ode examples
commit
55310709ec
File diff suppressed because one or more lines are too long
@ -0,0 +1,138 @@
|
||||
# Excersices
|
||||
Find a numerical solution to the following differential equations with the associated initial conditions. Expand the requested time horizon until the solution reaches a steady state. Show a plot of the states ($x(t)$ and/or $y(t)$). Report the final value of each state as $t \rightarrow \infty$.
|
||||
|
||||
|
||||
## Problem 1:
|
||||
|
||||
$$\frac{dy(t)}{dt} = -y(t)+1 $$
|
||||
with,
|
||||
$$ y(0)=0$$
|
||||
|
||||
This equation can be solved using the separation of variables method:
|
||||
|
||||
$$y(t) = 1-e^{-t}$$
|
||||
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
from scipy.integrate import odeint
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# function that returns dy/dt
|
||||
def model(y,t):
|
||||
dydt = -y + 1.0
|
||||
return dydt
|
||||
|
||||
# initial condition
|
||||
y0 = 0
|
||||
|
||||
# time points
|
||||
t = np.linspace(0,5)
|
||||
|
||||
# solve ODE
|
||||
y = odeint(model,y0,t)
|
||||
ySol = 1-np.exp(-t)
|
||||
# plot results
|
||||
plt.plot(t,y,'ok', label='ODE')
|
||||
plt.plot(t,ySol, '.:r', label='ySol')
|
||||
plt.legend()
|
||||
plt.xlabel('time')
|
||||
plt.ylabel('y(t)')
|
||||
plt.show()
|
||||
```
|
||||
|
||||
|
||||
|
||||

|
||||
|
||||
|
||||
|
||||
# Problem 2
|
||||
$$5\frac{dy}{dt}=-y(t)+u(t)$$
|
||||
|
||||
with,
|
||||
$$y(0)=1$$
|
||||
|
||||
and $u$ step at $t=2$
|
||||
|
||||
|
||||
```python
|
||||
# function that returns dy/dt
|
||||
def model(y,t):
|
||||
# u steps from 0 to 2 at t=10
|
||||
if t<10.0:
|
||||
u = 0
|
||||
else:
|
||||
u = 2
|
||||
dydt = (-y + u)/5.0
|
||||
return dydt
|
||||
|
||||
# initial condition
|
||||
y0 = 1
|
||||
|
||||
# time points
|
||||
n = 40
|
||||
t = np.linspace(0,n-1,n)
|
||||
# solve ODE
|
||||
y = odeint(model,y0,t)
|
||||
|
||||
# plot results
|
||||
plt.plot(t,y,'r-',label='Output (y(t))')
|
||||
plt.plot([0,10,10,40],[0,0,2,2],'b:',label='Input (u(t))')
|
||||
plt.ylabel('values')
|
||||
plt.xlabel('time')
|
||||
plt.legend(loc='best')
|
||||
plt.show()
|
||||
```
|
||||
|
||||
|
||||
|
||||

|
||||
|
||||
|
||||
|
||||
|
||||
```python
|
||||
# Define the step function u(t)
|
||||
def u(t):
|
||||
return 0 if t < 10.0 else 2 # Step from 0 to 2 at t = 10
|
||||
|
||||
# function that returns dy/dt
|
||||
def model(y,t):
|
||||
dydt = (-y + u(t))/5.0
|
||||
return dydt
|
||||
|
||||
# initial condition
|
||||
y0 = 1
|
||||
|
||||
# time points
|
||||
n = 20
|
||||
t = np.linspace(0,n-1,n)
|
||||
|
||||
# solve ODE
|
||||
y = odeint(model,y0,t)
|
||||
# Compute u(t) for all values in t
|
||||
u_values = np.array([u(ti) for ti in t]) # Evaluate u at each time point
|
||||
|
||||
|
||||
# plot results
|
||||
plt.plot(t,y,'.:r',label='Output (y(t))')
|
||||
plt.plot(t, u_values, 'g-', linewidth=2, label="u(t)")
|
||||
plt.axvline(x=10, color='r', linestyle='--', label="Step at t=10")
|
||||
plt.ylabel('values')
|
||||
plt.xlabel('time')
|
||||
plt.legend(loc='best')
|
||||
plt.show()
|
||||
|
||||
```
|
||||
|
||||
|
||||
|
||||

|
||||
|
||||
|
||||
|
||||
|
||||
```python
|
||||
|
||||
```
|
Binary file not shown.
After Width: | Height: | Size: 17 KiB |
Binary file not shown.
After Width: | Height: | Size: 24 KiB |
Binary file not shown.
After Width: | Height: | Size: 24 KiB |
Loading…
Reference in New Issue