Readme file added

main
Gerardo Marx 10 months ago
parent e93e41c96f
commit 9440570030

@ -0,0 +1,233 @@
# OLS Ordinary Least Squares
The OLS general model $\hat{y}$ is defined by:
$$ \hat{y} = \theta_0+\theta_1 x_1 $$
Applying the partial derivatives with rescpect $\theta_0$ and equaliting to zero:
$$\frac{\partial SSR}{\partial \theta_0}=0 $$
here SSR is defined as:
$$ \sum_{i=1}^n (y^i - \hat{y}^i)^2 $$
Resulting in:
$$ \theta_0 = \frac{\sum_{i=1}^n y^i}{n} - \frac{\theta_1 \sum_{i=1}^n x^i}{n}$$
or
$$ \theta_0 = \bar{y} -\theta_1 \bar{x} $$
In a similar way, the partial derivative of SSR with respect of $\theta_1$ will result in:
$$\theta_1 = \frac{\sum_{i=1}^n x^i(y^i-\bar{y}) }{\sum_{i=1}^n x^i(x^i-\bar{x})}$$
# Implementing OLS in Python
```python
import numpy as np
x = np.linspace(0,4,20)
theta0 = 3.9654
theta1 = 2.5456
y = theta0+theta1*x
y
```
array([ 3.9654 , 4.50131579, 5.03723158, 5.57314737, 6.10906316,
6.64497895, 7.18089474, 7.71681053, 8.25272632, 8.78864211,
9.32455789, 9.86047368, 10.39638947, 10.93230526, 11.46822105,
12.00413684, 12.54005263, 13.07596842, 13.61188421, 14.1478 ])
```python
import matplotlib.pyplot as plt
plt.plot(x,y, '.k')
plt.show()
```
![png](main_files/main_5_0.png)
```python
x = 4*np.random.rand(50, 1)
y = theta0 + theta1*x+0.5*np.random.randn(50, 1)
plt.plot(x,y, '*k')
plt.show()
```
![png](main_files/main_6_0.png)
## Implementing with `for`
$$\theta_1 = \frac{\sum_{i=1}^n x^i(y^i-\bar{y}) }{\sum_{i=1}^n x^i(x^i-\bar{x})}$$
```python
# for implementation for computing theta1:
xAve = x.mean()
yAve = y.mean()
num = 0
den = 0
for i in range(len(x)):
num = num + x[i]*(y[i]-yAve)
den = den + x[i]*(x[i]-xAve)
theta1Hat = num/den
print(theta1Hat)
```
[2.4717291]
```python
# for implementation for theta0:
# $$ \theta_0 = \bar{y} -\theta_1 \bar{x} $$
theta0Hat = yAve - theta1Hat*xAve
print(theta0Hat)
#real values are
#theta0 = 3.9654
#theta1 = 2.5456
```
[4.18459936]
```python
total = 0
for i in range(len(x)):
total = total + x[i]
total/len(x)
```
array([2.27654582])
## Implementing OLS by numpy methods
```python
# For theta1:
# $$\theta_1 = \frac{\sum_{i=1}^n x^i(y^i-\bar{y}) }{\sum_{i=1}^n x^i(x^i-\bar{x})}$$
num2 = np.sum(x*(y-y.mean()))
den2 = np.sum(x*(x-x.mean()))
theta1Hat2 = num2/den2
print(theta1Hat2)
# Efficacy --> time
```
2.4717291029649546
```python
theta0Hat2 = yAve-theta1Hat2*xAve
theta0Hat2
```
4.184599360470533
# Comparing Model and Data
```python
xNew = np.linspace(0,4,20)
yHat = theta0Hat + theta1Hat*xNew
plt.plot(xNew, yHat, '-*r', label="$\hat{y}$")
plt.plot(x,y,'.k', label="data")
plt.legend()
plt.show()
```
![png](main_files/main_15_0.png)
# Functions for data and OLS
```python
def DataGen(xn: float,n: int, disp,theta0=3.9654,theta1=2.5456):
x = xn*np.random.rand(n, 1)
#theta0 = 3.9654
#theta1 = 2.5456
y = theta0+theta1*x+disp*np.random.randn(n,1)
return x,y
```
```python
x,y = DataGen(9, 100, 1, 0,1)
```
```python
plt.plot(x,y,'.k')
plt.show()
```
![png](main_files/main_19_0.png)
```python
def MyOLS(x,y):
# for implementation for computing theta1:
xAve = x.mean()
yAve = y.mean()
num = 0
den = 0
for i in range(len(x)):
num = num + x[i]*(y[i]-yAve)
den = den + x[i]*(x[i]-xAve)
theta1Hat = num/den
theta0Hat = yAve - theta1Hat*xAve
return theta0Hat, theta1Hat
```
```python
the0, the1 = MyOLS(x,y)
the1
```
array([1.12539439])
# TODO - Students
- [ ] Efficacy --> time: For method Vs. Numpy

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Loading…
Cancel
Save