable[np.dtype]) -> None: ...
|
||||||
|
|
||||||
|
class _UFuncCastingError(UFuncTypeError):
|
||||||
|
casting: Final[_CastingKind]
|
||||||
|
from_: Final[np.dtype]
|
||||||
|
to: Final[np.dtype]
|
||||||
|
def __init__(self, /, ufunc: np.ufunc, casting: _CastingKind, from_: np.dtype, to: np.dtype) -> None: ...
|
||||||
|
|
||||||
|
class _UFuncInputCastingError(_UFuncCastingError):
|
||||||
|
in_i: Final[int]
|
||||||
|
def __init__(self, /, ufunc: np.ufunc, casting: _CastingKind, from_: np.dtype, to: np.dtype, i: int) -> None: ...
|
||||||
|
|
||||||
|
class _UFuncOutputCastingError(_UFuncCastingError):
|
||||||
|
out_i: Final[int]
|
||||||
|
def __init__(self, /, ufunc: np.ufunc, casting: _CastingKind, from_: np.dtype, to: np.dtype, i: int) -> None: ...
|
||||||
|
|
||||||
|
class _ArrayMemoryError(MemoryError):
|
||||||
|
shape: tuple[int, ...]
|
||||||
|
dtype: np.dtype
|
||||||
|
def __init__(self, /, shape: tuple[int, ...], dtype: np.dtype) -> None: ...
|
||||||
|
@property
|
||||||
|
def _total_size(self) -> int: ...
|
||||||
|
@staticmethod
|
||||||
|
def _size_to_string(num_bytes: int) -> str: ...
|
||||||
|
|
||||||
|
@overload
|
||||||
|
def _unpack_tuple(tup: tuple[_T]) -> _T: ...
|
||||||
|
@overload
|
||||||
|
def _unpack_tuple(tup: _TupleT) -> _TupleT: ...
|
||||||
|
def _display_as_base(cls: type[_ExceptionT]) -> type[_ExceptionT]: ...
|
@ -0,0 +1,255 @@
|
|||||||
|
"""
|
||||||
|
Array methods which are called by both the C-code for the method
|
||||||
|
and the Python code for the NumPy-namespace function
|
||||||
|
|
||||||
|
"""
|
||||||
|
import os
|
||||||
|
import pickle
|
||||||
|
import warnings
|
||||||
|
from contextlib import nullcontext
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from numpy._core import multiarray as mu
|
||||||
|
from numpy._core import numerictypes as nt
|
||||||
|
from numpy._core import umath as um
|
||||||
|
from numpy._core.multiarray import asanyarray
|
||||||
|
from numpy._globals import _NoValue
|
||||||
|
|
||||||
|
# save those O(100) nanoseconds!
|
||||||
|
bool_dt = mu.dtype("bool")
|
||||||
|
umr_maximum = um.maximum.reduce
|
||||||
|
umr_minimum = um.minimum.reduce
|
||||||
|
umr_sum = um.add.reduce
|
||||||
|
umr_prod = um.multiply.reduce
|
||||||
|
umr_bitwise_count = um.bitwise_count
|
||||||
|
umr_any = um.logical_or.reduce
|
||||||
|
umr_all = um.logical_and.reduce
|
||||||
|
|
||||||
|
# Complex types to -> (2,)float view for fast-path computation in _var()
|
||||||
|
_complex_to_float = {
|
||||||
|
nt.dtype(nt.csingle): nt.dtype(nt.single),
|
||||||
|
nt.dtype(nt.cdouble): nt.dtype(nt.double),
|
||||||
|
}
|
||||||
|
# Special case for windows: ensure double takes precedence
|
||||||
|
if nt.dtype(nt.longdouble) != nt.dtype(nt.double):
|
||||||
|
_complex_to_float.update({
|
||||||
|
nt.dtype(nt.clongdouble): nt.dtype(nt.longdouble),
|
||||||
|
})
|
||||||
|
|
||||||
|
# avoid keyword arguments to speed up parsing, saves about 15%-20% for very
|
||||||
|
# small reductions
|
||||||
|
def _amax(a, axis=None, out=None, keepdims=False,
|
||||||
|
initial=_NoValue, where=True):
|
||||||
|
return umr_maximum(a, axis, None, out, keepdims, initial, where)
|
||||||
|
|
||||||
|
def _amin(a, axis=None, out=None, keepdims=False,
|
||||||
|
initial=_NoValue, where=True):
|
||||||
|
return umr_minimum(a, axis, None, out, keepdims, initial, where)
|
||||||
|
|
||||||
|
def _sum(a, axis=None, dtype=None, out=None, keepdims=False,
|
||||||
|
initial=_NoValue, where=True):
|
||||||
|
return umr_sum(a, axis, dtype, out, keepdims, initial, where)
|
||||||
|
|
||||||
|
def _prod(a, axis=None, dtype=None, out=None, keepdims=False,
|
||||||
|
initial=_NoValue, where=True):
|
||||||
|
return umr_prod(a, axis, dtype, out, keepdims, initial, where)
|
||||||
|
|
||||||
|
def _any(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
|
||||||
|
# By default, return a boolean for any and all
|
||||||
|
if dtype is None:
|
||||||
|
dtype = bool_dt
|
||||||
|
# Parsing keyword arguments is currently fairly slow, so avoid it for now
|
||||||
|
if where is True:
|
||||||
|
return umr_any(a, axis, dtype, out, keepdims)
|
||||||
|
return umr_any(a, axis, dtype, out, keepdims, where=where)
|
||||||
|
|
||||||
|
def _all(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
|
||||||
|
# By default, return a boolean for any and all
|
||||||
|
if dtype is None:
|
||||||
|
dtype = bool_dt
|
||||||
|
# Parsing keyword arguments is currently fairly slow, so avoid it for now
|
||||||
|
if where is True:
|
||||||
|
return umr_all(a, axis, dtype, out, keepdims)
|
||||||
|
return umr_all(a, axis, dtype, out, keepdims, where=where)
|
||||||
|
|
||||||
|
def _count_reduce_items(arr, axis, keepdims=False, where=True):
|
||||||
|
# fast-path for the default case
|
||||||
|
if where is True:
|
||||||
|
# no boolean mask given, calculate items according to axis
|
||||||
|
if axis is None:
|
||||||
|
axis = tuple(range(arr.ndim))
|
||||||
|
elif not isinstance(axis, tuple):
|
||||||
|
axis = (axis,)
|
||||||
|
items = 1
|
||||||
|
for ax in axis:
|
||||||
|
items *= arr.shape[mu.normalize_axis_index(ax, arr.ndim)]
|
||||||
|
items = nt.intp(items)
|
||||||
|
else:
|
||||||
|
# TODO: Optimize case when `where` is broadcast along a non-reduction
|
||||||
|
# axis and full sum is more excessive than needed.
|
||||||
|
|
||||||
|
# guarded to protect circular imports
|
||||||
|
from numpy.lib._stride_tricks_impl import broadcast_to
|
||||||
|
# count True values in (potentially broadcasted) boolean mask
|
||||||
|
items = umr_sum(broadcast_to(where, arr.shape), axis, nt.intp, None,
|
||||||
|
keepdims)
|
||||||
|
return items
|
||||||
|
|
||||||
|
def _clip(a, min=None, max=None, out=None, **kwargs):
|
||||||
|
if a.dtype.kind in "iu":
