Ode examples for modelling
You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
Gerardo Marx 1ee9a72a6b Update 'Readme.md' 2 weeks ago
main_files ode examples 2 weeks ago
Readme.md Update 'Readme.md' 2 weeks ago
main.ipynb ode examples 2 weeks ago

Readme.md

Excersices

Find a numerical solution to the following differential equations with the associated initial conditions. Expand the requested time horizon until the solution reaches a steady state. Show a plot of the states (x(t) and/or y(t)). Report the final value of each state as t \rightarrow \infty.

Problem 1:

\frac{dy(t)}{dt} = -y(t)+1 

with,

 y(0)=0

This equation can be solved using the separation of variables method:

y(t) = 1-e^{-t}
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt

# function that returns dy/dt
def model(y,t):
    dydt = -y + 1.0
    return dydt

# initial condition
y0 = 0

# time points
t = np.linspace(0,5)

# solve ODE
y = odeint(model,y0,t)
ySol = 1-np.exp(-t)
# plot results
plt.plot(t,y,'ok', label='ODE')
plt.plot(t,ySol, '.:r', label='ySol')
plt.legend()
plt.xlabel('time')
plt.ylabel('y(t)')
plt.show()

png

Problem 2

5\frac{dy}{dt}=-y(t)+u(t)

with,

y(0)=1

and u step at t=2

# function that returns dy/dt
def model(y,t):
    # u steps from 0 to 2 at t=10
    if t<10.0:
        u = 0
    else:
        u = 2
    dydt = (-y + u)/5.0
    return dydt

# initial condition
y0 = 1

# time points
n = 40
t = np.linspace(0,n-1,n)
# solve ODE
y = odeint(model,y0,t)

# plot results
plt.plot(t,y,'r-',label='Output (y(t))')
plt.plot([0,10,10,40],[0,0,2,2],'b:',label='Input (u(t))')
plt.ylabel('values')
plt.xlabel('time')
plt.legend(loc='best')
plt.show()

png

# Define the step function u(t)
def u(t):
    return 0 if t < 10.0 else 2  # Step from 0 to 2 at t = 10

# function that returns dy/dt
def model(y,t):
    dydt = (-y + u(t))/5.0
    return dydt

# initial condition
y0 = 1

# time points
n = 20
t = np.linspace(0,n-1,n)

# solve ODE
y = odeint(model,y0,t)
# Compute u(t) for all values in t
u_values = np.array([u(ti) for ti in t])  # Evaluate u at each time point


# plot results
plt.plot(t,y,'.:r',label='Output (y(t))')
plt.plot(t, u_values, 'g-', linewidth=2, label="u(t)")
plt.axvline(x=10, color='r', linestyle='--', label="Step at t=10")
plt.ylabel('values')
plt.xlabel('time')
plt.legend(loc='best')
plt.show()

png