Adding the information for repo

main
Gerardo Marx 7 months ago
parent 5b099d5806
commit ce21e13b37

@ -1,4 +1,23 @@
# Introduction
The present session will introduce the Python classes and how to create your own Artificial Neural Network (ANN) class. The class will implement the `__init__`, `feedforward`, and `backpropagation` methods.
Each method will be described in detail to understand the ANNs inner work. Then, the handwriting MNIST dataset will be used to train and test our ANN.
# Objectives
- Learn the basics of using Python Classes
- Create methods for: create, feedforward, and backpropagation
- Train the ANN
- Test the ANN
# Classes and methods # Classes and methods
A class defines the structure, data and methods that an object will have. There is possible to have public and private variables to operate in the methods.
- Argument
- Initialitation
- Methods
- Destroy
```python ```python
@ -37,6 +56,8 @@ dog3.status()
# ANN class implementation # ANN class implementation
The next chunk of code defines the Neural Network's basic structure. We are going to implement and define the methods one at time to understand them in a better way.
```python ```python
class Neurona: class Neurona:
@ -51,7 +72,13 @@ class Neurona:
pass pass
``` ```
## Initialization or creation Method
Lets begin with the initialization. We know we need to set the number of input, hidden and output layer nodes. That defines the shape and size of the neural network. Thus, well let them be set when a new neural network object is created by using the class' parameters. That way we retain the choice to create new neural networks of different sizes with simple methods.
A good programmers, computer scientists and mathematicians, try to create more general code rather than specific code. It is a good habit, because it forces us to think about solving problems in a deeper and more general way. This means that our code can be used in more general scenarios.
Then, let us see how our code should look like:
```python ```python
import numpy as np import numpy as np
@ -75,22 +102,37 @@ class Neurona:
pass pass
``` ```
At this point were are only creating an object, but the class can't do any useful yet. Also, this is a good technique to start coding somethig, by keeping it small at the begining (make commits), and then grow the methods.
Next, we should add more code to allow our ANN class finish its initialization by creating the weight matrixes.
```python
inputs = np.array([0.21,0.39, 0.87],ndmin=2).T ## Feedfordward method
inputs
``` So the next step is to create the network of nodes and links. The most important part of the network is the link weights. Theyre used to calculate the signal being fed forward, the error as its propagated backwards, and it is the link weights themselves that are refined in an attempt to to improve the network.
For the basic NN, the weight matrix consist of:
- A matrix that links the input and hidden layers, $Wih$, of size hidden nodes by input nodes ($hn×in$)
- and another matrix for the links between the hidden and output layers, $Who$, of size $on×hn$ (output nodes by hidden nodes)
$$X_h=W_{ih}I$$
$$O_h=\sigma{X_h}$$
So the next step is to create the network of nodes and links. The most important part of the network is the link weights. Theyre used to calculate the signal being fed forward, the error as its propagated backwards, and it is the link weights themselves that are refined in an attempt to to improve the network.
For the basic NN, the weight matrix consist of:
array([[0.21], - A matrix that links the input and hidden layers, $Wih$, of size hidden nodes by input nodes ($hn×in$)
[0.39], - and another matrix for the links between the hidden and output layers, $Who$, of size $on×hn$ (output nodes by hidden nodes)
[0.87]])
$$X_h=W_{ih}I$$
$$O_h=\sigma{X_h}$$
## Backpropagation
$$ \frac{\partial E}{\partial w*{jk}}= -e_j\cdot \sigma\left(\sum_i w*{ij} o*i\right) \left(1-\sigma\left(\sum_i w*{ij} o_i\right) \right) o_i $$
```python ```python
import numpy as np import numpy as np

Loading…
Cancel
Save