|
||||||
|
# If min/max is a Python integer, deal with out-of-bound values here.
|
||||||
|
# (This enforces NEP 50 rules as no value based promotion is done.)
|
||||||
|
if type(min) is int and min <= np.iinfo(a.dtype).min:
|
||||||
|
min = None
|
||||||
|
if type(max) is int and max >= np.iinfo(a.dtype).max:
|
||||||
|
max = None
|
||||||
|
|
||||||
|
if min is None and max is None:
|
||||||
|
# return identity
|
||||||
|
return um.positive(a, out=out, **kwargs)
|
||||||
|
elif min is None:
|
||||||
|
return um.minimum(a, max, out=out, **kwargs)
|
||||||
|
elif max is None:
|
||||||
|
return um.maximum(a, min, out=out, **kwargs)
|
||||||
|
else:
|
||||||
|
return um.clip(a, min, max, out=out, **kwargs)
|
||||||
|
|
||||||
|
def _mean(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
|
||||||
|
arr = asanyarray(a)
|
||||||
|
|
||||||
|
is_float16_result = False
|
||||||
|
|
||||||
|
rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where)
|
||||||
|
if rcount == 0 if where is True else umr_any(rcount == 0, axis=None):
|
||||||
|
warnings.warn("Mean of empty slice.", RuntimeWarning, stacklevel=2)
|
||||||
|
|
||||||
|
# Cast bool, unsigned int, and int to float64 by default
|
||||||
|
if dtype is None:
|
||||||
|
if issubclass(arr.dtype.type, (nt.integer, nt.bool)):
|
||||||
|
dtype = mu.dtype('f8')
|
||||||
|
elif issubclass(arr.dtype.type, nt.float16):
|
||||||
|
dtype = mu.dtype('f4')
|
||||||
|
is_float16_result = True
|
||||||
|
|
||||||
|
ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
|
||||||
|
if isinstance(ret, mu.ndarray):
|
||||||
|
ret = um.true_divide(
|
||||||
|
ret, rcount, out=ret, casting='unsafe', subok=False)
|
||||||
|
if is_float16_result and out is None:
|
||||||
|
ret = arr.dtype.type(ret)
|
||||||
|
elif hasattr(ret, 'dtype'):
|
||||||
|
if is_float16_result:
|
||||||
|
ret = arr.dtype.type(ret / rcount)
|
||||||
|
else:
|
||||||
|
ret = ret.dtype.type(ret / rcount)
|
||||||
|
else:
|
||||||
|
ret = ret / rcount
|
||||||
|
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def _var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *,
|
||||||
|
where=True, mean=None):
|
||||||
|
arr = asanyarray(a)
|
||||||
|
|
||||||
|
rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where)
|
||||||
|
# Make this warning show up on top.
|
||||||
|
if ddof >= rcount if where is True else umr_any(ddof >= rcount, axis=None):
|
||||||
|
warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning,
|
||||||
|
stacklevel=2)
|
||||||
|
|
||||||
|
# Cast bool, unsigned int, and int to float64 by default
|
||||||
|
if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool)):
|
||||||
|
dtype = mu.dtype('f8')
|
||||||
|
|
||||||
|
if mean is not None:
|
||||||
|
arrmean = mean
|
||||||
|
else:
|
||||||
|
# Compute the mean.
|
||||||
|
# Note that if dtype is not of inexact type then arraymean will
|
||||||
|
# not be either.
|
||||||
|
arrmean = umr_sum(arr, axis, dtype, keepdims=True, where=where)
|
||||||
|
# The shape of rcount has to match arrmean to not change the shape of
|
||||||
|
# out in broadcasting. Otherwise, it cannot be stored back to arrmean.
|
||||||
|
if rcount.ndim == 0:
|
||||||
|
# fast-path for default case when where is True
|
||||||
|
div = rcount
|
||||||
|
else:
|
||||||
|
# matching rcount to arrmean when where is specified as array
|
||||||
|
div = rcount.reshape(arrmean.shape)
|
||||||
|
if isinstance(arrmean, mu.ndarray):
|
||||||
|
arrmean = um.true_divide(arrmean, div, out=arrmean,
|
||||||
|
casting='unsafe', subok=False)
|
||||||
|
elif hasattr(arrmean, "dtype"):
|
||||||
|
arrmean = arrmean.dtype.type(arrmean / rcount)
|
||||||
|
else:
|
||||||
|
arrmean = arrmean / rcount
|
||||||
|
|
||||||
|
# Compute sum of squared deviations from mean
|
||||||
|
# Note that x may not be inexact and that we need it to be an array,
|
||||||
|
# not a scalar.
|
||||||
|
x = asanyarray(arr - arrmean)
|
||||||
|
|
||||||
|
if issubclass(arr.dtype.type, (nt.floating, nt.integer)):
|
||||||
|
x = um.multiply(x, x, out=x)
|
||||||
|
# Fast-paths for built-in complex types
|
||||||
|
elif x.dtype in _complex_to_float:
|
||||||
|
xv = x.view(dtype=(_complex_to_float[x.dtype], (2,)))
|
||||||
|
um.multiply(xv, xv, out=xv)
|
||||||
|
x = um.add(xv[..., 0], xv[..., 1], out=x.real).real
|
||||||
|
# Most general case; includes handling object arrays containing imaginary
|
||||||
|
# numbers and complex types with non-native byteorder
|
||||||
|
else:
|
||||||
|
x = um.multiply(x, um.conjugate(x), out=x).real
|
||||||
|
|
||||||
|
ret = umr_sum(x, axis, dtype, out, keepdims=keepdims, where=where)
|
||||||
|
|
||||||
|
# Compute degrees of freedom and make sure it is not negative.
|
||||||
|
rcount = um.maximum(rcount - ddof, 0)
|
||||||
|
|
||||||
|
# divide by degrees of freedom
|
||||||
|
if isinstance(ret, mu.ndarray):
|
||||||
|
ret = um.true_divide(
|
||||||
|
ret, rcount, out=ret, casting='unsafe', subok=False)
|
||||||
|
elif hasattr(ret, 'dtype'):
|
||||||
|
ret = ret.dtype.type(ret / rcount)
|
||||||
|
else:
|
||||||
|
ret = ret / rcount
|
||||||
|
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def _std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *,
|
||||||
|
where=True, mean=None):
|
||||||
|
ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
|
||||||
|
keepdims=keepdims, where=where, mean=mean)
|
||||||
|
|
||||||
|
if isinstance(ret, mu.ndarray):
|
||||||
|
ret = um.sqrt(ret, out=ret)
|
||||||
|
elif hasattr(ret, 'dtype'):
|
||||||
|
ret = ret.dtype.type(um.sqrt(ret))
|
||||||
|
else:
|
||||||
|
ret = um.sqrt(ret)
|
||||||
|
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def _ptp(a, axis=None, out=None, keepdims=False):
|
||||||
|
return um.subtract(
|
||||||
|
umr_maximum(a, axis, None, out, keepdims),
|
||||||
|
umr_minimum(a, axis, None, None, keepdims),
|
||||||
|
out
|
||||||
|
)
|
||||||
|
|
||||||
|
def _dump(self, file, protocol=2):
|
||||||
|
if hasattr(file, 'write'):
|
||||||
|
ctx = nullcontext(file)
|
||||||
|
else:
|
||||||
|
ctx = open(os.fspath(file), "wb")
|
||||||
|
with ctx as f:
|
||||||
|
pickle.dump(self, f, protocol=protocol)
|
||||||
|
|
||||||
|
def _dumps(self, protocol=2):
|
||||||
|
return pickle.dumps(self, protocol=protocol)
|
||||||
|
|
||||||
|
def _bitwise_count(a, out=None, *, where=True, casting='same_kind',
|
||||||
|
order='K', dtype=None, subok=True):
|
||||||
|
return umr_bitwise_count(a, out, where=where, casting=casting,
|
||||||
|
order=order, dtype=dtype, subok=subok)
|
@ -0,0 +1,22 @@
|
|||||||
|
from collections.abc import Callable
|
||||||
|
from typing import Any, Concatenate, TypeAlias
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from . import _exceptions as _exceptions
|
||||||
|
|
||||||
|
###
|
||||||
|
|
||||||
|
_Reduce2: TypeAlias = Callable[Concatenate[object, ...], Any]
|
||||||
|
|
||||||
|
###
|
||||||
|
|
||||||
|
bool_dt: np.dtype[np.bool] = ...
|
||||||
|
umr_maximum: _Reduce2 = ...
|
||||||
|
umr_minimum: _Reduce2 = ...
|
||||||
|
umr_sum: _Reduce2 = ...
|
||||||
|
umr_prod: _Reduce2 = ...
|
||||||
|
umr_bitwise_count = np.bitwise_count
|
||||||
|
umr_any: _Reduce2 = ...
|
||||||
|
umr_all: _Reduce2 = ...
|
||||||
|
_complex_to_float: dict[np.dtype[np.complexfloating], np.dtype[np.floating]] = ...
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,25 @@
|
|||||||
|
from types import ModuleType
|
||||||
|
from typing import TypedDict, type_check_only
|
||||||
|
|
||||||
|
# NOTE: these 5 are only defined on systems with an intel processor
|
||||||
|
SSE42: ModuleType | None = ...
|
||||||
|
FMA3: ModuleType | None = ...
|
||||||
|
AVX2: ModuleType | None = ...
|
||||||
|
AVX512F: ModuleType | None = ...
|
||||||
|
AVX512_SKX: ModuleType | None = ...
|
||||||
|
|
||||||
|
baseline: ModuleType | None = ...
|
||||||
|
|
||||||
|
@type_check_only
|
||||||
|
class SimdTargets(TypedDict):
|
||||||
|
SSE42: ModuleType | None
|
||||||
|
AVX2: ModuleType | None
|
||||||
|
FMA3: ModuleType | None
|
||||||
|
AVX512F: ModuleType | None
|
||||||
|
AVX512_SKX: ModuleType | None
|
||||||
|
baseline: ModuleType | None
|
||||||
|
|
||||||
|
targets: SimdTargets = ...
|
||||||
|
|
||||||
|
def clear_floatstatus() -> None: ...
|
||||||
|
def get_floatstatus() -> int: ...
|
@ -0,0 +1,100 @@
|
|||||||
|
"""
|
||||||
|
String-handling utilities to avoid locale-dependence.
|
||||||
|
|
||||||
|
Used primarily to generate type name aliases.
|
||||||
|
"""
|
||||||
|
# "import string" is costly to import!
|
||||||
|
# Construct the translation tables directly
|
||||||
|
# "A" = chr(65), "a" = chr(97)
|
||||||
|
_all_chars = tuple(map(chr, range(256)))
|
||||||
|
_ascii_upper = _all_chars[65:65 + 26]
|
||||||
|
_ascii_lower = _all_chars[97:97 + 26]
|
||||||
|
LOWER_TABLE = _all_chars[:65] + _ascii_lower + _all_chars[65 + 26:]
|
||||||
|
UPPER_TABLE = _all_chars[:97] + _ascii_upper + _all_chars[97 + 26:]
|
||||||
|
|
||||||
|
|
||||||
|
def english_lower(s):
|
||||||
|
""" Apply English case rules to convert ASCII strings to all lower case.
|
||||||
|
|
||||||
|
This is an internal utility function to replace calls to str.lower() such
|
||||||
|
that we can avoid changing behavior with changing locales. In particular,
|
||||||
|
Turkish has distinct dotted and dotless variants of the Latin letter "I" in
|
||||||
|
both lowercase and uppercase. Thus, "I".lower() != "i" in a "tr" locale.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
s : str
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
lowered : str
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> from numpy._core.numerictypes import english_lower
|
||||||
|
>>> english_lower('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_')
|
||||||
|
'abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz0123456789_'
|
||||||
|
>>> english_lower('')
|
||||||
|
''
|
||||||
|
"""
|
||||||
|
lowered = s.translate(LOWER_TABLE)
|
||||||
|
return lowered
|
||||||
|
|
||||||
|
|
||||||
|
def english_upper(s):
|
||||||
|
""" Apply English case rules to convert ASCII strings to all upper case.
|
||||||
|
|
||||||
|
This is an internal utility function to replace calls to str.upper() such
|
||||||
|
that we can avoid changing behavior with changing locales. In particular,
|
||||||
|
Turkish has distinct dotted and dotless variants of the Latin letter "I" in
|
||||||
|
both lowercase and uppercase. Thus, "i".upper() != "I" in a "tr" locale.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
s : str
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
uppered : str
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> from numpy._core.numerictypes import english_upper
|
||||||
|
>>> english_upper('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_')
|
||||||
|
'ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_'
|
||||||
|
>>> english_upper('')
|
||||||
|
''
|
||||||
|
"""
|
||||||
|
uppered = s.translate(UPPER_TABLE)
|
||||||
|
return uppered
|
||||||
|
|
||||||
|
|
||||||
|
def english_capitalize(s):
|
||||||
|
""" Apply English case rules to convert the first character of an ASCII
|
||||||
|
string to upper case.
|
||||||
|
|
||||||
|
This is an internal utility function to replace calls to str.capitalize()
|
||||||
|
such that we can avoid changing behavior with changing locales.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
s : str
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
capitalized : str
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> from numpy._core.numerictypes import english_capitalize
|
||||||
|
>>> english_capitalize('int8')
|
||||||
|
'Int8'
|
||||||
|
>>> english_capitalize('Int8')
|
||||||
|
'Int8'
|
||||||
|
>>> english_capitalize('')
|
||||||
|
''
|
||||||
|
"""
|
||||||
|
if s:
|
||||||
|
return english_upper(s[0]) + s[1:]
|
||||||
|
else:
|
||||||
|
return s
|
@ -0,0 +1,12 @@
|
|||||||
|
from typing import Final
|
||||||
|
|
||||||
|
_all_chars: Final[tuple[str, ...]] = ...
|
||||||
|
_ascii_upper: Final[tuple[str, ...]] = ...
|
||||||
|
_ascii_lower: Final[tuple[str, ...]] = ...
|
||||||
|
|
||||||
|
LOWER_TABLE: Final[tuple[str, ...]] = ...
|
||||||
|
UPPER_TABLE: Final[tuple[str, ...]] = ...
|
||||||
|
|
||||||
|
def english_lower(s: str) -> str: ...
|
||||||
|
def english_upper(s: str) -> str: ...
|
||||||
|
def english_capitalize(s: str) -> str: ...
|
Binary file not shown.
@ -0,0 +1,119 @@
|
|||||||
|
"""
|
||||||
|
Due to compatibility, numpy has a very large number of different naming
|
||||||
|
conventions for the scalar types (those subclassing from `numpy.generic`).
|
||||||
|
This file produces a convoluted set of dictionaries mapping names to types,
|
||||||
|
and sometimes other mappings too.
|
||||||
|
|
||||||
|
.. data:: allTypes
|
||||||
|
A dictionary of names to types that will be exposed as attributes through
|
||||||
|
``np._core.numerictypes.*``
|
||||||
|
|
||||||
|
.. data:: sctypeDict
|
||||||
|
Similar to `allTypes`, but maps a broader set of aliases to their types.
|
||||||
|
|
||||||
|
.. data:: sctypes
|
||||||
|
A dictionary keyed by a "type group" string, providing a list of types
|
||||||
|
under that group.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
import numpy._core.multiarray as ma
|
||||||
|
from numpy._core.multiarray import dtype, typeinfo
|
||||||
|
|
||||||
|
######################################
|
||||||
|
# Building `sctypeDict` and `allTypes`
|
||||||
|
######################################
|
||||||
|
|
||||||
|
sctypeDict = {}
|
||||||
|
allTypes = {}
|
||||||
|
c_names_dict = {}
|
||||||
|
|
||||||
|
_abstract_type_names = {
|
||||||
|
"generic", "integer", "inexact", "floating", "number",
|
||||||
|
"flexible", "character", "complexfloating", "unsignedinteger",
|
||||||
|
"signedinteger"
|
||||||
|
}
|
||||||
|
|
||||||
|
for _abstract_type_name in _abstract_type_names:
|
||||||
|
allTypes[_abstract_type_name] = getattr(ma, _abstract_type_name)
|
||||||
|
|
||||||
|
for k, v in typeinfo.items():
|
||||||
|
if k.startswith("NPY_") and v not in c_names_dict:
|
||||||
|
c_names_dict[k[4:]] = v
|
||||||
|
else:
|
||||||
|
concrete_type = v.type
|
||||||
|
allTypes[k] = concrete_type
|
||||||
|
sctypeDict[k] = concrete_type
|
||||||
|
|
||||||
|
_aliases = {
|
||||||
|
"double": "float64",
|
||||||
|
"cdouble": "complex128",
|
||||||
|
"single": "float32",
|
||||||
|
"csingle": "complex64",
|
||||||
|
"half": "float16",
|
||||||
|
"bool_": "bool",
|
||||||
|
# Default integer:
|
||||||
|
"int_": "intp",
|
||||||
|
"uint": "uintp",
|
||||||
|
}
|
||||||
|
|
||||||
|
for k, v in _aliases.items():
|
||||||
|
sctypeDict[k] = allTypes[v]
|
||||||
|
allTypes[k] = allTypes[v]
|
||||||
|
|
||||||
|
# extra aliases are added only to `sctypeDict`
|
||||||
|
# to support dtype name access, such as`np.dtype("float")`
|
||||||
|
_extra_aliases = {
|
||||||
|
"float": "float64",
|
||||||
|
"complex": "complex128",
|
||||||
|
"object": "object_",
|
||||||
|
"bytes": "bytes_",
|
||||||
|
"a": "bytes_",
|
||||||
|
"int": "int_",
|
||||||
|
"str": "str_",
|
||||||
|
"unicode": "str_",
|
||||||
|
}
|
||||||
|
|
||||||
|
for k, v in _extra_aliases.items():
|
||||||
|
sctypeDict[k] = allTypes[v]
|
||||||
|
|
||||||
|
# include extended precision sized aliases
|
||||||
|
for is_complex, full_name in [(False, "longdouble"), (True, "clongdouble")]:
|
||||||
|
longdouble_type: type = allTypes[full_name]
|
||||||
|
|
||||||
|
bits: int = dtype(longdouble_type).itemsize * 8
|
||||||
|
base_name: str = "complex" if is_complex else "float"
|
||||||
|
extended_prec_name: str = f"{base_name}{bits}"
|
||||||
|
if extended_prec_name not in allTypes:
|
||||||
|
sctypeDict[extended_prec_name] = longdouble_type
|
||||||
|
allTypes[extended_prec_name] = longdouble_type
|
||||||
|
|
||||||
|
|
||||||
|
####################
|
||||||
|
# Building `sctypes`
|
||||||
|
####################
|
||||||
|
|
||||||
|
sctypes = {"int": set(), "uint": set(), "float": set(),
|
||||||
|
"complex": set(), "others": set()}
|
||||||
|
|
||||||
|
for type_info in typeinfo.values():
|
||||||
|
if type_info.kind in ["M", "m"]: # exclude timedelta and datetime
|
||||||
|
continue
|
||||||
|
|
||||||
|
concrete_type = type_info.type
|
||||||
|
|
||||||
|
# find proper group for each concrete type
|
||||||
|
for type_group, abstract_type in [
|
||||||
|
("int", ma.signedinteger), ("uint", ma.unsignedinteger),
|
||||||
|
("float", ma.floating), ("complex", ma.complexfloating),
|
||||||
|
("others", ma.generic)
|
||||||
|
]:
|
||||||
|
if issubclass(concrete_type, abstract_type):
|
||||||
|
sctypes[type_group].add(concrete_type)
|
||||||
|
break
|
||||||
|
|
||||||
|
# sort sctype groups by bitsize
|
||||||
|
for sctype_key in sctypes.keys():
|
||||||
|
sctype_list = list(sctypes[sctype_key])
|
||||||
|
sctype_list.sort(key=lambda x: dtype(x).itemsize)
|
||||||
|
sctypes[sctype_key] = sctype_list
|
@ -0,0 +1,97 @@
|
|||||||
|
from collections.abc import Collection
|
||||||
|
from typing import Final, TypeAlias, TypedDict, type_check_only
|
||||||
|
from typing import Literal as L
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
__all__ = (
|
||||||
|
"_abstract_type_names",
|
||||||
|
"_aliases",
|
||||||
|
"_extra_aliases",
|
||||||
|
"allTypes",
|
||||||
|
"c_names_dict",
|
||||||
|
"sctypeDict",
|
||||||
|
"sctypes",
|
||||||
|
)
|
||||||
|
|
||||||
|
sctypeDict: Final[dict[str, type[np.generic]]]
|
||||||
|
allTypes: Final[dict[str, type[np.generic]]]
|
||||||
|
|
||||||
|
@type_check_only
|
||||||
|
class _CNamesDict(TypedDict):
|
||||||
|
BOOL: np.dtype[np.bool]
|
||||||
|
HALF: np.dtype[np.half]
|
||||||
|
FLOAT: np.dtype[np.single]
|
||||||
|
DOUBLE: np.dtype[np.double]
|
||||||
|
LONGDOUBLE: np.dtype[np.longdouble]
|
||||||
|
CFLOAT: np.dtype[np.csingle]
|
||||||
|
CDOUBLE: np.dtype[np.cdouble]
|
||||||
|
CLONGDOUBLE: np.dtype[np.clongdouble]
|
||||||
|
STRING: np.dtype[np.bytes_]
|
||||||
|
UNICODE: np.dtype[np.str_]
|
||||||
|
VOID: np.dtype[np.void]
|
||||||
|
OBJECT: np.dtype[np.object_]
|
||||||
|
DATETIME: np.dtype[np.datetime64]
|
||||||
|
TIMEDELTA: np.dtype[np.timedelta64]
|
||||||
|
BYTE: np.dtype[np.byte]
|
||||||
|
UBYTE: np.dtype[np.ubyte]
|
||||||
|
SHORT: np.dtype[np.short]
|
||||||
|
USHORT: np.dtype[np.ushort]
|
||||||
|
INT: np.dtype[np.intc]
|
||||||
|
UINT: np.dtype[np.uintc]
|
||||||
|
LONG: np.dtype[np.long]
|
||||||
|
ULONG: np.dtype[np.ulong]
|
||||||
|
LONGLONG: np.dtype[np.longlong]
|
||||||
|
ULONGLONG: np.dtype[np.ulonglong]
|
||||||
|
|
||||||
|
c_names_dict: Final[_CNamesDict]
|
||||||
|
|
||||||
|
_AbstractTypeName: TypeAlias = L[
|
||||||
|
"generic",
|
||||||
|
"flexible",
|
||||||
|
"character",
|
||||||
|
"number",
|
||||||
|
"integer",
|
||||||
|
"inexact",
|
||||||
|
"unsignedinteger",
|
||||||
|
"signedinteger",
|
||||||
|
"floating",
|
||||||
|
"complexfloating",
|
||||||
|
]
|
||||||
|
_abstract_type_names: Final[set[_AbstractTypeName]]
|
||||||
|
|
||||||
|
@type_check_only
|
||||||
|
class _AliasesType(TypedDict):
|
||||||
|
double: L["float64"]
|
||||||
|
cdouble: L["complex128"]
|
||||||
|
single: L["float32"]
|
||||||
|
csingle: L["complex64"]
|
||||||
|
half: L["float16"]
|
||||||
|
bool_: L["bool"]
|
||||||
|
int_: L["intp"]
|
||||||
|
uint: L["intp"]
|
||||||
|
|
||||||
|
_aliases: Final[_AliasesType]
|
||||||
|
|
||||||
|
@type_check_only
|
||||||
|
class _ExtraAliasesType(TypedDict):
|
||||||
|
float: L["float64"]
|
||||||
|
complex: L["complex128"]
|
||||||
|
object: L["object_"]
|
||||||
|
bytes: L["bytes_"]
|
||||||
|
a: L["bytes_"]
|
||||||
|
int: L["int_"]
|
||||||
|
str: L["str_"]
|
||||||
|
unicode: L["str_"]
|
||||||
|
|
||||||
|
_extra_aliases: Final[_ExtraAliasesType]
|
||||||
|
|
||||||
|
@type_check_only
|
||||||
|
class _SCTypes(TypedDict):
|
||||||
|
int: Collection[type[np.signedinteger]]
|
||||||
|
uint: Collection[type[np.unsignedinteger]]
|
||||||
|
float: Collection[type[np.floating]]
|
||||||
|
complex: Collection[type[np.complexfloating]]
|
||||||
|
others: Collection[type[np.flexible | np.bool | np.object_]]
|
||||||
|
|
||||||
|
sctypes: Final[_SCTypes]
|
@ -0,0 +1,489 @@
|
|||||||
|
"""
|
||||||
|
Functions for changing global ufunc configuration
|
||||||
|
|
||||||
|
This provides helpers which wrap `_get_extobj_dict` and `_make_extobj`, and
|
||||||
|
`_extobj_contextvar` from umath.
|
||||||
|
"""
|
||||||
|
import functools
|
||||||
|
|
||||||
|
from numpy._utils import set_module
|
||||||
|
|
||||||
|
from .umath import _extobj_contextvar, _get_extobj_dict, _make_extobj
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
"seterr", "geterr", "setbufsize", "getbufsize", "seterrcall", "geterrcall",
|
||||||
|
"errstate"
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
@set_module('numpy')
|
||||||
|
def seterr(all=None, divide=None, over=None, under=None, invalid=None):
|
||||||
|
"""
|
||||||
|
Set how floating-point errors are handled.
|
||||||
|
|
||||||
|
Note that operations on integer scalar types (such as `int16`) are
|
||||||
|
handled like floating point, and are affected by these settings.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
all : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
||||||
|
Set treatment for all types of floating-point errors at once:
|
||||||
|
|
||||||
|
- ignore: Take no action when the exception occurs.
|
||||||
|
- warn: Print a :exc:`RuntimeWarning` (via the Python `warnings`
|
||||||
|
module).
|
||||||
|
- raise: Raise a :exc:`FloatingPointError`.
|
||||||
|
- call: Call a function specified using the `seterrcall` function.
|
||||||
|
- print: Print a warning directly to ``stdout``.
|
||||||
|
- log: Record error in a Log object specified by `seterrcall`.
|
||||||
|
|
||||||
|
The default is not to change the current behavior.
|
||||||
|
divide : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
||||||
|
Treatment for division by zero.
|
||||||
|
over : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
||||||
|
Treatment for floating-point overflow.
|
||||||
|
under : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
||||||
|
Treatment for floating-point underflow.
|
||||||
|
invalid : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
||||||
|
Treatment for invalid floating-point operation.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
old_settings : dict
|
||||||
|
Dictionary containing the old settings.
|
||||||
|
|
||||||
|
See also
|
||||||
|
--------
|
||||||
|
seterrcall : Set a callback function for the 'call' mode.
|
||||||
|
geterr, geterrcall, errstate
|
||||||
|
|
||||||
|
Notes
|
||||||
|
-----
|
||||||
|
The floating-point exceptions are defined in the IEEE 754 standard [1]_:
|
||||||
|
|
||||||
|
- Division by zero: infinite result obtained from finite numbers.
|
||||||
|
- Overflow: result too large to be expressed.
|
||||||
|
- Underflow: result so close to zero that some precision
|
||||||
|
was lost.
|
||||||
|
- Invalid operation: result is not an expressible number, typically
|
||||||
|
indicates that a NaN was produced.
|
||||||
|
|
||||||
|
.. [1] https://en.wikipedia.org/wiki/IEEE_754
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> import numpy as np
|
||||||
|
>>> orig_settings = np.seterr(all='ignore') # seterr to known value
|
||||||
|
>>> np.int16(32000) * np.int16(3)
|
||||||
|
np.int16(30464)
|
||||||
|
>>> np.seterr(over='raise')
|
||||||
|
{'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
|
||||||
|
>>> old_settings = np.seterr(all='warn', over='raise')
|
||||||
|
>>> np.int16(32000) * np.int16(3)
|
||||||
|
Traceback (most recent call last):
|
||||||
|
File "<stdin>", line 1, in <module>
|
||||||
|
FloatingPointError: overflow encountered in scalar multiply
|
||||||
|
|
||||||
|
>>> old_settings = np.seterr(all='print')
|
||||||
|
>>> np.geterr()
|
||||||
|
{'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'}
|
||||||
|
>>> np.int16(32000) * np.int16(3)
|
||||||
|
np.int16(30464)
|
||||||
|
>>> np.seterr(**orig_settings) # restore original
|
||||||
|
{'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'}
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
old = _get_extobj_dict()
|
||||||
|
# The errstate doesn't include call and bufsize, so pop them:
|
||||||
|
old.pop("call", None)
|
||||||
|
old.pop("bufsize", None)
|
||||||
|
|
||||||
|
extobj = _make_extobj(
|
||||||
|
all=all, divide=divide, over=over, under=under, invalid=invalid)
|
||||||
|
_extobj_contextvar.set(extobj)
|
||||||
|
return old
|
||||||
|
|
||||||
|
|
||||||
|
@set_module('numpy')
|
||||||
|
def geterr():
|
||||||
|
"""
|
||||||
|
Get the current way of handling floating-point errors.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
res : dict
|
||||||
|
A dictionary with keys "divide", "over", "under", and "invalid",
|
||||||
|
whose values are from the strings "ignore", "print", "log", "warn",
|
||||||
|
"raise", and "call". The keys represent possible floating-point
|
||||||
|
exceptions, and the values define how these exceptions are handled.
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
geterrcall, seterr, seterrcall
|
||||||
|
|
||||||
|
Notes
|
||||||
|
-----
|
||||||
|
For complete documentation of the types of floating-point exceptions and
|
||||||
|
treatment options, see `seterr`.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> import numpy as np
|
||||||
|
>>> np.geterr()
|
||||||
|
{'divide': 'warn', 'over': 'warn', 'under': 'ignore', 'invalid': 'warn'}
|
||||||
|
>>> np.arange(3.) / np.arange(3.) # doctest: +SKIP
|
||||||
|
array([nan, 1., 1.])
|
||||||
|
RuntimeWarning: invalid value encountered in divide
|
||||||
|
|
||||||
|
>>> oldsettings = np.seterr(all='warn', invalid='raise')
|
||||||
|
>>> np.geterr()
|
||||||
|
{'divide': 'warn', 'over': 'warn', 'under': 'warn', 'invalid': 'raise'}
|
||||||
|
>>> np.arange(3.) / np.arange(3.)
|
||||||
|
Traceback (most recent call last):
|
||||||
|
...
|
||||||
|
FloatingPointError: invalid value encountered in divide
|
||||||
|
>>> oldsettings = np.seterr(**oldsettings) # restore original
|
||||||
|
|
||||||
|
"""
|
||||||
|
res = _get_extobj_dict()
|
||||||
|
# The "geterr" doesn't include call and bufsize,:
|
||||||
|
res.pop("call", None)
|
||||||
|
res.pop("bufsize", None)
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
@set_module('numpy')
|
||||||
|
def setbufsize(size):
|
||||||
|
"""
|
||||||
|
Set the size of the buffer used in ufuncs.
|
||||||
|
|
||||||
|
.. versionchanged:: 2.0
|
||||||
|
The scope of setting the buffer is tied to the `numpy.errstate`
|
||||||
|
context. Exiting a ``with errstate():`` will also restore the bufsize.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
size : int
|
||||||
|
Size of buffer.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
bufsize : int
|
||||||
|
Previous size of ufunc buffer in bytes.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
When exiting a `numpy.errstate` context manager the bufsize is restored:
|
||||||
|
|
||||||
|
>>> import numpy as np
|
||||||
|
>>> with np.errstate():
|
||||||
|
... np.setbufsize(4096)
|
||||||
|
... print(np.getbufsize())
|
||||||
|
...
|
||||||
|
8192
|
||||||
|
4096
|
||||||
|
>>> np.getbufsize()
|
||||||
|
8192
|
||||||
|
|
||||||
|
"""
|
||||||
|
old = _get_extobj_dict()["bufsize"]
|
||||||
|
extobj = _make_extobj(bufsize=size)
|
||||||
|
_extobj_contextvar.set(extobj)
|
||||||
|
return old
|
||||||
|
|
||||||
|
|
||||||
|
@set_module('numpy')
|
||||||
|
def getbufsize():
|
||||||
|
"""
|
||||||
|
Return the size of the buffer used in ufuncs.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
getbufsize : int
|
||||||
|
Size of ufunc buffer in bytes.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> import numpy as np
|
||||||
|
>>> np.getbufsize()
|
||||||
|
8192
|
||||||
|
|
||||||
|
"""
|
||||||
|
return _get_extobj_dict()["bufsize"]
|
||||||
|
|
||||||
|
|
||||||
|
@set_module('numpy')
|
||||||
|
def seterrcall(func):
|
||||||
|
"""
|
||||||
|
Set the floating-point error callback function or log object.
|
||||||
|
|
||||||
|
There are two ways to capture floating-point error messages. The first
|
||||||
|
is to set the error-handler to 'call', using `seterr`. Then, set
|
||||||
|
the function to call using this function.
|
||||||
|
|
||||||
|
The second is to set the error-handler to 'log', using `seterr`.
|
||||||
|
Floating-point errors then trigger a call to the 'write' method of
|
||||||
|
the provided object.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
func : callable f(err, flag) or object with write method
|
||||||
|
Function to call upon floating-point errors ('call'-mode) or
|
||||||
|
object whose 'write' method is used to log such message ('log'-mode).
|
||||||
|
|
||||||
|
The call function takes two arguments. The first is a string describing
|
||||||
|
the type of error (such as "divide by zero", "overflow", "underflow",
|
||||||
|
or "invalid value"), and the second is the status flag. The flag is a
|
||||||
|
byte, whose four least-significant bits indicate the type of error, one
|
||||||
|
of "divide", "over", "under", "invalid"::
|
||||||
|
|
||||||
|
[0 0 0 0 divide over under invalid]
|
||||||
|
|
||||||
|
In other words, ``flags = divide + 2*over + 4*under + 8*invalid``.
|
||||||
|
|
||||||
|
If an object is provided, its write method should take one argument,
|
||||||
|
a string.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
h : callable, log instance or None
|
||||||
|
The old error handler.
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
seterr, geterr, geterrcall
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
Callback upon error:
|
||||||
|
|
||||||
|
>>> def err_handler(type, flag):
|
||||||
|
... print("Floating point error (%s), with flag %s" % (type, flag))
|
||||||
|
...
|
||||||
|
|
||||||
|
>>> import numpy as np
|
||||||
|
|
||||||
|
>>> orig_handler = np.seterrcall(err_handler)
|
||||||
|
>>> orig_err = np.seterr(all='call')
|
||||||
|
|
||||||
|
>>> np.array([1, 2, 3]) / 0.0
|
||||||
|
Floating point error (divide by zero), with flag 1
|
||||||
|
array([inf, inf, inf])
|
||||||
|
|
||||||
|
>>> np.seterrcall(orig_handler)
|
||||||
|
<function err_handler at 0x...>
|
||||||
|
>>> np.seterr(**orig_err)
|
||||||
|
{'divide': 'call', 'over': 'call', 'under': 'call', 'invalid': 'call'}
|
||||||
|
|
||||||
|
Log error message:
|
||||||
|
|
||||||
|
>>> class Log:
|
||||||
|
... def write(self, msg):
|
||||||
|
... print("LOG: %s" % msg)
|
||||||
|
...
|
||||||
|
|
||||||
|
>>> log = Log()
|
||||||
|
>>> saved_handler = np.seterrcall(log)
|
||||||
|
>>> save_err = np.seterr(all='log')
|
||||||
|
|
||||||
|
>>> np.array([1, 2, 3]) / 0.0
|
||||||
|
LOG: Warning: divide by zero encountered in divide
|
||||||
|
array([inf, inf, inf])
|
||||||
|
|
||||||
|
>>> np.seterrcall(orig_handler)
|
||||||
|
<numpy.Log object at 0x...>
|
||||||
|
>>> np.seterr(**orig_err)
|
||||||
|
{'divide': 'log', 'over': 'log', 'under': 'log', 'invalid': 'log'}
|
||||||
|
|
||||||
|
"""
|
||||||
|
old = _get_extobj_dict()["call"]
|
||||||
|
extobj = _make_extobj(call=func)
|
||||||
|
_extobj_contextvar.set(extobj)
|
||||||
|
return old
|
||||||
|
|
||||||
|
|
||||||
|
@set_module('numpy')
|
||||||
|
def geterrcall():
|
||||||
|
"""
|
||||||
|
Return the current callback function used on floating-point errors.
|
||||||
|
|
||||||
|
When the error handling for a floating-point error (one of "divide",
|
||||||
|
"over", "under", or "invalid") is set to 'call' or 'log', the function
|
||||||
|
that is called or the log instance that is written to is returned by
|
||||||
|
`geterrcall`. This function or log instance has been set with
|
||||||
|
`seterrcall`.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
errobj : callable, log instance or None
|
||||||
|
The current error handler. If no handler was set through `seterrcall`,
|
||||||
|
``None`` is returned.
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
seterrcall, seterr, geterr
|
||||||
|
|
||||||
|
Notes
|
||||||
|
-----
|
||||||
|
For complete documentation of the types of floating-point exceptions and
|
||||||
|
treatment options, see `seterr`.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> import numpy as np
|
||||||
|
>>> np.geterrcall() # we did not yet set a handler, returns None
|
||||||
|
|
||||||
|
>>> orig_settings = np.seterr(all='call')
|
||||||
|
>>> def err_handler(type, flag):
|
||||||
|
... print("Floating point error (%s), with flag %s" % (type, flag))
|
||||||
|
>>> old_handler = np.seterrcall(err_handler)
|
||||||
|
>>> np.array([1, 2, 3]) / 0.0
|
||||||
|
Floating point error (divide by zero), with flag 1
|
||||||
|
array([inf, inf, inf])
|
||||||
|
|
||||||
|
>>> cur_handler = np.geterrcall()
|
||||||
|
>>> cur_handler is err_handler
|
||||||
|
True
|
||||||
|
>>> old_settings = np.seterr(**orig_settings) # restore original
|
||||||
|
>>> old_handler = np.seterrcall(None) # restore original
|
||||||
|
|
||||||
|
"""
|
||||||
|
return _get_extobj_dict()["call"]
|
||||||
|
|
||||||
|
|
||||||
|
class _unspecified:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
_Unspecified = _unspecified()
|
||||||
|
|
||||||
|
|
||||||
|
@set_module('numpy')
|
||||||
|
class errstate:
|
||||||
|
"""
|
||||||
|
errstate(**kwargs)
|
||||||
|
|
||||||
|
Context manager for floating-point error handling.
|
||||||
|
|
||||||
|
Using an instance of `errstate` as a context manager allows statements in
|
||||||
|
that context to execute with a known error handling behavior. Upon entering
|
||||||
|
the context the error handling is set with `seterr` and `seterrcall`, and
|
||||||
|
upon exiting it is reset to what it was before.
|
||||||
|
|
||||||
|
.. versionchanged:: 1.17.0
|
||||||
|
`errstate` is also usable as a function decorator, saving
|
||||||
|
a level of indentation if an entire function is wrapped.
|
||||||
|
|
||||||
|
.. versionchanged:: 2.0
|
||||||
|
`errstate` is now fully thread and asyncio safe, but may not be
|
||||||
|
entered more than once.
|
||||||
|
It is not safe to decorate async functions using ``errstate``.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
kwargs : {divide, over, under, invalid}
|
||||||
|
Keyword arguments. The valid keywords are the possible floating-point
|
||||||
|
exceptions. Each keyword should have a string value that defines the
|
||||||
|
treatment for the particular error. Possible values are
|
||||||
|
{'ignore', 'warn', 'raise', 'call', 'print', 'log'}.
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
seterr, geterr, seterrcall, geterrcall
|
||||||
|
|
||||||
|
Notes
|
||||||
|
-----
|
||||||
|
For complete documentation of the types of floating-point exceptions and
|
||||||
|
treatment options, see `seterr`.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> import numpy as np
|
||||||
|
>>> olderr = np.seterr(all='ignore') # Set error handling to known state.
|
||||||
|
|
||||||
|
>>> np.arange(3) / 0.
|
||||||
|
array([nan, inf, inf])
|
||||||
|
>>> with np.errstate(divide='ignore'):
|
||||||
|
... np.arange(3) / 0.
|
||||||
|
array([nan, inf, inf])
|
||||||
|
|
||||||
|
>>> np.sqrt(-1)
|
||||||
|
np.float64(nan)
|
||||||
|
>>> with np.errstate(invalid='raise'):
|
||||||
|
... np.sqrt(-1)
|
||||||
|
Traceback (most recent call last):
|
||||||
|
File "<stdin>", line 2, in <module>
|
||||||
|
FloatingPointError: invalid value encountered in sqrt
|
||||||
|
|
||||||
|
Outside the context the error handling behavior has not changed:
|
||||||
|
|
||||||
|
>>> np.geterr()
|
||||||
|
{'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
|
||||||
|
>>> olderr = np.seterr(**olderr) # restore original state
|
||||||
|
|
||||||
|
"""
|
||||||
|
__slots__ = (
|
||||||
|
"_all",
|
||||||
|
"_call",
|
||||||
|
"_divide",
|
||||||
|
"_invalid",
|
||||||
|
"_over",
|
||||||
|
"_token",
|
||||||
|
"_under",
|
||||||
|
)
|
||||||
|
|
||||||
|
def __init__(self, *, call=_Unspecified,
|
||||||
|
all=None, divide=None, over=None, under=None, invalid=None):
|
||||||
|
self._token = None
|
||||||
|
self._call = call
|
||||||
|
self._all = all
|
||||||
|
self._divide = divide
|
||||||
|
self._over = over
|
||||||
|
self._under = under
|
||||||
|
self._invalid = invalid
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
# Note that __call__ duplicates much of this logic
|
||||||
|
if self._token is not None:
|
||||||
|
raise TypeError("Cannot enter `np.errstate` twice.")
|
||||||
|
if self._call is _Unspecified:
|
||||||
|
extobj = _make_extobj(
|
||||||
|
all=self._all, divide=self._divide, over=self._over,
|
||||||
|
under=self._under, invalid=self._invalid)
|
||||||
|
else:
|
||||||
|
extobj = _make_extobj(
|
||||||
|
call=self._call,
|
||||||
|
all=self._all, divide=self._divide, over=self._over,
|
||||||
|
under=self._under, invalid=self._invalid)
|
||||||
|
|
||||||
|
self._token = _extobj_contextvar.set(extobj)
|
||||||
|
|
||||||
|
def __exit__(self, *exc_info):
|
||||||
|
_extobj_contextvar.reset(self._token)
|
||||||
|
|
||||||
|
def __call__(self, func):
|
||||||
|
# We need to customize `__call__` compared to `ContextDecorator`
|
||||||
|
# because we must store the token per-thread so cannot store it on
|
||||||
|
# the instance (we could create a new instance for this).
|
||||||
|
# This duplicates the code from `__enter__`.
|
||||||
|
@functools.wraps(func)
|
||||||
|
def inner(*args, **kwargs):
|
||||||
|
if self._call is _Unspecified:
|
||||||
|
extobj = _make_extobj(
|
||||||
|
all=self._all, divide=self._divide, over=self._over,
|
||||||
|
under=self._under, invalid=self._invalid)
|
||||||
|
else:
|
||||||
|
extobj = _make_extobj(
|
||||||
|
call=self._call,
|
||||||
|
all=self._all, divide=self._divide, over=self._over,
|
||||||
|
under=self._under, invalid=self._invalid)
|
||||||
|
|
||||||
|
_token = _extobj_contextvar.set(extobj)
|
||||||
|
try:
|
||||||
|
# Call the original, decorated, function:
|
||||||
|
return func(*args, **kwargs)
|
||||||
|
finally:
|
||||||
|
_extobj_contextvar.reset(_token)
|
||||||
|
|
||||||
|
return inner
|
@ -0,0 +1,32 @@
|
|||||||
|
from collections.abc import Callable
|
||||||
|
from typing import Any, Literal, TypeAlias, TypedDict, type_check_only
|
||||||
|
|
||||||
|
from _typeshed import SupportsWrite
|
||||||
|
|
||||||
|
from numpy import errstate as errstate
|
||||||
|
|
||||||
|
_ErrKind: TypeAlias = Literal["ignore", "warn", "raise", "call", "print", "log"]
|
||||||
|
_ErrFunc: TypeAlias = Callable[[str, int], Any]
|
||||||
|
_ErrCall: TypeAlias = _ErrFunc | SupportsWrite[str]
|
||||||
|
|
||||||
|
@type_check_only
|
||||||
|
class _ErrDict(TypedDict):
|
||||||
|
divide: _ErrKind
|
||||||
|
over: _ErrKind
|
||||||
|
under: _ErrKind
|
||||||
|
invalid: _ErrKind
|
||||||
|
|
||||||
|
def seterr(
|
||||||
|
all: _ErrKind | None = ...,
|
||||||
|
divide: _ErrKind | None = ...,
|
||||||
|
over: _ErrKind | None = ...,
|
||||||
|
under: _ErrKind | None = ...,
|
||||||
|
invalid: _ErrKind | None = ...,
|
||||||
|
) -> _ErrDict: ...
|
||||||
|
def geterr() -> _ErrDict: ...
|
||||||
|
def setbufsize(size: int) -> int: ...
|
||||||
|
def getbufsize() -> int: ...
|
||||||
|
def seterrcall(func: _ErrCall | None) -> _ErrCall | None: ...
|
||||||
|
def geterrcall() -> _ErrCall | None: ...
|
||||||
|
|
||||||
|
# See `numpy/__init__.pyi` for the `errstate` class and `no_nep5_warnings`
|
Binary file not shown.
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,238 @@
|
|||||||
|
from collections.abc import Callable
|
||||||
|
|
||||||
|
# Using a private class is by no means ideal, but it is simply a consequence
|
||||||
|
# of a `contextlib.context` returning an instance of aforementioned class
|
||||||
|
from contextlib import _GeneratorContextManager
|
||||||
|
from typing import (
|
||||||
|
Any,
|
||||||
|
Final,
|
||||||
|
Literal,
|
||||||
|
SupportsIndex,
|
||||||
|
TypeAlias,
|
||||||
|
TypedDict,
|
||||||
|
overload,
|
||||||
|
type_check_only,
|
||||||
|
)
|
||||||
|
|
||||||
|
from typing_extensions import deprecated
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from numpy._globals import _NoValueType
|
||||||
|
from numpy._typing import NDArray, _CharLike_co, _FloatLike_co
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
"array2string",
|
||||||
|
"array_repr",
|
||||||
|
"array_str",
|
||||||
|
"format_float_positional",
|
||||||
|
"format_float_scientific",
|
||||||
|
"get_printoptions",
|
||||||
|
"printoptions",
|
||||||
|
"set_printoptions",
|
||||||
|
]
|
||||||
|
|
||||||
|
###
|
||||||
|
|
||||||
|
_FloatMode: TypeAlias = Literal["fixed", "unique", "maxprec", "maxprec_equal"]
|
||||||
|
_LegacyNoStyle: TypeAlias = Literal["1.21", "1.25", "2.1", False]
|
||||||
|
_Legacy: TypeAlias = Literal["1.13", _LegacyNoStyle]
|
||||||
|
_Sign: TypeAlias = Literal["-", "+", " "]
|
||||||
|
_Trim: TypeAlias = Literal["k", ".", "0", "-"]
|
||||||
|
_ReprFunc: TypeAlias = Callable[[NDArray[Any]], str]
|
||||||
|
|
||||||
|
@type_check_only
|
||||||
|
class _FormatDict(TypedDict, total=False):
|
||||||
|
bool: Callable[[np.bool], str]
|
||||||
|
int: Callable[[np.integer], str]
|
||||||
|
timedelta: Callable[[np.timedelta64], str]
|
||||||
|
datetime: Callable[[np.datetime64], str]
|
||||||
|
float: Callable[[np.floating], str]
|
||||||
|
longfloat: Callable[[np.longdouble], str]
|
||||||
|
complexfloat: Callable[[np.complexfloating], str]
|
||||||
|
longcomplexfloat: Callable[[np.clongdouble], str]
|
||||||
|
void: Callable[[np.void], str]
|
||||||
|
numpystr: Callable[[_CharLike_co], str]
|
||||||
|
object: Callable[[object], str]
|
||||||
|
all: Callable[[object], str]
|
||||||
|
int_kind: Callable[[np.integer], str]
|
||||||
|
float_kind: Callable[[np.floating], str]
|
||||||
|
complex_kind: Callable[[np.complexfloating], str]
|
||||||
|
str_kind: Callable[[_CharLike_co], str]
|
||||||
|
|
||||||
|
@type_check_only
|
||||||
|
class _FormatOptions(TypedDict):
|
||||||
|
precision: int
|
||||||
|
threshold: int
|
||||||
|
edgeitems: int
|
||||||
|
linewidth: int
|
||||||
|
suppress: bool
|
||||||
|
nanstr: str
|
||||||
|
infstr: str
|
||||||
|
formatter: _FormatDict | None
|
||||||
|
sign: _Sign
|
||||||
|
floatmode: _FloatMode
|
||||||
|
legacy: _Legacy
|
||||||
|
|
||||||
|
###
|
||||||
|
|
||||||
|
__docformat__: Final = "restructuredtext" # undocumented
|
||||||
|
|
||||||
|
def set_printoptions(
|
||||||
|
precision: SupportsIndex | None = ...,
|
||||||
|
threshold: int | None = ...,
|
||||||
|
edgeitems: int | None = ...,
|
||||||
|
linewidth: int | None = ...,
|
||||||
|
suppress: bool | None = ...,
|
||||||
|
nanstr: str | None = ...,
|
||||||
|
infstr: str | None = ...,
|
||||||
|
formatter: _FormatDict | None = ...,
|
||||||
|
sign: _Sign | None = None,
|
||||||
|
floatmode: _FloatMode | None = None,
|
||||||
|
*,
|
||||||
|
legacy: _Legacy | None = None,
|
||||||
|
override_repr: _ReprFunc | None = None,
|
||||||
|
) -> None: ...
|
||||||
|
def get_printoptions() -> _FormatOptions: ...
|
||||||
|
|
||||||
|
# public numpy export
|
||||||
|
@overload # no style
|
||||||
|
def array2string(
|
||||||
|
a: NDArray[Any],
|
||||||
|
max_line_width: int | None = None,
|
||||||
|
precision: SupportsIndex | None = None,
|
||||||
|
suppress_small: bool | None = None,
|
||||||
|
separator: str = " ",
|
||||||
|
prefix: str = "",
|
||||||
|
style: _NoValueType = ...,
|
||||||
|
formatter: _FormatDict | None = None,
|
||||||
|
threshold: int | None = None,
|
||||||
|
edgeitems: int | None = None,
|
||||||
|
sign: _Sign | None = None,
|
||||||
|
floatmode: _FloatMode | None = None,
|
||||||
|
suffix: str = "",
|
||||||
|
*,
|
||||||
|
legacy: _Legacy | None = None,
|
||||||
|
) -> str: ...
|
||||||
|
@overload # style=<given> (positional), legacy="1.13"
|
||||||
|
def array2string(
|
||||||
|
a: NDArray[Any],
|
||||||
|
max_line_width: int | None,
|
||||||
|
precision: SupportsIndex | None,
|
||||||
|
suppress_small: bool | None,
|
||||||
|
separator: str,
|
||||||
|
prefix: str,
|
||||||
|
style: _ReprFunc,
|
||||||
|
formatter: _FormatDict | None = None,
|
||||||
|
threshold: int | None = None,
|
||||||
|
edgeitems: int | None = None,
|
||||||
|
sign: _Sign | None = None,
|
||||||
|
floatmode: _FloatMode | None = None,
|
||||||
|
suffix: str = "",
|
||||||
|
*,
|
||||||
|
legacy: Literal["1.13"],
|
||||||
|
) -> str: ...
|
||||||
|
@overload # style=<given> (keyword), legacy="1.13"
|
||||||
|
def array2string(
|
||||||
|
a: NDArray[Any],
|
||||||
|
max_line_width: int | None = None,
|
||||||
|
precision: SupportsIndex | None = None,
|
||||||
|
suppress_small: bool | None = None,
|
||||||
|
separator: str = " ",
|
||||||
|
prefix: str = "",
|
||||||
|
*,
|
||||||
|
style: _ReprFunc,
|
||||||
|
formatter: _FormatDict | None = None,
|
||||||
|
threshold: int | None = None,
|
||||||
|
edgeitems: int | None = None,
|
||||||
|
sign: _Sign | None = None,
|
||||||
|
floatmode: _FloatMode | None = None,
|
||||||
|
suffix: str = "",
|
||||||
|
legacy: Literal["1.13"],
|
||||||
|
) -> str: ...
|
||||||
|
@overload # style=<given> (positional), legacy!="1.13"
|
||||||
|
@deprecated("'style' argument is deprecated and no longer functional except in 1.13 'legacy' mode")
|
||||||
|
def array2string(
|
||||||
|
a: NDArray[Any],
|
||||||
|
max_line_width: int | None,
|
||||||
|
precision: SupportsIndex | None,
|
||||||
|
suppress_small: bool | None,
|
||||||
|
separator: str,
|
||||||
|
prefix: str,
|
||||||
|
style: _ReprFunc,
|
||||||
|
formatter: _FormatDict | None = None,
|
||||||
|
threshold: int | None = None,
|
||||||
|
edgeitems: int | None = None,
|
||||||
|
sign: _Sign | None = None,
|
||||||
|
floatmode: _FloatMode | None = None,
|
||||||
|
suffix: str = "",
|
||||||
|
*,
|
||||||
|
legacy: _LegacyNoStyle | None = None,
|
||||||
|
) -> str: ...
|
||||||
|
@overload # style=<given> (keyword), legacy="1.13"
|
||||||
|
@deprecated("'style' argument is deprecated and no longer functional except in 1.13 'legacy' mode")
|
||||||
|
def array2string(
|
||||||
|
a: NDArray[Any],
|
||||||
|
max_line_width: int | None = None,
|
||||||
|
precision: SupportsIndex | None = None,
|
||||||
|
suppress_small: bool | None = None,
|
||||||
|
separator: str = " ",
|
||||||
|
prefix: str = "",
|
||||||
|
*,
|
||||||
|
style: _ReprFunc,
|
||||||
|
formatter: _FormatDict | None = None,
|
||||||
|
threshold: int | None = None,
|
||||||
|
edgeitems: int | None = None,
|
||||||
|
sign: _Sign | None = None,
|
||||||
|
floatmode: _FloatMode | None = None,
|
||||||
|
suffix: str = "",
|
||||||
|
legacy: _LegacyNoStyle | None = None,
|
||||||
|
) -> str: ...
|
||||||
|
|
||||||
|
def format_float_scientific(
|
||||||
|
x: _FloatLike_co,
|
||||||
|
precision: int | None = ...,
|
||||||
|
unique: bool = ...,
|
||||||
|
trim: _Trim = "k",
|
||||||
|
sign: bool = ...,
|
||||||
|
pad_left: int | None = ...,
|
||||||
|
exp_digits: int | None = ...,
|
||||||
|
min_digits: int | None = ...,
|
||||||
|
) -> str: ...
|
||||||
|
def format_float_positional(
|
||||||
|
x: _FloatLike_co,
|
||||||
|
precision: int | None = ...,
|
||||||
|
unique: bool = ...,
|
||||||
|
fractional: bool = ...,
|
||||||
|
trim: _Trim = "k",
|
||||||
|
sign: bool = ...,
|
||||||
|
pad_left: int | None = ...,
|
||||||
|
pad_right: int | None = ...,
|
||||||
|
min_digits: int | None = ...,
|
||||||
|
) -> str: ...
|
||||||
|
def array_repr(
|
||||||
|
arr: NDArray[Any],
|
||||||
|
max_line_width: int | None = ...,
|
||||||
|
precision: SupportsIndex | None = ...,
|
||||||
|
suppress_small: bool | None = ...,
|
||||||
|
) -> str: ...
|
||||||
|
def array_str(
|
||||||
|
a: NDArray[Any],
|
||||||
|
max_line_width: int | None = ...,
|
||||||
|
precision: SupportsIndex | None = ...,
|
||||||
|
suppress_small: bool | None = ...,
|
||||||
|
) -> str: ...
|
||||||
|
def printoptions(
|
||||||
|
precision: SupportsIndex | None = ...,
|
||||||
|
threshold: int | None = ...,
|
||||||
|
edgeitems: int | None = ...,
|
||||||
|
linewidth: int | None = ...,
|
||||||
|
suppress: bool | None = ...,
|
||||||
|
nanstr: str | None = ...,
|
||||||
|
infstr: str | None = ...,
|
||||||
|
formatter: _FormatDict | None = ...,
|
||||||
|
sign: _Sign | None = None,
|
||||||
|
floatmode: _FloatMode | None = None,
|
||||||
|
*,
|
||||||
|
legacy: _Legacy | None = None,
|
||||||
|
override_repr: _ReprFunc | None = None,
|
||||||
|
) -> _GeneratorContextManager[_FormatOptions]: ...
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue